世界のモバイル人工知能(AI)市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
10.61 Billion
USD
81.13 Billion
2024
2032
| 2025 –2032 | |
| USD 10.61 Billion | |
| USD 81.13 Billion | |
|
|
|
|
世界のモバイル人工知能(AI)市場:テクノロジー(7 nm、10 nm、20~28 nmなど)、コンポーネント(ハードウェア、ソフトウェア、サービス)、アプリケーション(スマートフォン、ドローン、自動車、カメラ、ロボット工学、拡張現実(AR)、仮想現実(VR)、その他)別 - 2032年までの業界動向と予測
モバイル人工知能(AI)市場規模
- 世界のモバイル人工知能(AI)市場規模は2024年に106億1000万米ドルと評価され、予測期間中に28.95%のCAGRで成長し、2032年には811億3000万米ドル に達すると予想されています 。
- 市場の成長は、主にデバイス上の AI 処理に対する需要の高まりと、より高速で効率的なモバイル パフォーマンスを可能にする AI チップセットの進歩によって推進されています。
- さらに、音声アシスタント、顔認識、リアルタイム翻訳など、スマートフォンにおける AI 搭載機能の採用が増えていることも、消費者の需要を促進しています。
モバイル人工知能(AI)市場分析
- モバイル人工知能市場は、リアルタイムデータ処理とインテリジェントな自動化を活用したスマートモバイルアプリケーションを採用する消費者や企業が増えているため、力強い成長を遂げています。
- 現在の市場では、クラウドベースの処理への依存を減らし、モバイルデバイスに人工知能を直接組み込むという明確な傾向が見られます。
- 北米は、高度なモバイル技術の採用率の高さ、主要な業界プレーヤーの強力な存在感、AIイノベーションへの堅調な投資により、2025年にはモバイル人工知能(AI)市場で31.3%という最大の収益シェアを獲得し、市場を支配しています。
- アジア太平洋地域は、急速なデジタル変革、スマートフォンの普及率の増加、モバイルアプリケーション全体にわたるAI統合への注目の高まりにより、予測期間中にモバイル人工知能(AI)市場で最も急速に成長する地域になると予想されています。
- 10nmセグメントは、バッテリー寿命を犠牲にすることなく高度な人工知能機能をサポートできる高性能かつエネルギー効率の高いモバイルプロセッサへの需要の高まりを背景に、2025年には45.06%という最大の市場収益シェアを獲得しました。このノードサイズは消費電力と計算能力のバランスが取れており、画像認識、音声処理、スマートフォンやウェアラブルデバイスにおけるリアルタイムデータ分析などのAI駆動型アプリケーションに最適です。
レポートの範囲とモバイル人工知能(AI)市場のセグメンテーション
|
属性 |
モバイル人工知能(AI)の主要市場分析 |
|
対象セグメント |
|
|
対象国 |
北米
ヨーロッパ
アジア太平洋
中東およびアフリカ
南アメリカ
|
|
主要な市場プレーヤー |
|
|
市場機会 |
|
|
付加価値データ情報セット |
データブリッジマーケットリサーチがまとめた市場レポートには、市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、専門家による詳細な分析、地理的に表された企業別の生産量と生産能力、販売業者とパートナーのネットワークレイアウト、詳細かつ最新の価格動向分析、サプライチェーンと需要の不足分析も含まれています。 |
モバイル人工知能(AI)市場動向
