スペインの機械学習サービス市場 – 業界動向と2029年までの予測

Request for TOC TOC のリクエスト Speak to Analyst アナリストに相談する Free Sample Report 無料サンプルレポート Inquire Before Buying 事前に問い合わせる Buy Now今すぐ購入

スペインの機械学習サービス市場 – 業界動向と2029年までの予測

  • ICT
  • Upcoming Report
  • Jun 2022
  • Country Level
  • 350 ページ
  • テーブル数: 220
  • 図の数: 60
  • Author : Megha Gupta

アジャイルなサプライチェーンコンサルティングで関税の課題を回避

サプライチェーンエコシステム分析は、現在DBMRレポートの一部です

スペインの機械学習サービス市場、サービス別(マネージドサービス、プロフェッショナル、プロフェッショナルサービス)、ビジネス機能(人事、営業およびマーケティング、財務、運用)、導入モデル(クラウド、オンプレミス)、組織規模(大規模組織、中小規模組織)、アプリケーション(医薬品の発見、不正検出およびリスク管理、自然言語処理、マーケティングおよび広告、セキュリティおよび監視、画像認識、予測分析、データマイニング、拡張現実および仮想現実)、エンドユーザー(銀行、金融サービス、保険、ITおよび通信、研究および学術、政府および公共部門、小売およびeコマース、製造、ヘルスケアおよび医薬品、旅行および物流、エネルギーおよび公共事業、メディアおよびエンターテイメント)– 2029年までの業界動向と予測

市場分析と規模

機械学習サービス市場の企業は、コロナウイルス流行後の安定した収益源を確立するために、ヘルステック、BFSI、通信などの重要な業界に注力しています。しかし、技術的なエラーと機械学習の経験を持つ専門家の不足は、企業による機械学習の採用における主な制約要因の1つであるようです。これが、機械学習サービスプラットフォームの実装の障害となっています。さらに、ツールの不足によるデータセキュリティの不足は、市場の拡大に悪影響を及ぼします。したがって、機械学習サービス市場の参加者は、政府や規制機関と協力して、機械学習サービスビジネスを標準化する必要があります。

Data Bridge Market Research の分析によると、サービスとしての機械学習の市場価値は 2021 年に 54 億 5,000 万米ドルでしたが、2022 年から 2029 年の予測期間中に 39.76 % の CAGR で成長し、2029 年には 793 億 4,000 万米ドルに達すると予想されています。

市場の定義

機械学習は、さまざまなデータセットにさらされたときに基本的な機能を学習して変更する能力をコンピューターに提供するテクノロジーです。機械学習はビジネスにとって最も重要なツールとなっています。Amazon や Google などのテクノロジー大手は、顧客基盤を拡大し強化するために多額の支出を行っています。

レポートの範囲と市場セグメンテーション

レポートメトリック

詳細

予測期間

2022年から2029年

基準年

2021

歴史的な年

2020 (2019 - 2014 にカスタマイズ可能)

定量単位

売上高(10億米ドル)、販売数量(個数)、価格(米ドル)

対象セグメント

サービス (マネージド サービス、プロフェッショナル、プロフェッショナル サービス)、ビジネス機能 (人事、営業およびマーケティング、財務、運用)、導入モデル (クラウド、オンプレミス)、組織規模 (大規模組織、中小規模組織)、アプリケーション (医薬品の発見、不正検出およびリスク管理、自然言語処理、マーケティングおよび広告、セキュリティおよび監視、画像認識、予測分析、データ マイニング、拡張現実および仮想現実)、エンド ユーザー (銀行、金融サービス、保険、IT および通信、研究および学術、政府および公共部門、小売および電子商取引、製造、ヘルスケアおよび製薬、旅行および物流、エネルギーおよび公共事業、メディアおよびエンターテイメント)

対象となる市場プレーヤー

Google(米国)、Microsoft(米国)、IBM(米国)、SAP(ドイツ)、Amazon Web Services, Inc.(米国)

市場機会

  • アプリケーション領域におけるオプションの開発
  • ヘルスケア業界への投資増加    
  • 接続性の向上とIoTプラットフォームからのデータの増加

スペインの機械学習サービス 市場の動向

このセクションでは、市場の推進要因、利点、機会、制約、課題について理解します。これらはすべて、以下のように詳細に説明されます。

ドライバー:

