Global Graph Database Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2031

TOC 요청 TOC 요청 분석가에게 문의 분석가에게 문의 지금 구매 지금 구매 구매하기 전에 문의 구매하기 전에 문의 무료 샘플 보고서 무료 샘플 보고서

Global Graph Database Market Size, Share, and Trends Analysis Report – Industry Overview and Forecast to 2031

  • ICT
  • Upcoming Report
  • Nov 2024
  • Global
  • 350 Pages
  • 테이블 수: 220
  • 그림 수: 60

Global Graph Database Market

시장 규모 (USD 10억)

연평균 성장률 :  % Diagram

Chart Image USD 2.29 Billion USD 8.72 Billion 2023 2031
Diagram 예측 기간
2024 –2031
Diagram 시장 규모(기준 연도)
USD 2.29 Billion
Diagram 시장 규모(예측 연도)
USD 8.72 Billion
Diagram 연평균 성장률
%
Diagram주요 시장 플레이어
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

>Global Graph Database Market Segmentation, By Type (Resource Description Framework (RDF) and Labeled Property Graph (LPG)), Application (Fraud Detection, Prevention and Recommendation Engine), Database (Relational (SQL) and Non-relational (NoSQL)), Deployment Model (On-premise and Cloud), Analysis Type (Path Analysis, Connectivity Analysis, Community Analysis, and Centrality Analysis), Size (Large Enterprises, Small and Medium Enterprises), Component (Software and Services), End User (Banking, Financial Services and Insurance, Telecom and IT, Healthcare and Lifesciences, Transportation and Logistics, Retail and E-commerce, Energy and Utilities, Government and Public, Manufacturing, and Others) – Industry Trends and Forecast to 2031

Global Graph Database Market

Graph Database Market Analysis

The graph database market is experiencing significant growth, driven by the increasing need for advanced data management solutions that can efficiently handle complex relationships within large datasets. Graph databases, which utilize graph structures to represent and store data, offer enhanced performance for applications requiring real-time analytics and flexible data modeling. Their ability to seamlessly connect diverse data points makes them ideal for various sectors, including finance, telecommunications, and social networking. Recent developments, such as the integration of artificial intelligence and machine learning capabilities, further enhance the functionality of graph databases, enabling businesses to gain deeper insights and improve decision-making. Additionally, the growing adoption of cloud-based graph database solutions is expanding accessibility and reducing operational costs. As organizations continue to prioritize data-driven strategies, the graph database market is poised for robust growth in the coming years, reflecting a broader trend toward more sophisticated data architectures.

Graph Database Market Size

The global graph database market size was valued at USD 2.29 billion in 2023 and is projected to reach USD 8.72 billion by 2031, with a CAGR of 18.20% during the forecast period of 2024 to 2031. In addition to the market insights such as market value, growth rate, market segments, geographical coverage, market players, and market scenario, the market report curated by the Data Bridge Market Research team includes in-depth expert analysis, import/export analysis, pricing analysis, production consumption analysis, and pestle analysis.

Graph Database Market Trends

“Increasing Adoption of Cloud-Based Graph Databases”

그래프 데이터베이스 시장은 데이터 연결성과 분석 기능을 강화하는 혁신에 힘입어 빠르게 진화하고 있습니다. 두드러진 추세 중 하나는 확장성, 유연성 및 인프라 비용 절감을 제공하는 클라우드 기반 그래프 데이터베이스의 채택이 증가하고 있다는 것입니다. 이러한 솔루션을 통해 조직은 온프레미스 하드웨어를 관리하는 부담 없이 그래프 데이터베이스의 힘을 활용할 수 있습니다. 또한 머신 러닝과 인공 지능의 발전이 그래프 데이터베이스에 통합되어 예측 분석과 복잡한 데이터 관계에서 더욱 심층적인 통찰력을 얻을 수 있습니다. 이러한 추세는 운영 효율성과 의사 결정을 개선하는 데 복잡한 데이터 연결을 이해하는 것이 중요한 금융 및 의료와 같은 분야에서 특히 중요합니다. 이러한 혁신이 시장을 계속 형성함에 따라 조직은 데이터의 모든 잠재력을 활용할 준비가 더 잘 되었습니다.