「エッジAI統合がモバイル開発を席巻」
- スマートフォンメーカーは、言語、視覚、センサー融合モデルをデバイス上で直接実行するための専用のニューラル処理ユニットを組み込み、インテリジェンスをクラウドからエッジへと移行させている。
- 例えば、AppleのA17 Proチップは、高速ニューラルエンジンを通じて、デバイス上でのパーソナル音声合成と高度な写真セグメンテーションを実現します。
- もう一つの例は、クラウドアクセスを必要とせずにリアルタイムの画像生成編集と多言語音声翻訳をサポートするクアルコムのSnapdragon 8 Gen 3である。
- AIをローカルで実行することで、応答時間が短縮され、データのプライバシーが強化され、クラウドの使用量も削減されるため、モバイルユーザーや企業のフィールドアプリケーションに最適です。
- TensorFlow LiteやCore MLなどのツールキットの導入改善により、エッジAIはミッドレンジのスマートフォン、スマートウォッチ、IoTガジェットに急速に普及しています。
モバイル人工知能(AI)市場の動向
ドライバ
「パーソナライズされたユーザーエクスペリエンスへの需要の高まり」
- パーソナライズされたユーザーエクスペリエンスへの需要の高まりは、モバイルデバイスにおける人工知能の採用を推進する主な要因であり、ユーザーはスマートフォンが個人の習慣や好みに適応するインテリジェントなアシスタントとして機能することを期待しています。
- 人工知能は、アプリの使用状況、位置情報、インタラクション履歴などの行動データを分析することで、パーソナライズを可能にし、カスタマイズされた推奨事項やアクションを提供します。
- 例えば、SiriやGoogleアシスタントなどの音声アシスタントは、時間の経過とともにユーザーの行動を学習し、より適切なリマインダー、応答、提案を提供します。
- もう一つの例としては、NetflixやSpotifyなどのストリーミングアプリがAIを活用して個人の視聴履歴に基づいてコンテンツを推奨したり、フィットネスアプリが日々の活動パターンに基づいてカスタマイズされた健康情報を提供したりしている点が挙げられる。
- モバイルメーカーは、予測テキスト入力、画面の明るさの調整、リアルタイムのコンテンツ提案、スマートバッテリー管理などの高度なAI機能を、ミッドレンジやエントリーレベルのスマートフォンを含むさまざまなデバイスセグメントに統合することで、このトレンドに対応しています。
抑制/挑戦
「処理能力とバッテリー寿命の制限」
- 多くのアルゴリズムは標準的なモバイルプロセッサにとってリソースを大量に消費するため、限られた処理能力とバッテリー寿命は、モバイルデバイスに高度な人工知能機能を実装する上で依然として大きな課題となっている。
- リアルタイムの物体検出や拡張現実などの複雑なAI機能を実行すると、バッテリーの電力が急速に消耗し、過熱が発生する可能性があり、現在のハードウェアでは継続的な使用が困難になります。
- 例えば、ゲームやインテリアデザインの視覚化にAI駆動型拡張現実アプリを使用すると、バッテリーの消耗が早くなり、サーマルスロットリングが発生し、パフォーマンスが低下する可能性があります。
- もう1つの例は、音声対応AIアシスタントが自然言語処理をローカルで実行しているケースで、最適化されたチップセットがないと時間の経過とともに速度が低下したり、過剰な電力を消費したりする可能性がある。
- 開発者とメーカーは、特に高性能ハードウェアを搭載していない中低価格帯のデバイスにおいて、アルゴリズムを最適化し、チップ設計を改善することで、速度、精度、エネルギー効率を慎重にバランスさせ、市場全体でより広範なアクセスと一貫したユーザーエクスペリエンスを確保する必要があります。
