글로벌 그래프 데이터베이스 시장 규모, 점유율 및 추세 분석 보고서 – 산업 개요 및 2032년까지의 예측

TOC 요청 TOC 요청 분석가에게 문의 분석가에게 문의 무료 샘플 보고서 무료 샘플 보고서 구매하기 전에 문의 구매하기 전에 문의 지금 구매 지금 구매

글로벌 그래프 데이터베이스 시장 규모, 점유율 및 추세 분석 보고서 – 산업 개요 및 2032년까지의 예측

  • ICT
  • Upcoming Report
  • Nov 2024
  • Global
  • 350 Pages
  • 테이블 수: 220
  • 그림 수: 60
  • Author : Megha Gupta

민첩한 공급망 컨설팅으로 관세 문제를 극복하세요

공급망 생태계 분석이 이제 DBMR 보고서의 일부가 되었습니다

Global Graph Database Market

시장 규모 (USD 10억)

연평균 성장률 :  % Diagram

Chart Image USD 2.70 Billion USD 10.28 Billion 2024 2032
Diagram 예측 기간
2025 –2032
Diagram 시장 규모(기준 연도)
USD 2.70 Billion
Diagram 시장 규모(예측 연도)
USD 10.28 Billion
Diagram 연평균 성장률
%
Diagram 주요 시장 플레이어
  • Teradata
  • Hewlett Packard Enterprise Development LP
  • IBM Corporation
  • Microsoft
  • Siemens AG

글로벌 그래프 데이터베이스 시장 세분화, 유형별(RDF(리소스 설명 프레임워크) 및 LPG(레이블드 속성 그래프)), 애플리케이션(사기 탐지, 예방 및 추천 엔진), 데이터베이스(관계형(SQL) 및 비관계형(NoSQL)), 배포 모델(온프레미스 및 클라우드), 분석 유형(경로 분석, 연결성 분석, 커뮤니티 분석 및 중심성 분석), 규모(대기업, 중소기업), 구성 요소(소프트웨어 및 서비스), 최종 사용자(은행, 금융 서비스 및 보험, 통신 및 IT, 의료 및 생명 과학, 운송 및 물류, 소매 및 전자 상거래, 에너지 및 유틸리티, 정부 및 공공, 제조 및 기타) - 산업 동향 및 2032년까지의 예측

그래프 데이터베이스 마켓 Z

그래프 데이터베이스 시장 규모

  • 글로벌 그래프 데이터베이스 시장 규모는 2024년에 27억 달러 로 평가되었으며, 예측 기간 동안 18.20%의 CAGR2032년까지 102억 8천만 달러 에 도달할 것으로 예상됩니다 .
  • 시장 성장은 BFSI, 통신, 전자 상거래와 같은 분야에서 실시간 데이터 분석, 사기 탐지 및 추천 엔진을 위한 그래프 데이터베이스 채택 증가에 의해 크게 촉진되었습니다.
  • 또한 기업 데이터의 복잡성이 증가하고 숨겨진 관계를 밝혀내는 확장 가능하고 고성능 솔루션에 대한 수요가 증가함에 따라 그래프 데이터베이스는 현대 데이터 인프라를 위한 중요한 도구로 자리 잡고 있으며, 이를 통해 시장 확장이 크게 가속화되고 있습니다.

그래프 데이터베이스 시장 분석

  • 사기 탐지, 추천 시스템, 네트워크 분석 등 다양한 애플리케이션에서 고도로 연결되고 복잡한 데이터세트로부터 통찰력을 얻고자 하는 기업에 있어 관계 기반 데이터를 저장, 관리 및 쿼리하도록 설계된 그래프 데이터베이스가 필수적이 되고 있습니다.
  • 그래프 데이터베이스에 대한 수요 증가는 주로 실시간 분석에 대한 필요성 증가, AI 및 머신 러닝 도입 증가, 산업 전반에 걸쳐 생성되는 비정형 및 반정형 데이터 양의 증가에 의해 주도됩니다.
  • 북미는 고급 분석 도구의 조기 도입, AI 및 머신 러닝에 대한 강력한 투자, BFSI, 의료 및 IT와 같은 산업에서 실시간 데이터 처리에 대한 필요성 증가로 인해 2024년에 42.5% 의 점유율로 그래프 데이터베이스 시장을 장악했습니다.
  • 아시아 태평양 지역은 기업 디지털화 증가, 정부 지원 스마트 시티 이니셔티브, 중국, 인도, 일본, 한국 등의 경제권에서의 빠른 클라우드 도입 으로 인해 예측 기간 동안 그래프 데이터베이스 시장에서 가장 빠르게 성장하는 지역이 될 것으로 예상됩니다.
  • 확장 가능하고 비용 효율적이며 유지 관리가 필요 없는 배포 옵션에 대한 선호도가 높아짐에 따라 2024년에는 클라우드 부문이 시장을 장악했습니다. 클라우드 기반 그래프 데이터베이스는 온디맨드 성능, 다른 클라우드 서비스와의 간편한 통합, 그리고 글로벌 접근성을 제공하여 분산된 팀과 최신 애플리케이션 개발에 이상적입니다.