보고서 범위 및 그래프 데이터베이스 시장 세분화    

속성

그래프 데이터베이스 주요 시장 통찰력

다루는 세그먼트

  • 유형별 : 리소스 설명 프레임워크(RDF) 및 레이블이 지정된 속성 그래프(LPG)
  • 응용 프로그램별: 사기 탐지, 예방 및 추천 엔진
  • 데이터베이스별: 관계형(SQL) 및 비관계형(NoSQL)
  • 배포 모델별: 온프레미스 및 클라우드
  • 분석 유형별: 경로 분석, 연결성 분석, 커뮤니티 분석 및 중심성 분석
  • 규모별: 대기업, 중소기업
  • 구성 요소 별 : 소프트웨어 및 서비스
  • 최종 사용자 : 은행, 금융 서비스 및 보험, 통신 및 IT, 의료 및 생명 과학, 운송 및 물류, 소매 및 전자 상거래, 에너지 및 유틸리티, 정부 및 공공, 제조 및 기타

적용 국가

미국, 캐나다 및 멕시코(북미), 독일, 프랑스, ​​영국, 네덜란드, 스위스, 벨기에, 러시아, 이탈리아, 스페인, 터키, 유럽의 기타 유럽, 중국, 일본, 인도, 한국, 싱가포르, 말레이시아, 호주, 태국, 인도네시아, 필리핀, 아시아 태평양(APAC)의 기타 아시아 태평양(APAC), 사우디 아라비아, UAE, 남아프리카, 이집트, 이스라엘, 중동 및 아프리카(MEA)의 일부인 기타 중동 및 아프리카(MEA), 브라질, 아르헨티나 및 남미의 일부인 기타 남미

주요 시장 참여자

Hewlett Packard Enterprise Development LP(미국), IBM(미국), Microsoft(미국), Siemens(독일), ANSYS, Inc.(미국), SAP SE(독일), Oracle(미국), Robert Bosch GmbH(독일), Atos SE(프랑스), ABB(스위스), Kellton(인도), AVEVA Group Limited(영국), DXC Technology Company(미국), Altair Engineering, Inc.(미국), Hexaware Technologies Limited(인도), Tata Consultancy Services Limited(인도), Infosys Limited(인도), NTT DATA Group Corporation(일본), Cloud Software Group, Inc.(미국), Redis Ltd(미국)

시장 기회

  • 의료 및 생명 과학 분야의 채택 증가
  • IoT 및 스마트 시티로의 확장

부가가치 데이터 정보 세트

Data Bridge Market Research팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 세그먼트, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석 및 유봉 분석이 포함되어 있습니다.

그래프 데이터베이스 시장 정의

그래프 데이터베이스는 상호 연결된 데이터를 저장, 관리 및 쿼리하도록 설계된 NoSQL 데이터베이스 유형입니다. 행과 표로 데이터를 구성하는 기존 관계형 데이터베이스와 달리 그래프 데이터베이스는 노드, 에지 및 속성을 사용하여 데이터 포인트를 직접 표현하고 연결합니다. 노드는 엔터티(예: 사람 또는 제품)를 나타내고, 에지는 이러한 엔터티 간의 관계를 나타내며, 속성은 두 엔터티에 대한 관련 세부 정보를 저장합니다. 이 구조를 통해 그래프 데이터베이스는 복잡한 관계를 빠르고 효율적으로 분석할 수 있으므로 소셜 네트워크, 사기 탐지, 추천 엔진 및 네트워크 분석과 같이 데이터 연결을 이해하는 것이 필수적인 애플리케이션에 이상적입니다.

그래프 데이터베이스 시장 동향

운전자

  • 실시간 데이터 분석에 대한 요구 증가

산업 전반에서 실시간으로 대규모 복잡한 데이터를 분석하려는 수요가 증가하고 있으며, 사기 탐지, 추천 엔진, 소셜 네트워크 분석과 같은 고위험 애플리케이션에서 보다 정확한 통찰력에 대한 필요성이 주도하고 있습니다. 기존 데이터베이스는 이러한 데이터 유형의 복잡한 관계 웹에 어려움을 겪기 때문에 그래프 데이터베이스는 연결된 데이터를 관리하고 쿼리하는 효율성으로 인해 이상적인 솔루션입니다. 그래프 데이터베이스를 사용하면 조직에서 데이터 관계를 즉시 시각화하고 분석하여 숨겨진 패턴을 발견하고 의사 결정을 개선할 수 있습니다. 실시간으로 고도로 연결된 데이터를 처리할 수 있는 이러한 기능은 그래프 데이터베이스 기술 시장 성장을 이끄는 중요한 원동력입니다.