モバイル人工知能(AI)市場の範囲
世界のモバイル人工知能 (AI) 市場は、テクノロジー、コンポーネント、アプリケーションに基づいてセグメント化されています。
- テクノロジー別
モバイルAI(人工知能)市場は、技術に基づいて7nm、10nm、20~28nm、その他に分類されています。10nmセグメントは、バッテリー寿命を犠牲にすることなく高度な人工知能機能をサポートできる高性能でエネルギー効率の高いモバイルプロセッサへの需要の高まりを背景に、2025年には45.06%という最大の市場収益シェアを獲得しました。このノードサイズは消費電力と計算能力のバランスが取れており、画像認識、音声処理、スマートフォンやウェアラブルデバイスにおけるリアルタイムデータ分析などのAI駆動型アプリケーションに最適です。
7nmセグメントは、AI駆動型モバイルアプリケーションにおける処理効率の向上、消費電力の削減、そして放熱性能の向上を実現できることから、2025年から2032年にかけて最も高い成長率を達成すると予想されています。次世代チップ設計との互換性により、リアルタイム言語翻訳、拡張現実(AR)、モバイルデバイスにおける高度なカメラ機能といった複雑なAIタスクのサポートを目指すメーカーにとって、7nmは最適な選択肢となります。
- コンポーネント別
モバイルAI市場は、コンポーネントメカニズムに基づいて、ハードウェア、ソフトウェア、サービスに分類されます。ハードウェアセグメントは、モバイルデバイスにおけるAI機能の実現においてプロセッサ、メモリ、センサーが重要な役割を果たすことから、2025年には最大の市場収益シェアを獲得しました。AIアルゴリズムの複雑化に伴い、高負荷の計算タスクを効率的に処理できる強力なハードウェアコンポーネントが求められています。ニューラルプロセッシングユニット(NPU)やその他のAI専用ハードウェアの継続的なイノベーションが、このセグメントの成長を加速させています。
サービス分野は、AIを活用したクラウドサービス、データ分析、モバイルアプリケーション向けAIプラットフォーム統合への需要の高まりを背景に、2025年から2032年にかけて最も高いCAGRを達成すると予想されています。モバイルAIの導入が拡大するにつれ、堅牢なクラウドインフラストラクチャ、効率的なデータ管理、そしてAIモデルのモバイルエコシステムへのシームレスな統合へのニーズが高まり、サービス分野の大幅な成長を牽引するでしょう。パーソナライズされたユーザーエクスペリエンスへの関心の高まりと、洗練されたAI駆動型モバイルアプリケーションの開発も、このトレンドに拍車をかけています。
- アプリケーション別
モバイルAI市場は、用途別にスマートフォン、ドローン、自動車、カメラ、ロボット工学、拡張現実(AR)、仮想現実(VR)、その他に分類されます。スマートフォンセグメントは、顔認識、画像処理、バーチャルアシスタント、予測入力といったAI機能の広範な統合により、市場収益シェアで37.47%と最大のシェアを占めています。日常の様々なタスクにおけるスマートフォンへの依存度の高まりと、革新的なAI搭載機能の継続的な導入が、このセグメントの優位性を高めています。
自動車分野は、自動運転システム、運転支援機能、車載インフォテインメントにおけるAIの導入拡大に牽引され、2025年から2032年にかけて最も高いCAGRを達成すると予想されています。自動車業界は安全性、利便性、そして自動運転車の開発にますます注力しており、高度なモバイルAI技術の統合が不可欠となっています。このアプリケーション分野は飛躍的な成長を遂げています。自動運転のためのセンサー技術とAIアルゴリズムの進歩も、この急速な成長に寄与しています。