  • 技術の進歩

認識技術では急速な進歩と革新が起こっています。多くのソリューション プロバイダーがこれらの分野で多大な労力を費やしています。たとえば、Affectiva は最近、200 万を超える顔ビデオの最大のデータ リポジトリを備えた感情分析テクノロジーをリリースし、顧客が比類のない洞察で高い精度を達成できるようにしています。それに加えて、Cognitec System、Emotient、Gesturetek、Saffron、Palantir などの小規模なプレーヤーを含む他のプレーヤーは、ジェスチャー認識、顔認識、心理的特徴コンピューティング、体細胞分析の分野で重要な進歩を生み出しています。これらの開発は、今後数年間で市場の成長を促進すると予想されています。

  • データの保存とアーカイブ

ディープラーニング アルゴリズムでは、データ保存およびアーカイブ パッケージが、非常に複雑な問題の解決策を予測する上で重要な役割を果たします。ディープラーニング アルゴリズム プログラムは、多数の層で構成された人工ニューラル ネットワークを扱うため、結果を提供するには膨大な量のデータ セットが必要です。ディープラーニング アルゴリズム プログラムは、データ保存およびアーカイブ パッケージを使用して、人工ニューラル ネットワーク内の高度な機能に焦点を当てます。

  • モデラーと処理

過去 10 年間で、機械学習テクノロジーは、統計、数学、神経生物学、コンピューティングなど、さまざまな分野から開発された「アルゴリズム」へと進化し、商業的に実行可能で計算的に堅牢なものになりました。音声認識、不正検出、ネットワーク開発など、今日提供されている多くのアプリケーションでは、分類、回帰、推定をサポートするさまざまな機械学習手法を使用して、構造化データセットを処理します。

  • クラウドおよび Web ベースのアプリケーション プログラミング インターフェイス (APIS)

機械学習の分野では、データの需要は重要な入力パラメータです。銀行や金融サービスなどの多くの業種では、市場動向を予測するために大量のデータを即座に必要とします。機械学習アルゴリズムは、データストレージおよびアーカイブソフトウェアから情報を収集する場合、ソリューションを予測するのに非常に短い時間しかかかりません。この欠点を克服するために、機械学習アルゴリズムはクラウドとアプリケーションプラットフォーム間のインターフェイスを作成します。

機会:

  • ヘルスケア業界への投資増加

医療分野では、ビッグデータは大量の複雑な統計を計算するために活用され、ケア業界のアプリケーションに不可欠な傾向やパターンを生み出します。ビッグデータは、医師が問題が発生する前にそれを予測するのに役立ちます。エルゼビア ヘルス アナリティクス グループはビッグデータを活用して西ドイツでの患者ケアに革命をもたらしました。同社は医療経済学者、医師、統計学者、IT 専門家、アナリストと緊密に連携し、適切な治療法に関するエビデンスに基づくデータを増やしています。これはビッグデータ ケアによって管理され、医療専門家が AI の支援を受けて適切に活用しています。ビッグデータ ケアの作成により、ドイツの機械学習市場の拡大が加速しました。

制限/課題:

機械学習サービス市場に投入できる確実な労働力の不足は、世界の機械学習サービス市場の成長をある程度妨げる重要な問題となる可能性があります。さらに、企業は、MLaaS プラットフォームに実装する特定の機能をカスタマイズする熟練したサービスを求めています。厳格なコンプライアンスの問題は、ターゲット市場を抑制すると予想されるもう 1 つの問題です。

This  machine learning as a service  market report provides details of new recent developments, trade regulations, import-export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on the  machine learning as a service  market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.

COVID-19 Impact on Machine Learning as a Service  Market

The COVID-19 pandemic has expedited the interest for machine learning because the world practices social distancing technologies. Incorporation of machine learning as a service Market ought to be doable through each software system and services relying upon the amount and nature of integration. Utilization of heat cameras and cluster identification frameworks has become typical across air terminals, train stations, and totally different spots of public visit. This has brought machine learning as a service markets beneath the spotlight of thought, which successively is predicted to enhance the target market. In addition, the employment of AI for recognizing the presence of people across confined zones in clinics associated COVID care focuses have a positive impact on the world machine learning as a service market. The calculations used for AI and investigation have improved by a good pursue late that creates a dynamic chance for the players/suppliers operational within the machine learning as a service market.