  • 클라우드 기반 솔루션의 증가

클라우드 기반 그래프 데이터베이스 솔루션은 간소화되고 확장 가능하며 유연한 인프라를 제공함으로써 조직이 그래프 기술을 배포하고 관리하는 방식을 혁신하고 있습니다. 온프레미스 솔루션과 달리 클라우드 기반 그래프 데이터베이스는 회사가 필요에 따라 리소스를 확장하거나 축소할 수 있으므로 소규모 및 대규모 기업 모두에 액세스 가능하고 비용 효율적입니다. 이러한 유연성은 특히 데이터 부하가 변동하거나 빠른 배포가 필요한 산업에서 유용합니다. 이는 사전 비용과 인프라 수요를 최소화하기 때문입니다. 또한 클라우드 솔루션은 유지 관리 및 업데이트를 간소화하여 조직이 하드웨어를 관리하는 대신 데이터에서 통찰력을 추출하는 데 집중할 수 있도록 합니다. 이러한 확장성과 배포 용이성은 클라우드 기반 그래프 데이터베이스 도입의 성장을 촉진합니다.

기회

  • 의료 및 생명 과학 분야의 채택 증가

그래프 데이터베이스는 특히 약물 발견, 유전체학 및 환자 데이터 관리 와 같은 분야에서 의료 발전을 지원하기 위해 고유한 위치에 있습니다 . 개인화된 의학 및 정밀 의료 분야가 확장됨에 따라 복잡한 생물의학 데이터 네트워크를 분석하는 능력이 중요해지고 있습니다. 그래프 데이터베이스는 유전 데이터, 질병 경로 및 환자 병력 내의 복잡한 관계를 빠르게 매핑하고 해석하여 기존 데이터베이스에서는 찾기 힘든 통찰력을 제공할 수 있습니다. 예를 들어, 약물 발견에서 그래프 데이터베이스는 화합물, 표적 및 질병 간의 연결을 식별하여 연구 일정을 가속화하는 데 도움이 됩니다. 중요한 생물의학 관계를 밝히는 이러한 기능은 그래프 데이터베이스 기술에 대한 의료 분야의 상당한 성장 기회입니다.

  • IoT 및 스마트 시티로의 확장

IoT 기기의 급속한 증가로 인해 상호 연결된 스마트 센서 와 시스템의 광대한 네트워크가 만들어지고 있으며, 특히 스마트 시티와 산업용 IoT 애플리케이션에서 그렇습니다. 그래프 데이터베이스는 이러한 복잡한 네트워크를 관리하고 분석하는 효과적인 솔루션을 제공하여 여러 기기와 데이터 포인트에 대한 실시간 통찰력을 제공합니다. 예를 들어, 스마트 시티에서 그래프 데이터베이스는 실시간으로 패턴을 분석하여 흐름을 최적화하고 혼잡을 줄임으로써 교통 관리를 지원할 수 있습니다. 마찬가지로 산업용 IoT에서 장비 이상을 식별하고 고장을 예측하여 예측 유지 관리를 용이하게 합니다. 대규모의 상호 연결된 데이터 네트워크를 효율적으로 처리하는 이러한 기능은 IoT 애플리케이션에서 그래프 데이터베이스에 대한 강력한 성장 기회를 나타냅니다.

제약/도전

  • 제한된 인력 전문성

그래프 데이터베이스 시장은 그래프 데이터베이스 기술에 필요한 전문 지식을 갖춘 전문가가 부족하여 상당한 영향을 받고 있습니다. 이러한 숙련된 인력의 부족은 이러한 고급 시스템을 구현하고 유지 관리하려는 조직에 큰 과제를 안겨줍니다. 기업이 복잡한 데이터 관계를 관리하는 능력 때문에 그래프 데이터베이스를 도입하려고 하면서 설정, 최적화 및 지속적인 유지 관리와 같은 작업을 위한 자격을 갖춘 인력이 부족하면 성공적인 통합에 대한 장벽이 됩니다. 이러한 기술 격차는 그래프 데이터베이스 솔루션의 효과적인 배포를 방해하여 조직이 지원 및 전문 지식에 대한 우려로 인해 도입을 지연할 수 있으므로 전반적인 시장 성장을 늦춥니다.

