世界の群知能市場規模、シェア、トレンド分析レポート
Market Size in USD Billion
CAGR :
%
USD
4.92 Billion
USD
21.31 Billion
2024
2032
| 2025 –2032 | |
| USD 4.92 Billion | |
| USD 21.31 Billion | |
|
|
|
|
世界の群知能市場のセグメンテーション、モデル別(粒子群最適化、アントコロニー最適化など)、機能別(クラスタリング、最適化、ルーティング、スケジューリング)、アプリケーション別(ドローン、ロボット工学、ヒューマンスウォーミング) - 2032年までの業界動向と予測
群知能市場規模
- 世界の群知能市場規模は2024年に49億2000万米ドルと評価され、予測期間中に20.10%のCAGRで成長し、2032年には213億1000万米ドル に達すると予想されています 。
- 市場の成長は、さまざまな業界における分散型でスケーラブルなAIソリューションへの需要の高まりに大きく支えられています。複雑な問題をリアルタイムで解決する能力は、物流、ロボット工学、軍事用途に最適です。
- さらに、ドローンや自律システムの利用増加が普及を加速させています。機械学習とデータ分析の進歩がその発展を支えています。産業界は、適応力と自己最適化能力を備えた柔軟なシステムを求めており、群知能はまさにそれを実現します。研究開発投資の増加と技術革新は、市場拡大をさらに加速させます。
群知能市場分析
- 群知能とは、自己組織化・分散化システムの研究分野です。重要な知能の一形態ですが、その起源は主に生物学にあります。人間の人工物も群知能の領域に含まれます。ソフトウェアとロボット工学において、群知能とは、科学者が自然界の観察から得た知見を機械に適用することで構成されます。ロボット群はシンプルで、ソナー、レーダー、カメラなどから構成されるエージェントによって周囲の環境や情報を収集します。
- 北米は、軍事および防衛活動における群知能システムの大規模な活用を特徴とし、2025年には43.78%という最大の収益シェアで群知能市場を支配します。
- アジア太平洋地域は、UAV 分野への投資の増加による群知能市場の成長により、予測期間中に群知能市場で最も急速に成長する地域になると予想されています。
- 粒子群最適化セグメントは、物流、金融、エンジニアリングなどの業界全体にわたる複雑な最適化問題を解決する効果により、2025年には群知能市場において41.62%の市場シェアを獲得し、市場を支配すると予想されています。
レポートの範囲と群知能市場のセグメンテーション
|
属性 |
群知能の主要市場インサイト |
|
対象セグメント |
|
|
対象国 |
北米
ヨーロッパ
アジア太平洋
中東およびアフリカ
南アメリカ
|
|
主要な市場プレーヤー |
|
|
市場機会 |
|
|
付加価値データ情報セット |
データブリッジマーケットリサーチがまとめた市場レポートには、市場価値、成長率、セグメンテーション、地理的範囲、主要プレーヤーなどの市場シナリオに関する洞察に加えて、専門家による詳細な分析、価格設定分析、ブランドシェア分析、消費者調査、人口統計分析、サプライチェーン分析、バリューチェーン分析、原材料/消耗品の概要、ベンダー選択基準、PESTLE分析、ポーター分析、規制の枠組みも含まれています。 |
群知能市場の動向
「輸送と物流の最適化」
- 群知能は、自律システムによるルートの最適化、車両管理、全体的な効率性の向上を可能にすることで、輸送および物流業界に革命をもたらしています。
- 倉庫環境では、自律移動ロボット (AMR) の群れが動きを調整して商品を輸送できるため、人間の介入の必要性が減り、エラーが最小限に抑えられます。
- より広範な交通ネットワークにおいて、群知能アルゴリズムはリアルタイムデータを分析し、交通の流れを調整し、配送ルートを最適化し、燃費を向上させることができます。これにより、コスト削減、環境への影響軽減、サービス提供時間の短縮につながります。
- 例えば、CHロビンソンは2024年2月、人工知能(AI)を活用した出荷プロセスの自動化を開始し、特に貨物輸送における非接触型のアポイントメントに注力しています。AI技術と膨大な出荷情報データベースを活用することで、CHロビンソンはサプライチェーンのさらなる自動化、業務の効率化、そしてサプライチェーンの最適化を目指しています。
群知能市場のダイナミクス
ドライバ
「群知能による輸送と物流の強化」