Spain Machine Learning as a Service  Market Scope

The  machine learning as a service  market is segmented on the basis of service ,business function deployment model , organization size , application , end user .The growth amongst these segments will help you analyze meagre growth segments in the industries and provide the users with a valuable market overview and market insights to help them make strategic decisions for identifying core market applications.

Service

  • Managed Service
  • Professional
  • Professional Service

 Business Function

  • Human Resources
  • Sales and Marketing
  • Finance, and Operation

 Deployment Model

 Organization Size

  • Large Organization
  • Small and Medium Organization

 Application

  • Drug Discovery
  • Fraud Detection and Risk Management
  • Natural Language Processing
  • Marketing and Advertising
  • Security and Surveillance
  • Image Recognition
  • Predictive Analytics
  • Data Mining
  • Augmented and Virtual Reality

End User

  • Banking and Financial Services
  • Insurance
  • IT and Telecom
  • Research and Academic
  • Government and Public Sector
  • Retail and Ecommerce
  • Manufacturing
  • Healthcare and Pharmaceuticals
  • Travel and Logistics
  • Energy and Utility
  • Media and Entertainment

Competitive Landscape and  Machine Learning as a Service  Market Share Analysis

The  machine learning as a Service  market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to machine learning as a Service market.

Some of the major players operating in the machine learning as a service market are:

  • Google (US),
  • Microsoft (US),
  • IBM (US),
  • SAP (Germany),
  • Amazon Web Services, Inc. (US)


SKU-

世界初のマーケットインテリジェンスクラウドに関するレポートにオンラインでアクセスする

  • インタラクティブなデータ分析ダッシュボード
  • 成長の可能性が高い機会のための企業分析ダッシュボード
  • カスタマイズとクエリのためのリサーチアナリストアクセス
  • インタラクティブなダッシュボードによる競合分析
  • 最新ニュース、更新情報、トレンド分析
  • 包括的な競合追跡のためのベンチマーク分析のパワーを活用
デモのリクエスト

目次

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF SPAIN MACHINE LEARNING AS A SERVICE MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE SPAIN MACHINE LEARNING AS A SERVICE MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 TECHNOLOGY LIFE LINE CURVE