  • 표준화의 부족

그래프 데이터베이스 기술에서 통일된 표준이 부족하면 특히 다양한 데이터베이스 생태계를 관리하는 조직에 시장에서 상당한 제약이 됩니다. 잘 정의된 구조와 표준을 따르는 관계형 데이터베이스와 달리 그래프 데이터베이스는 데이터 모델, 쿼리 언어 및 스토리지 접근 방식이 매우 다양합니다. 이러한 불일치로 인해 호환성 및 상호 운용성 문제가 발생하여 기업이 그래프 데이터베이스를 기존 시스템과 원활하게 통합하기 어렵습니다. 복잡한 다중 데이터베이스 환경을 갖춘 기업은 이러한 격차를 메우기 위해 맞춤 솔루션이나 미들웨어가 필요할 수 있으므로 종종 추가 비용과 복잡성에 직면하게 되며, 이는 산업 전반에 걸쳐 그래프 데이터베이스를 광범위하게 채택하는 것을 방해합니다.

그래프 데이터베이스 시장 범위

시장은 유형, 애플리케이션, 데이터베이스, 배포 모델, 분석 유형, 크기, 구성 요소 및 최종 사용자를 기준으로 세분화됩니다. 이러한 세그먼트 간의 성장은 산업의 빈약한 성장 세그먼트를 분석하고 사용자에게 핵심 시장 애플리케이션을 식별하기 위한 전략적 결정을 내리는 데 도움이 되는 귀중한 시장 개요와 시장 통찰력을 제공하는 데 도움이 됩니다.

  유형

  • 리소스 설명 프레임워크(RDF)
  • 레이블이 지정된 속성 그래프(LPG)

애플리케이션

  • 사기 감지
  • 방지
  • 추천 엔진

데이터 베이스

  • 관계형(SQL)
  • 비관계형(NoSQL)

배포 모델

  • 온프레미스
  • 구름

분석 유형

  • 경로 분석
  • 연결성 분석
  • 커뮤니티 분석
  • 중심성 분석

크기

  • 대기업
  • 중소기업

요소

  • 소프트웨어
  • 서비스

최종 사용자

  • 은행업
  • 금융 서비스 및 보험
  • 통신 및 IT
  • 의료 및 생명 과학
  • 운송 및 물류
  • 소매 및 전자 상거래
  • 에너지 및 유틸리티
  • 정부와 공공
  • 조작
  • 기타

그래프 데이터베이스 시장 지역 분석

위에 언급된 대로 유형, 애플리케이션, 데이터베이스, 배포 모델, 분석 유형, 규모, 구성 요소 및 최종 사용자별로 시장을 분석하고 시장 규모에 대한 통찰력과 추세를 제공합니다.

The countries covered in the market report are U.S., Canada, Mexico in North America, Germany, Sweden, Poland, Denmark, Italy, U.K., France, Spain, Netherland, Belgium, Switzerland, Turkey, Russia, Rest of Europe in Europe, Japan, China, India, South Korea, New Zealand, Vietnam, Australia, Singapore, Malaysia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific (APAC) in Asia-Pacific (APAC), Brazil, Argentina, Rest of South America as a part of South America, U.A.E, Saudi Arabia, Oman, Qatar, Kuwait, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).

North America leads the graph database market in revenue and market share, primarily due to the presence of established fintech solutions and the region's early adoption of this technology. Additionally, continuous advancements in information technology are expected to further accelerate market growth in North America. The combination of a robust tech ecosystem and innovative developments positions this region at the forefront of the graph database industry.

Asia-Pacific region is anticipated to achieve the highest compound annual growth rate from 2024 to 2031, driven by the growing opportunities for smaller graph database vendors to introduce innovative solutions across various sectors. This surge in demand is fueled by the region's rapidly evolving technology landscape and the increasing recognition of the benefits of graph databases in managing complex data relationships. As more industries in Asia-Pacific embrace digital transformation, the market for graph database solutions is expected to expand significantly.

The country section of the report also provides individual market impacting factors and changes in market regulation that impact the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.

Graph Database Market Share

The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.