モバイル人工知能(AI)市場の地域分析
- 北米は、大手テクノロジー企業の存在とスマートフォンの普及率の高さにより、世界のモバイル人工知能市場で31.3%という最大の収益シェアを占めました。
- 人工知能の研究開発への多額の投資は、地域のイノベーション能力を強化し続けている。
- 高度な技術インフラは、医療、金融、小売などの分野におけるAI搭載アプリケーションの早期導入をサポートします。
- パーソナライズされたユーザーエクスペリエンスに対する需要の高まりにより、モバイルデバイスへのインテリジェント機能の統合が促進されています。
- 米国とカナダの主要市場プレーヤーの強力な存在は、この地域の市場成長をさらに加速させます。
米国モバイルAI市場インサイト
米国のモバイルAI市場は、スマートフォンへのAIの急速な統合とAI対応サービスへの需要の高まりを背景に、2025年には北米で最大のシェアを占めました。高度なモバイルデバイスへの消費者支出の増加と、バーチャルアシスタント、画像認識、自然言語処理などのアプリケーションにおけるAIの採用増加が市場拡大を牽引しています。さらに、AIスタートアップの強力なエコシステムと、テクノロジー大手と研究機関の連携も、米国市場の成長に大きく貢献しています。
欧州モバイルAI市場インサイト
欧州のモバイルAI市場は、デジタル化に対する政府の支援強化、厳格なデータプライバシー規制、そしてAI倫理への関心の高まりを背景に、予測期間中に大幅なCAGRで成長すると予想されています。この地域の強固な産業基盤と、自動車、ヘルスケア、製造業といった分野におけるAI導入の増加は、大きな成長機会を生み出しています。さらに、欧州のデータ保護基準に準拠したAI活用ソリューションへの需要の高まりと、欧州諸国におけるAI研究への投資増加も、市場の拡大に貢献しています。
英国モバイルAI市場インサイト
英国のモバイルAI市場は、スマートフォンの普及拡大、AI搭載アプリケーションへの需要の高まり、そして政府によるAIイノベーション促進の取り組みを背景に、目覚ましい成長を遂げると予想されています。テクノロジーに精通した人口の豊富さと、金融、ヘルスケア、eコマースなど様々な業界におけるAIの導入拡大が市場の成長を牽引しています。さらに、英国の堅牢なデジタルインフラとAI研究開発への投資増加も、市場の拡大に寄与しています。
ドイツモバイルAI市場インサイト
ドイツのモバイルAI市場は、同国の堅調な産業セクター、技術革新への注力、そして製造業や自動車産業におけるAI導入の増加を背景に、高いCAGRで拡大すると予測されています。自動化とデジタル化へのドイツ政府の注力に加え、予知保全や品質管理といった分野におけるAI活用ソリューションの需要の高まりが、市場の成長を牽引しています。さらに、政府によるAI研究への支援、そして大手自動車メーカーやテクノロジー企業の存在も、市場の拡大に大きく貢献しています。
アジア太平洋モバイルAI市場インサイト
アジア太平洋地域のモバイルAI市場は、急速な都市化、可処分所得の増加、そして地域全体でのスマートフォン普及の拡大を背景に、最も高いCAGRで成長する見込みです。AI研究開発への投資増加に加え、eコマース、金融、製造業など様々な分野におけるAIの統合拡大が市場の成長を牽引しています。さらに、大手スマートフォンメーカーの存在や、中国、インド、日本などの国々におけるデジタルトランスフォーメーション推進に向けた政府による取り組みの強化も、この地域の急速な市場拡大に貢献しています。
日本モバイルAI市場インサイト