- 群知能は、自律システムによるルート最適化、車両管理、そして全体的な効率向上を可能にすることで、運輸・物流業界に革命をもたらしています。倉庫においては、自律移動ロボット(AMR)の群が互いに連携して荷物を輸送することで、人的介入の必要性を減らし、ミスを最小限に抑えることができます。より広範な輸送ネットワークにおいては、群知能アルゴリズムはリアルタイムデータを分析し、交通の流れを調整し、配送ルートを最適化し、燃費を向上させることができます。
- これにより、コスト削減、環境への影響軽減、サービス提供時間の短縮につながります。群知能の分散型の性質により、さまざまな運用ニーズに適応できるスケーラブルなソリューションが実現します。eコマースの成長に伴い、効率的でインテリジェントな物流ソリューションへの需要が高まり、群知能技術の採用がさらに進むと予想されます。
- 企業は、進化する市場環境で競争力を維持することを目指して、群知能を物流業務に統合するための研究開発にますます投資しています。
- 例えば、 CHロビンソンは2024年2月、人工知能(AI)を活用した出荷プロセスの自動化を開始し、特に貨物輸送における非接触型アポイントメントに注力しています。AI技術と膨大な出荷情報データベースを活用することで、CHロビンソンはサプライチェーンのさらなる自動化、業務の効率化、そしてサプライチェーンの最適化を目指しています。この取り組みは、物流に群知能(Swarm Intelligence)を統合することで効率性を向上させ、運用コストを削減するというトレンドの高まりを反映しています。企業が物流業界の高まる需要に対応していく中で、こうした技術の導入は今後さらに進むと予想されます。CHロビンソンの今回の動きは、よりインテリジェントで自動化された物流ソリューションへの一歩を踏み出したことを示しています。
抑制/挑戦
「認識と理解の欠如」
- 群知能市場における世界的な大きな課題は、企業や業界における群知能の潜在的な応用範囲の認知度と理解度が限られていることです。多くの組織は、群知能を自社の具体的なニーズにどのように適用できるのかを熟知しておらず、こうした高度なソリューションの導入を躊躇しています。
- この知識ギャップは市場浸透を阻害し、業界全体の成長を鈍化させる可能性があります。人工知能(AI)と機械学習への関心が高まっているにもかかわらず、群知能は依然としてニッチな分野であり、そのメリットは潜在的なユーザーに十分に認識されていないことがよくあります。この障壁を克服するには、群知能の利点と可能性について関係者に教育と情報提供を行う取り組みが不可欠です。
- 認識と理解が深まらない限り、群知能技術の導入は制限されたままとなり、市場の拡大に影響を及ぼす可能性があります。
- 例えば、 2023年7月には、Unanimous AIとSentient Technologiesが防衛関連企業と戦略的提携を結び、軍用グレードの群ロボットソリューションを開発しました。これらのシステムは、協調型自律ドローンを用いた監視・偵察ミッションの強化を目的としており、群知能の応用に対する軍の関心の高まりを反映しています。この開発は、群知能の重要分野における潜在能力への認識の高まりを浮き彫りにし、様々な業界でのより広範な導入に影響を与える可能性があります。
群知能市場の展望
市場はモデル、機能、アプリケーションに基づいてセグメント化されています
- モデル別
このモデルでは、群知能市場は粒子群最適化、アントコロニー最適化、その他に分類されます。粒子群最適化セグメントは、物流、金融、エンジニアリングなどの業界における複雑な最適化問題の解決における有効性により、2025年には群知能市場を41.62%の市場シェアで支配すると予想されています。
アリコロニー最適化分野は、物流、ロボット工学、ネットワークルーティングにおける複雑な最適化問題の解決効率の向上により、2025年から2032年にかけて24.1%という最も高い成長率を達成すると予想されています。自然から着想を得たアルゴリズムにより、実世界のアプリケーションへの適応性と拡張性が向上します。
- 能力別
群知能市場は、その機能面から、クラスタリング、最適化、ルーティング、スケジューリングの4つに分類されます。クラスタリングは、大規模なデータセットを効率的に分析し、隠れたパターンを発見する能力に牽引され、2025年には最大の市場収益シェアを獲得しました。この技術は、医療、金融、サイバーセキュリティなどの業界で、意思決定やリスク評価に広く利用されています。AIツールとの統合が進むにつれて、その需要は引き続き高まっています。
最適化分野は、効率性を高め運用コストを削減するインテリジェントシステムへの需要の高まりを背景に、2025年から2032年にかけて最も高いCAGRを達成すると予想されています。物流、製造、エネルギーなどの業界では、リアルタイムの問題解決に群集ベース最適化を活用しています。その拡張性と適応性は、複雑で動的な環境に最適です。