Graph Database Market Leaders Operating in the Market Are:

  • Hewlett Packard Enterprise Development LP (U.S.)
  • IBM (U.S.)
  • Microsoft (U.S.)
  • Siemens (Germany)
  • ANSYS, Inc. (U.S.)
  • SAP SE (Germany)
  • Oracle (U.S.)
  • Robert Bosch GmbH (Germany)
  • Atos SE (France)
  • ABB (Switzerland)
  • Kellton (India)
  • AVEVA Group Limited (U.K.)
  • DXC Technology Company (U.S.)
  • Altair Engineering, Inc. (U.S.)
  • Hexaware Technologies Limited. (India)
  • Tata Consultancy Services Limited (India)
  • Infosys Limited (India)
  • NTT DATA Group Corporation (Japan)
  • Cloud Software Group, Inc. U.S.)
  • Redis Ltd (U.S.)

Latest Developments in Graph Database Market

  • In May 2023, AWS partnered with Neo4j, a key player in defining the graph database landscape and setting open-source standards. As an AWS Marketplace seller, Neo4j has established itself as a leader in the graph database space. Additionally, the company has earned the AWS Data and Analytics Competency, highlighting its expertise in delivering advanced data solutions on the AWS platform
  • In May 2023, SAP and Google Cloud announced an enhanced partnership, featuring the launch of a comprehensive open data offering aimed at streamlining data landscapes and maximizing the potential of business data. This new initiative combines SAP's and Google Cloud's data and analytics technologies to enhance the accessibility and utility of enterprise data. Furthermore, it aims to propel advancements in enterprise artificial intelligence development, facilitating greater innovation and insights for businesses
  • In April 2023, Neo4j partnered with Imperium Solutions to address the rising demand for graph technology in Singapore. Through this collaboration, Imperium Solutions will help customers unlock the full potential of Neo4j, the leading graph database provider known for solving complex, enterprise-level challenges. This partnership aims to enhance the ability to efficiently identify relationships and patterns within vast datasets, driving greater value for businesses in the region
  • In February 2023, IBM announced its acquisition of StepZen Inc., the creator of a GraphQL server with an innovative architecture that enables developers to build GraphQL APIs rapidly and with minimal coding. StepZen is designed for high flexibility, seamlessly integrating with various API approaches. Additionally, it is offered as a Software as a Service (SaaS) solution, while also supporting deployments in private clouds and on-premises data centers, catering to diverse business needs
  • In December 2022, LSEG and Microsoft entered into a 10-year strategic partnership aimed at developing next-generation data and analytics solutions, alongside cloud infrastructure enhancements. As part of this collaboration, Microsoft will make an equity investment in LSEG through a share acquisition. The partnership will leverage Microsoft Azure, artificial intelligence, and Microsoft Teams to design LSEG's data infrastructure and create innovative productivity, data analytics, and modeling solutions for users


SKU-

세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요

  • 대화형 데이터 분석 대시보드
  • 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
  • 사용자 정의 및 질의를 위한 리서치 분석가 액세스
  • 대화형 대시보드를 통한 경쟁자 분석
  • 최신 뉴스, 업데이트 및 추세 분석
  • 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
데모 요청

연구 방법론

데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.

DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.

사용자 정의 가능

Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

자주 묻는 질문

The Growing usage of graph database technology and Increasing demand for solutions with the capability to process low-latency queries are the growth drivers of the Graph Database Market.
The type, application, database, deployment model, analysis type, size, component and end user are the factors on which the Graph Database Market research is based.
The major companies in the Graph Database Market are Teradata (U.S.), Hewlett Packard Enterprise Development LP (U.S.), IBM Corporation (U.S.), Microsoft (U.S.), Siemens AG (Germany), ANSYS, Inc (U.S.), SAP SE (Germany), Oracle (U.S.), Robert Bosch GmbH (Germany), Swim.ai, Inc. (U.S.)., Atos S.E. (France), ABB (Switzerland), KELLTON TECH (India), AVEVA Group plc (U.K.), DXC Technology Company (U.S.), Altair Engineering, Inc (U.S.), Hexaware Technologies Limited (India), Tata Consultancy Services Limited (India), Infosys Limited (India), NTT DATA, Inc. (Japan), TIBCO Software Inc. (U.S.), Redis Ltd (U.S.).
Testimonial