日本のモバイルAI市場は、高い技術導入率、自動化への注力、そしてロボティクスやエレクトロニクスといった産業におけるAIの統合拡大により、勢いを増しています。高齢化の進展と、医療・高齢者介護分野におけるAIを活用したソリューションへの需要も市場の成長に貢献しています。さらに、日本政府によるAI研究開発への支援と、大手エレクトロニクス企業およびロボティクス企業の存在も、市場の拡大を牽引しています。
中国モバイルAI市場インサイト
中国は、2025年にはアジア太平洋地域において最大の市場収益シェアを占めると予測されています。これは、巨大なスマートフォンユーザー基盤、急速な技術進歩、そしてAI開発に対する政府の強力な支援によるものです。eコマース、モバイル決済、スマートシティ構想など、様々なアプリケーションへのAIの統合が進み、市場の成長を牽引しています。さらに、国内の有力AI企業の存在と、AIにおけるグローバルリーダーを目指す政府の戦略的取り組みも、この地域における市場の優位性に大きく貢献しています。
モバイル人工知能(AI)市場シェア
モバイル人工知能 (AI) 業界は、主に次のような大手企業によって牽引されています。
- 華為技術有限公司(中国)
- サムスン(韓国)
- クアルコム・テクノロジーズ(米国)
- インテルコーポレーション(米国)
- NVIDIAコーポレーション(米国)
- AYASDI AI LLC(米国)
- 百度(バイドゥ)(中国)
- ClariFI, Inc.(米国)
- シルカディア・ヘルス(米国)
- Enlitic, Inc.(米国)
- アップル社(米国)
- IBM(米国)
- マイクロソフト(米国)
- イマジネーション・テクノロジーズ社(英国)
- グラフコア(英国)
- Amazon Inc.(米国)
- ディープハイテクノロジー(中国)
- カンブリコン(中国)
- Google(米国)
世界のモバイル人工知能(AI)市場の最新動向
- 2022年5月、アバイアとマイクロソフトは、Avaya OneCloudポートフォリオとMicrosoft Azureの統合により、グローバルパートナーシップを拡大しました。この統合により、より拡張性と俊敏性に優れたコミュニケーションソリューションを提供することで、組織の生産性と顧客エンゲージメントの向上が期待されます。この協業は、インテリジェントなクラウドベースのモバイルサービスを展開するための信頼性の高いプラットフォームを提供することで、モバイルAI市場を支援します。
- インテルコーポレーションは、モバイルAI機能の強化を目的として、Granulate Cloud Solutions Ltd.を2022年3月に買収しました。この買収は、クラウドおよびデータセンターの顧客がコンピューティングワークロードを最適化し、インフラストラクチャと運用コストを削減できるよう支援することを目的としています。この買収により、AIを活用したモバイルソリューションの効率とパフォーマンスが向上し、リアルタイムデータ処理におけるイノベーションが促進されると期待されています。
- 2022年2月、AppleはAIを活用したオーディオ体験への戦略的参入の一環として、AI音楽スタートアップ企業を買収しました。このスタートアップ企業は、AIを用いてパーソナライズされた音楽を生成する専門知識を有しており、これは、インテリジェントなオーディオ機能を通じてユーザーエンゲージメントを向上させるというAppleの重点戦略と合致しています。今回の買収は、モバイルAI機能の拡張と、より没入感が高く、カスタマイズされたユーザー体験の提供に向けたAppleのコミットメントを浮き彫りにしています。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