- アプリケーション別
アプリケーションでは、群知能市場はドローン、ロボット工学、そして人間の群集に分類されています。ドローン分野は、監視、配送、軍事作戦における群知能の利用増加に牽引され、2024年には市場収益シェアで最大のシェアを占めました。協調的なドローン群は、様々なミッションにおいて、より優れたカバレッジ、効率性、そしてレジリエンスを提供します。この技術は、政府部門と民間部門の両方でますます導入が進んでいます。
ロボティクス分野は、協調型自動化における群知能の導入拡大に牽引され、2025年から2032年にかけて最も高いCAGRを達成すると予想されています。群ロボティクスは、製造、農業、防衛といった産業における柔軟性と拡張性を向上させます。シンプルで協調的なエージェントによって複雑なタスクを実行できる能力は、自律システムに革命をもたらしています。
群知能市場の地域分析
- 北米は、2025年に43.78%という最大の収益シェアで群知能市場を支配しており、軍事および防衛活動における群知能システムの大規模な活用が特徴となっている。
- さらに、群知能ツールの大規模な活用と結果を予測するための AI 統合により、この地域の群知能市場の成長がさらに促進されるでしょう。
- UAV分野への投資の増加と防衛部門によるUAV調達の増加により、今後数年間でこの地域の群知能市場の成長がさらに促進されると予想されます。
米国群知能市場インサイト
米国は、防衛、医療、金融分野における群知能市場において圧倒的なシェアを誇っています。DARPA(国防高等研究計画局)が支援するプログラムは、軍事利用を目的とした自律型ドローン群の革新を推進しています。GoogleやAmazonなどのテクノロジー企業は、群知能に基づく物流とAI連携の研究に取り組んでいます。大学や研究所は、分散型アルゴリズムとリアルタイム意思決定に注力しています。政府と民間セクターの両方からの投資に牽引され、市場の見通しは依然として堅調です。
ヨーロッパの群集インテリジェンス市場洞察
欧州の群知能市場は急速な成長を遂げています。この急成長は、人工知能(AI)の進歩と、様々な分野における自律システムの導入拡大によって牽引されています。特に、群知能技術の研究、開発、実装をリードするドイツ、英国、フランスなどの国々で市場の拡大が顕著です。
英国の群知能市場インサイト
英国では、特に防衛および緊急対応システムにおいて、群知能の導入が着実に進んでいます。研究機関は、ドローン群知能プロジェクトにおいて政府機関と緊密に連携しています。金融サービス業界では、不正検知や取引予測のための群知能モデルの研究が進められています。AI研究への資金提供は、公共安全と交通機関の最適化における開発を後押ししています。AIの認知度向上と実世界における実証実験の拡大に伴い、市場は今後拡大すると予想されます。
ドイツの群知能市場インサイト
ドイツは、スマートファクトリー、自律物流、自動車試験などに群知能を適用しています。強固なエンジニアリング基盤とインダストリー4.0への注力により、実用化が加速しています。シーメンスやボッシュといった企業は、産業効率向上を目指して群知能ロボティクスに投資しています。大学は、アルゴリズム開発とシミュレーションモデリングにおいて重要な役割を果たしています。導入が進むにつれ、ドイツはヨーロッパにおける産業用群知能技術のリーダーになりつつあります。
アジア太平洋地域の群知能市場インサイト
アジア太平洋地域では、中国、日本、韓国を筆頭に群知能が急速に成長しています。農業、都市交通、災害復旧といった分野での応用が拡大しています。各国政府は、技術革新を促進するため、AIとロボット工学のインフラに多額の投資を行っています。研究機関と産業界の連携が、実社会への導入を後押ししています。低い生産コストとテクノロジーに配慮した政策が、幅広い実験を支えています。
インドの群集インテリジェンス市場洞察
インドでは群知能市場が台頭しており、交通最適化やスマート農業といった分野が主要な用途となっています。スタートアップ企業は、監視や配送に低コストの群知能ドローンを活用した実験を行っています。デジタル・インディアやスマートシティといった政府プログラムは、AIを基盤としたイノベーションを奨励しています。課題としては資金や熟練した人材の不足などが挙げられますが、勢いは高まっています。学術界やテクノロジーコミュニティは、より深い研究やパイロットプロジェクトを模索し始めています。
中国群知能市場インサイト
