공급망의 인공지능(AI)은 공급망 시장의 인공지능의 중요성에 기여하는 몇 가지 필수 자산을 보유하고 있습니다. 이러한 속성에는 고급 데이터 분석, 기계 학습 알고리즘, 자동화 및 예측 기능이 포함됩니다. AI를 사용하면 대용량 데이터를 실시간으로 분석할 수 있어 의사결정 개선, 효율성 향상, 비용 최적화가 가능합니다. 이는 수요 예측, 재고 관리, 수요 공급 일치 및 경로 최적화를 용이하게 합니다. 또한 AI 기반 공급망 솔루션은 더 뛰어난 가시성, 투명성, 추적성을 제공하여 규정 준수를 보장하고 위험을 완화합니다. 이러한 속성은 공급망 시장에서 AI의 채택을 촉진하여 전통적인 공급망 운영을 변화시키고 비즈니스에 실질적인 이점을 제공합니다.
Data Bridge 시장 조사에 따르면, 공급망 시장의 인공지능 2022-2029년 예측 기간 동안 8.60%의 CAGR을 보일 것입니다. 따라서 공급망 시장 가치의 인공 지능은 2029년까지 5,451만 달러에 달할 것입니다..
“공급망 및 물류 데이터의 가시성과 투명성을 높이려는 요구가 시장을 주도하고 있습니다.”
공급망 및 물류 데이터의 가시성과 투명성 향상에 대한 수요 증가는 공급망 시장에서 인공 지능의 중요한 동인입니다. 기업과 소비자 모두 공급망 운영에 대한 실시간 추적, 추적성 및 정확한 통찰력을 추구합니다. 기계 학습 및 데이터 분석과 같은 인공 지능 기술을 통해 조직은 방대한 양의 데이터를 처리하고, 패턴을 식별하고, 실행 가능한 통찰력을 생성할 수 있습니다. 기업은 AI를 활용하여 공급망 효율성을 향상하고, 재고 관리를 최적화하고, 위험을 완화하고, 고객 만족도를 향상시킬 수 있습니다. 가시성과 투명성에 대한 긴급한 요구는 공급망 부문에서 AI를 채택하는 강력한 촉매제입니다.
무엇이 성장을 방해하는가? 공급망 시장의 인공지능?
“저개발국과 개발도상국의 기술 전문성 부족”
저개발국과 개발도상국의 기술 전문성 부족으로 인해 공급망 시장의 인공지능이 크게 제한됩니다. 이들 지역은 제한된 자원, 인프라, 숙련된 인력 문제에 직면하는 경우가 많습니다. 공급망에서 고급 AI 기술을 구현하고 채택하려면 전문 지식과 기술 전문 지식이 필요하지만 이러한 경제에서는 부족할 수 있습니다. 이는 AI 솔루션의 광범위한 채택에 장벽을 만들어 해당 지역의 시장 성장을 방해하고 공급망 영역에서 선진국과 개발도상국 간의 기술 격차를 만듭니다.
세분화: 공급망 시장의 인공 지능
공급망 시장의 인공 지능은 제품, 기술, 응용 프로그램 및 산업을 기준으로 분류됩니다.
- 제공을 기반으로 공급망 시장의 인공 지능은 하드웨어, 소프트웨어 및 서비스로 분류됩니다.
- 기술을 기반으로 공급망 시장의 인공 지능은 기계 학습, 자연어 처리, 상황 인식 컴퓨팅, 컴퓨터 비전 등이 있습니다.
- 적용을 기반으로 공급망 시장의 인공 지능이 세분화되었습니다. 차량 관리, 공급망 계획, 위기 관리, 창고관리, 가상비서, 화물중개업 등이 있습니다.
- 산업을 기반으로 공급망 시장의 인공 지능은 자동차, 항공 우주, 제조, 소매, 의료, 소비재, 식품 및 음료로 분류되었습니다.
지역 통찰력: 북미는 공급망 시장에서 인공 지능을 지배합니다.
공급망 시장의 인공 지능 분야에서 북미 지역의 지배력은 기존 솔루션 강화를 우선시하는 주요 기업과 선진국의 존재에 기인합니다. 이러한 추세는 예측 기간 동안 계속되어 시장에서 북미의 입지를 더욱 강화할 것으로 예상됩니다.
아시아 태평양 지역은 공급망 시장의 인공 지능 분야에서 상당한 성장을 경험하고 가장 높은 연평균 성장률(CAGR)을 달성할 것으로 예상됩니다. 이는 이 지역의 젊고 기술에 정통한 인구, 고급 공급망 솔루션에 대한 수요를 주도하는 사물 인터넷(IOT) 기술 채택 증가 등의 요인에 기인할 수 있습니다.
연구 방문에 대해 더 자세히 알고 싶으시면, https://www.databridgemarketresearch.com/reports/global-artificial-intelligence-in-supply-chain-market
에서 활동하는 저명한 핵심 플레이어 공급망 시장의 인공지능 포함하다:
- Amazon Web Services, Inc.(미국)
- 프로젝트44(미국)
- Deutsche Post AG – (독일)
- 페덱스(미국)
- 일반 전기(미국)
- 구글 LLC(미국)
- IBM (미국)
- 인텔사(미국)
- Coupa Software Inc.(미국)
- 마이크론 테크놀로지(미국)
- 마이크로소프트(미국)
- 엔비디아 주식회사(미국)
- 오라클(미국)
- SAP SE(독일)
- 삼성(한국)
- 자일링스 – (미국)
- 프레이트 AI – (미국)
- CH 로빈슨 월드와이드(CH Robinson Worldwide, Inc.) – (미국)
- E2open, LLC – (미국)
- RELEX 솔루션(핀란드)
- SKF 그룹(스웨덴)
- 차이냐오 네트워크(중국)
- 스플라이스 머신(미국)
- 아메리칸 소프트웨어, Inc.(미국)
위는 보고서에서 다루는 주요 플레이어로, 공급망 시장 회사가 접촉하는 인공 지능의 더 많고 철저한 목록에 대해 알고 있습니다. https://www.databridgemarketresearch.com/contact
연구 방법론: 공급망 시장의 글로벌 인공 지능
데이터 수집 및 기준 연도 분석은 표본 크기가 큰 데이터 수집 모듈을 사용하여 수행됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석되고 추정됩니다. 또한 시장점유율 분석과 주요 동향 분석이 시장보고서의 주요 성공요인이다. DBMR 연구팀이 사용하는 핵심 연구 방법론은 데이터 마이닝, 데이터 변수가 시장에 미치는 영향 분석, 1차(업계 전문가) 검증을 포함하는 데이터 삼각측량이다. 이 외에도 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 회사 시장 점유율 분석, 측정 표준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 추가 문의사항이 있는 경우 분석가에게 전화를 요청하시기 바랍니다.