目次
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMPANY MARKET SHARE ANALYSIS
2.2.5 MULTIVARIATE MODELLING
2.2.6 TOP TO BOTTOM ANALYSIS
2.2.7 STANDARDS OF MEASUREMENT
2.2.8 VENDOR SHARE ANALYSIS
2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHT
5.1 PORTERS FIVE FORCES
5.2 REGULATORY STANDARDS
5.3 TECHNOLOGICAL TRENDS
5.4 PATENT ANALYSIS
5.5 CASE STUDY
5.6 VALUE CHAIN ANALYSIS
5.7 PRICING ANALYSIS
6 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 HARDWARE
6.3 SOFTWARE
6.4 SERVICES
6.4.1 PROFESSIONAL SERVICE
6.4.2 MANAGED SERVICES
7 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET, BY TECHNOLOGY
7.1 OVERVIEW
7.2 MACHINE LEARNING
7.2.1 DEEP LEARNING
7.2.1.1. CONVOLUTIONAL NEURAL NETWORK (CNN)
7.2.1.2. RECURRENT NEURAL NETWORK (RNN)
7.2.1.3. GENERATIVE ADVERSARIAL NETWORKS (GAN)
7.2.2 SUPERVISED LEARNING
7.2.3 UNSUPERVISED LEARNING
7.2.4 REINFORCEMENT LEARNING
7.3 NATURAL LANGUAGE PROCESSING (NLP)
7.4 COMPUTER VISION
7.5 CONTEXT AWARENESS
7.6 OTHERS
8 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET, BY TECHNOLOGY NODE
8.1 OVERVIEW
8.2 UPTO 10NM
8.3 10 TO 20 NM
8.4 ABOVE 20 NM
9 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET, BY APPLICATION
9.1 OVERVIEW
9.2 VIRTUAL ASSISTANTS
9.3 IMAGE RECOGNITION AND PROCESSING
9.4 SPEECH RECOGNITION AND PROCESSING
9.5 HEALTHCARE AND WELLNESS
9.6 PREDICTIVE ANALYTICS
9.7 AUTONOMOUS VEHICLES
9.8 GAMING
9.9 OTHERS
10 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET, BY END USE
10.1 OVERVIEW
10.2 SMARTPHONES
10.3 DRONES
10.4 AUTOMOTIVE
10.5 CAMERAS
10.6 ROBOTICS
10.7 AUGMENTED REALITY (AR)
10.8 VIRTUAL REALITY (VR)
10.9 OTHERS
11 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET, BY GEOGRAPHY
11.1 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
11.1.1 NORTH AMERICA
11.1.1.1. U.S.
11.1.1.2. CANADA
11.1.1.3. MEXICO
11.1.2 EUROPE
11.1.2.1. GERMANY
11.1.2.2. FRANCE
11.1.2.3. U.K.
11.1.2.4. ITALY
11.1.2.5. SPAIN
11.1.2.6. RUSSIA
11.1.2.7. TURKEY
11.1.2.8. BELGIUM
11.1.2.9. NETHERLANDS
11.1.2.10. NORWAY
11.1.2.11. FINLAND
11.1.2.12. SWITZERLAND
11.1.2.13. DENMARK
11.1.2.14. SWEDEN
11.1.2.15. POLAND
11.1.2.16. REST OF EUROPE
11.1.3 ASIA PACIFIC
11.1.3.1. JAPAN
11.1.3.2. CHINA
11.1.3.3. SOUTH KOREA
11.1.3.4. INDIA
11.1.3.5. AUSTRALIA
11.1.3.6. NEW ZEALAND
11.1.3.7. SINGAPORE
11.1.3.8. THAILAND
11.1.3.9. MALAYSIA
11.1.3.10. INDONESIA
11.1.3.11. PHILIPPINES
11.1.3.12. TAIWAN
11.1.3.13. VIETNAM
11.1.3.14. REST OF ASIA PACIFIC
11.1.4 SOUTH AMERICA
11.1.4.1. BRAZIL
11.1.4.2. ARGENTINA
11.1.4.3. REST OF SOUTH AMERICA
11.1.5 MIDDLE EAST AND AFRICA
11.1.5.1. SOUTH AFRICA
11.1.5.2. EGYPT
11.1.5.3. SAUDI ARABIA
11.1.5.4. U.A.E
11.1.5.5. OMAN
11.1.5.6. BAHRAIN
11.1.5.7. ISRAEL
11.1.5.8. KUWAIT
11.1.5.9. QATAR
11.1.5.10. REST OF MIDDLE EAST AND AFRICA
11.1.6 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