2.5 MULTIVARIATE MODELLING

2.6 TOP TO BOTTOM ANALYSIS

2.7 STANDARDS OF MEASUREMENT

2.8 VENDOR SHARE ANALYSIS

2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS

2.1 DATA POINTS FROM KEY SECONDARY DATABASES

2.11 SPAIN MACHINE LEARNING AS A SERVICE MARKET: RESEARCH SNAPSHOT

2.12 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

6 PORTER’S FIVE FORCE MODEL

6.1 OVERVIEW

6.2 BARGAINING POWER OF BUYERS

6.3 BARGAINING POWER OF SUPPLIERS

6.4 THREAT OF NEW ENTRANTS

6.5 THREAT OF SUBSTITUTES

6.6 THREAT OF RIVALRY

7 INDUSTRY INSIGHTS

8 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY COMPONENT

8.1 OVERVIEW

8.2 SOFTWARE

8.3 SERVICE

8.3.1 BY TYPE

8.3.2 PROFESSIONAL SERVICE

8.3.2.1. CONSULTING & TRAINING SERVICES

8.3.2.2. SUPPORT & MAINTENANCE SERVICES

8.3.2.3. IMPLEMENTATION SERVICES

8.3.3 MANAGED SERVICE

9 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY BUSINESS FUNCTION

9.1 OVERVIEW

9.2 HUMAN RESOURCES

9.3 SALES AND MARKETING

9.4 FINANCE

9.5 OPERATION

10 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY DEPLOYMENT MODEL

10.1 OVERVIEW

10.2 CLOUD

10.3 ON-PREMISE

11 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY ORGANIZATION SIZE

11.1 OVERVIEW

11.2 LARGE ORGANIZATION

11.2.1 BY DEPLOYMENT MODEL

11.2.1.1. CLOUD

11.2.1.2. ON-PREMISE

11.3 SMALL & MEDIUM ORGANIZATION

11.3.1 BY DEPLOYMENT MODEL

11.3.1.1. CLOUD

11.3.1.2. ON-PREMISE

12 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY APPLICATION

12.1 OVERVIEW

12.2 DATA MINING

12.3 NATURAL LANGUAGE PROCESSING

12.4 IMAGE RECOGNITION

12.5 DRUG DISCOVERY

12.6 PREDICTIVE ANALYTICS

12.7 FRAUD DETECTION AND RISK MANAGEMENT

12.8 MARKETING AND ADVERTISING

12.9 AUGMENTED & VIRTUAL REALITY

12.1 SECURITY AND SURVEILLANCE

12.11 OTHERS

13 SPAIN MACHINE LEARNING AS A SERVICE MARKET, BY END-USER

13.1 OVERVIEW

13.2 BANKING, FINANCIAL SERVICES, AND INSURANCE

13.2.1 BY OFFERING

13.2.1.1. SOFTWARE

13.2.1.2. SERVICES

13.3 IT AND TELECOMMUNICATION

13.3.1 BY OFFERING

13.3.1.1. SOFTWARE

13.3.1.2. SERVICES

13.4 RESEARCH AND ACADEMIC

13.4.1 BY OFFERING

13.4.1.1. SOFTWARE

13.4.1.2. SERVICES

13.5 GOVERNMENT AND PUBLIC SECTOR

13.5.1 BY OFFERING

13.5.1.1. SOFTWARE

13.5.1.2. SERVICES

13.6 RETAIL & ECOMMERCE

13.6.1 BY OFFERING

13.6.1.1. SOFTWARE

13.6.1.2. SERVICES

13.7 MANUFACTURING

13.7.1 BY OFFERING

13.7.1.1. SOFTWARE

13.7.1.2. SERVICES

13.8 HEALTHCARE AND PHARMACEUTICALS

13.8.1 BY OFFERING

13.8.1.1. SOFTWARE

13.8.1.2. SERVICES

13.9 TRAVEL & LOGISTICS

13.9.1 BY OFFERING

13.9.1.1. SOFTWARE

13.9.1.2. SERVICES

13.1 ENERGY AND UTILITY

13.10.1 BY OFFERING

13.10.1.1. SOFTWARE

13.10.1.2. SERVICES

13.10.2 BY OFFERING

13.10.2.1. SOFTWARE

13.10.2.2. SERVICES

13.11 MEDIA AND ENTERTAINMENT

13.11.1 BY OFFERING

13.11.1.1. SOFTWARE

13.11.1.2. SERVICES

13.12 ACADEMIA AND RESEARCH

13.12.1 BY OFFERING