中国は群知能の活用を積極的に進めており、特に防衛と大規模監視の分野に力を入れています。政府主導の研究により、戦術的調整や群衆監視のためのドローン群が開発されています。大手テクノロジー企業は、群知能アルゴリズムを倉庫自動化システムや輸送システムに統合しています。中国は世界最大級の群知能ドローンの実演を数多く実施しています。国家AI戦略を背景に、中国はこの分野における世界的リーダーとしての地位を確立しています。
群知能市場シェア
群知能業界は、主に次のような定評のある企業によって主導されています。
- DoBot.cc、
- センティエンロボティクスLLC
- 全会一致のAI、
- コンバージェントAI株式会社
- SSIシェーファー株式会社
- ヴァルティコ、
- エンスウォーム株式会社
- パワーブロックス、
- 脳分析。
- モービルアイ
- ネットビーズ
- レソン、
- スウォームシステムズリミテッド
- アビドボッツ社
- NVIDIAコーポレーション
- ロバート・ボッシュGmbH
- レッドツリーロボティクス、
- スウォームファーム、
- コンチネンタルAG
- グレーオレンジ。
- キムテクノロジーズ
- レキサリティクス、
- ロッキード・マーティン社
- レイセオンテクノロジーズコーポレーション
- ノースロップ・グラマン
世界の群知能市場の最新動向
-
2025年3月、NVIDIAは人間の認知プロセスを模倣するように設計されたヒューマノイドロボットの基盤モデルであるIsaac GR00T N1を発表しました。このモデルはデュアルシステムアーキテクチャを採用しており、ロボットが自律的に片付けなどのタスクを実行できるようにします。さらに、NVIDIAはAI推論の効率性を高めるDynamoソフトウェアフレームワークを発表し、AIおよびゲーミングアプリケーションの高速化を目的としたBlackwellアーキテクチャに基づくGeForce RTX 50シリーズGPUを発表しました。
- モービルアイは2024年4月、先進運転支援システム(ADAS)に大きな進歩をもたらすEyeQ6 Liteシステムオンチップを発表しました。このチップは4,600万台の車両に搭載される予定で、安全性と利便性の機能を向上させます。さらに高度なバージョンであるEyeQ6 Highは2025年初頭にリリースされる予定で、モービルアイは自動車AI技術におけるリーダーシップを継続します。
- コンチネンタルは2025年1月、NVIDIAのDRIVE AGXプラットフォームを自社の自動運転ソリューションに積極的に統合しました。コンチネンタルは他のグローバル自動車メーカーに続き、このプラットフォームを採用し、2027年までに自動運転車を開発することを目指しています。この協業は、自動運転技術の進歩と、安全性と性能に関する業界標準への準拠に向けたコンチネンタルのコミットメントを改めて示すものです。
- 2025年5月、オーストラリアに拠点を置くSwarmFarm Roboticsは、農業自動化の最前線に立っています。同社は、精密農業向けに設計された自律型ロボット群の拡充を図りました。これらのロボットは、群知能アルゴリズムを活用して除草や施肥などの作業を最適化し、農業の効率性と持続可能性を高めています。同社のシステムは世界中の農場で導入されており、農業分野における自動化のトレンドの高まりを反映しています。
- 2025年4月、英国に拠点を置く自律型ドローンソリューションを専門とするSwarm Systems Limited社が、高度な群知能機能を搭載したドローンの新シリーズを発表しました。これにより、インフラ点検や環境監視といったタスクにおける協調運用が可能になります。これらのドローンはシームレスに連携するように設計されており、様々な用途において効率性と安全性を向上させます。
SKU-
世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする
- インタラクティブなデータ分析ダッシュボード
- 成長の可能性が高い機会のための企業分析ダッシュボード
- カスタマイズとクエリのためのリサーチアナリストアクセス
- インタラクティブなダッシュボードによる競合分析
- 最新ニュース、更新情報、トレンド分析
- 包括的な競合追跡のためのベンチマーク分析のパワーを活用
調査方法
データ収集と基準年分析は、大規模なサンプル サイズのデータ収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。
DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。
カスタマイズ可能
Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