12 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET,COMPANY LANDSCAPE
12.1 COMPANY SHARE ANALYSIS: GLOBAL
12.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
12.3 COMPANY SHARE ANALYSIS: EUROPE
12.4 COMPANY SHARE ANALYSIS: ASIA PACIFIC
12.5 MERGERS & ACQUISITIONS
12.6 NEW PRODUCT DEVELOPMENT AND APPROVALS
12.7 EXPANSIONS
12.8 REGULATORY CHANGES
12.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
13 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET, SWOT & DBMR ANALYSIS
14 GLOBAL MOBILE ARTIFICIAL INTELLIGENCE (AI) MARKET, COMPANY PROFILE
14.1 QUALCOMM TECHNOLOGIES, INC
14.1.1 COMPANY SNAPSHOT
14.1.2 REVENUE ANALYSIS
14.1.3 GEOGRAPHIC PRESENCE
14.1.4 PRODUCT PORTFOLIO
14.1.5 RECENT DEVELOPMENT
14.2 NVIDIA CORPORATION
14.2.1 COMPANY SNAPSHOT
14.2.2 REVENUE ANALYSIS
14.2.3 GEOGRAPHIC PRESENCE
14.2.4 PRODUCT PORTFOLIO
14.2.5 RECENT DEVELOPMENT
14.3 INTEL CORPORATION
14.3.1 COMPANY SNAPSHOT
14.3.2 REVENUE ANALYSIS
14.3.3 GEOGRAPHIC PRESENCE
14.3.4 PRODUCT PORTFOLIO
14.3.5 RECENT DEVELOPMENT
14.4 MICROSOFT
14.4.1 COMPANY SNAPSHOT
14.4.2 REVENUE ANALYSIS
14.4.3 GEOGRAPHIC PRESENCE
14.4.4 PRODUCT PORTFOLIO
14.4.5 RECENT DEVELOPMENT
14.5 APPLE INC
14.5.1 COMPANY SNAPSHOT
14.5.2 REVENUE ANALYSIS
14.5.3 GEOGRAPHIC PRESENCE
14.5.4 PRODUCT PORTFOLIO
14.5.5 RECENT DEVELOPMENT
14.6 GOOGLE
14.6.1 COMPANY SNAPSHOT
14.6.2 REVENUE ANALYSIS
14.6.3 GEOGRAPHIC PRESENCE
14.6.4 PRODUCT PORTFOLIO
14.6.5 RECENT DEVELOPMENT
14.7 SAMSUNG
14.7.1 COMPANY SNAPSHOT
14.7.2 REVENUE ANALYSIS
14.7.3 GEOGRAPHIC PRESENCE
14.7.4 PRODUCT PORTFOLIO
14.7.5 RECENT DEVELOPMENT
14.8 MEDIATEK INC
14.8.1 COMPANY SNAPSHOT
14.8.2 REVENUE ANALYSIS
14.8.3 GEOGRAPHIC PRESENCE
14.8.4 PRODUCT PORTFOLIO
14.8.5 RECENT DEVELOPMENT
14.9 HUAWEI TECHNOLOGIES CO., LTD.
14.9.1 COMPANY SNAPSHOT
14.9.2 REVENUE ANALYSIS
14.9.3 GEOGRAPHIC PRESENCE
14.9.4 PRODUCT PORTFOLIO
14.9.5 RECENT DEVELOPMENT
14.1 IBM
14.10.1 COMPANY SNAPSHOT
14.10.2 REVENUE ANALYSIS
14.10.3 GEOGRAPHIC PRESENCE
14.10.4 PRODUCT PORTFOLIO
14.10.5 RECENT DEVELOPMENT
14.11 ONEPLUS (A PART OF BBK ELECTRONICS)
14.11.1 COMPANY SNAPSHOT
14.11.2 REVENUE ANALYSIS
14.11.3 GEOGRAPHIC PRESENCE
14.11.4 PRODUCT PORTFOLIO
14.11.5 RECENT DEVELOPMENT
14.12 MOTOROLA
14.12.1 COMPANY SNAPSHOT
14.12.2 REVENUE ANALYSIS
14.12.3 GEOGRAPHIC PRESENCE
14.12.4 PRODUCT PORTFOLIO
14.12.5 RECENT DEVELOPMENT
14.13 XIAOMI
14.13.1 COMPANY SNAPSHOT
14.13.2 REVENUE ANALYSIS
14.13.3 GEOGRAPHIC PRESENCE
14.13.4 PRODUCT PORTFOLIO
14.13.5 RECENT DEVELOPMENT
14.14 NOKIA
14.14.1 COMPANY SNAPSHOT
14.14.2 REVENUE ANALYSIS
14.14.3 GEOGRAPHIC PRESENCE
14.14.4 PRODUCT PORTFOLIO
14.14.5 RECENT DEVELOPMENT
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
15 CONCLUSION
16 QUESTIONNAIRE
17 RELATED REPORTS
18 ABOUT DATA BRIDGE MARKET RESEARCH
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