13.12.1.1. SOFTWARE

13.12.1.2. SERVICES

13.13 OTHERS

14 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY LANDSCAPE

14.1 COMPANY SHARE ANALYSIS: SPAIN

14.2 MERGERS & ACQUISITIONS

14.3 NEW PRODUCT DEVELOPMENT & APPROVALS

14.4 EXPANSIONS

14.5 REGULATORY CHANGES

14.6 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS

15 SPAIN MACHINE LEARNING AS A SERVICE MARKET, SWOT & DBMR ANALYSIS

16 SPAIN MACHINE LEARNING AS A SERVICE MARKET, COMPANY PROFILE

16.1 MICROSOFT

16.1.1 COMPANY SNAPSHOT

16.1.2 REVENUE ANALYSIS

16.1.3 GEOGRAPHIC PRESENCE

16.1.4 PRODUCT PORTFOLIO

16.1.5 RECENT DEVELOPMENTS

16.2 AMAZON WEB SERVICES, INC.

16.2.1 COMPANY SNAPSHOT

16.2.2 GEOGRAPHIC PRESENCE

16.2.3 PRODUCT PORTFOLIO

16.2.4 RECENT DEVELOPMENTS

16.3 GOOGLE,LLC

16.3.1 COMPANY SNAPSHOT

16.3.2 GEOGRAPHIC PRESENCE

16.3.3 REVENUE ANALYSIS

16.3.4 PRODUCT PORTFOLIO

16.3.5 RECENT DEVELOPMENTS

16.4 IBM

16.4.1 COMPANY SNAPSHOT

16.4.2 GEOGRAPHIC PRESENCE

16.4.3 REVENUE ANALYSIS

16.4.4 PRODUCT PORTFOLIO

16.4.5 RECENT DEVELOPMENTS

16.5 SAP SE

16.5.1 COMPANY SNAPSHOT

16.5.2 GEOGRAPHIC PRESENCE

16.5.3 PRODUCT PORTFOLIO

16.5.4 RECENT DEVELOPMENTS

16.6 BIGML

16.6.1 COMPANY SNAPSHOT

16.6.2 GEOGRAPHIC PRESENCE

16.6.3 PRODUCT PORTFOLIO

16.6.4 RECENT DEVELOPMENTS

16.7 ISHIR

16.7.1 COMPANY SNAPSHOT

16.7.2 GEOGRAPHIC PRESENCE

16.7.3 PRODUCT PORTFOLIO

16.7.4 RECENT DEVELOPMENTS

16.8 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP

16.8.1 COMPANY SNAPSHOT

16.8.2 GEOGRAPHIC PRESENCE

16.8.3 PRODUCT PORTFOLIO

16.8.4 RECENT DEVELOPMENTS

16.9 SAS INSTITUTE INC.

16.9.1 COMPANY SNAPSHOT

16.9.2 GEOGRAPHIC PRESENCE

16.9.3 PRODUCT PORTFOLIO

16.9.4 RECENT DEVELOPMENTS

16.1 FICO

16.10.1 COMPANY SNAPSHOT

16.10.2 GEOGRAPHIC PRESENCE

16.10.3 PRODUCT PORTFOLIO

16.10.4 RECENT DEVELOPMENTS

17 QUESTIONNAIRE

18 CONCLUSION

19 RELATED REPORTS

20 ABOUT DATA BRIDGE MARKET RESEARCH

詳細情報を見る Right Arrow

調査方法

データ収集と基準年分析は、大規模なサンプル サイズのデータ​​収集モジュールを使用して行われます。この段階では、さまざまなソースと戦略を通じて市場情報または関連データを取得します。過去に取得したすべてのデータを事前に調査および計画することも含まれます。また、さまざまな情報ソース間で見られる情報の不一致の調査も含まれます。市場データは、市場統計モデルと一貫性モデルを使用して分析および推定されます。また、市場シェア分析と主要トレンド分析は、市場レポートの主要な成功要因です。詳細については、アナリストへの電話をリクエストするか、お問い合わせをドロップダウンしてください。

DBMR 調査チームが使用する主要な調査方法は、データ マイニング、データ変数が市場に与える影響の分析、および一次 (業界の専門家) 検証を含むデータ三角測量です。データ モデルには、ベンダー ポジショニング グリッド、市場タイムライン分析、市場概要とガイド、企業ポジショニング グリッド、特許分析、価格分析、企業市場シェア分析、測定基準、グローバルと地域、ベンダー シェア分析が含まれます。調査方法について詳しくは、お問い合わせフォームから当社の業界専門家にご相談ください。

カスタマイズ可能

Data Bridge Market Research は、高度な形成的調査のリーダーです。当社は、既存および新規のお客様に、お客様の目標に合致し、それに適したデータと分析を提供することに誇りを持っています。レポートは、対象ブランドの価格動向分析、追加国の市場理解 (国のリストをお問い合わせください)、臨床試験結果データ、文献レビュー、リファービッシュ市場および製品ベース分析を含めるようにカスタマイズできます。対象競合他社の市場分析は、技術ベースの分析から市場ポートフォリオ戦略まで分析できます。必要な競合他社のデータを、必要な形式とデータ スタイルでいくつでも追加できます。当社のアナリスト チームは、粗い生の Excel ファイル ピボット テーブル (ファクト ブック) でデータを提供したり、レポートで利用可能なデータ セットからプレゼンテーションを作成するお手伝いをしたりすることもできます。

Testimonial