보고서 범위 및 그래프 데이터베이스 시장 세분화    

속성

그래프 데이터베이스 주요 시장 통찰력

다루는 세그먼트

  • 유형별: 리소스 설명 프레임워크(RDF) 및 레이블이 지정된 속성 그래프(LPG)
  • 응용 프로그램별: 사기 탐지, 예방 및 추천 엔진
  • 데이터베이스별: 관계형(SQL) 및 비관계형(NoSQL)
  • 배포 모델별: 온프레미스 및 클라우드
  • 분석 유형별: 경로 분석, 연결성 분석, 커뮤니티 분석 및 중심성 분석
  • 규모별: 대기업, 중소기업
  • 구성 요소별: 소프트웨어 및 서비스
  • 최종 사용자별: 은행, 금융 서비스 및 보험, 통신 및 IT, 의료 및 생명 과학, 운송 및 물류, 소매 및 전자 상거래, 에너지 및 유틸리티, 정부 및 공공, 제조 및 기타

포함 국가

북아메리카

  • 우리를
  • 캐나다
  • 멕시코

유럽

  • 독일
  • 프랑스
  • 영국
  • 네덜란드
  • 스위스
  • 벨기에
  • 러시아 제국
  • 이탈리아
  • 스페인
  • 칠면조
  • 유럽의 나머지 지역

아시아 태평양

  • 중국
  • 일본
  • 인도
  • 대한민국
  • 싱가포르
  • 말레이시아
  • 호주
  • 태국
  • 인도네시아 공화국
  • 필리핀 제도
  • 아시아 태평양의 나머지 지역

중동 및 아프리카

  • 사우디 아라비아
  • 아랍에미리트
  • 남아프리카 공화국
  • 이집트
  • 이스라엘
  • 중동 및 아프리카의 나머지 지역

남아메리카

  • 브라질
  • 아르헨티나
  • 남미의 나머지 지역

주요 시장 참여자

  • 휴렛팩커드 엔터프라이즈 개발 LP (미국)
  • IBM (미국)
  • 마이크로소프트 (미국)
  • 지멘스(독일)
  • ANSYS, Inc. (미국)
  • SAP SE (독일)
  • 오라클 (미국)
  • 로버트 보쉬 GmbH(독일)
  • Atos SE(프랑스)
  • ABB(스위스)
  • 켈튼(인도)
  • AVEVA 그룹 리미티드(영국)
  • DXC 테크놀로지 회사(미국)
  • 알테어 엔지니어링(주)(미국)
  • 헥사웨어 테크놀로지스 리미티드(인도)
  • 타타 컨설턴시 서비스 리미티드(인도)
  • Infosys Limited(인도)
  • NTT DATA 그룹 주식회사(일본)
  • 클라우드 소프트웨어 그룹(Cloud Software Group, Inc. 미국)
  • 레디스 주식회사(미국)

시장 기회

  • 의료 및 생명 과학 분야의 채택 증가
  • IoT 및 스마트 시티로의 확장

부가가치 데이터 정보 세트

Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 부문, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 유봉 분석이 포함되어 있습니다.

그래프 데이터베이스 시장 동향

"클라우드 기반 그래프 데이터베이스 도입 증가"

  • 글로벌 그래프 데이터베이스 시장에서 중요하고 가속화되는 추세는 클라우드 기반 배포 모델의 채택이 증가하고 있다는 점입니다. 이를 통해 분산 데이터 환경에서 확장성, 유연성 및 실시간 협업이 향상됩니다.
    • 예를 들어, AWS의 완전 관리형 그래프 데이터베이스 서비스인 Amazon Neptune은 RDF와 Property Graph 모델을 모두 지원하며 지식 그래프 및 사기 탐지에 널리 사용됩니다. 마찬가지로, Microsoft의 Azure Cosmos DB는 Gremlin API를 기본적으로 지원하여 클라우드에서 확장 가능한 그래프 데이터베이스 솔루션을 구현합니다.
  • 클라우드 기반 그래프 데이터베이스를 사용하면 조직이 최소한의 인프라 오버헤드로 방대한 양의 연결된 데이터를 관리할 수 있으므로, 배포 속도가 빨라지고 기존 클라우드 네이티브 서비스와 쉽게 통합할 수 있습니다. Google Cloud와 Neo4j AuraDB의 통합을 통해 사용자는 백엔드 시스템을 관리하지 않고도 고급 분석 및 추천 엔진을 구축할 수 있습니다.
  • 이러한 플랫폼은 비용 효율적인 주문형 환경에서 관계 중심 데이터 모델링을 활용하여 ID 액세스 관리, 실시간 사기 분석, 개인화된 콘텐츠 제공과 같은 사용 사례를 지원합니다.
  • 클라우드 네이티브 그래프 솔루션으로의 이러한 전환은 기업이 복잡한 데이터에서 인사이트를 도출하는 방식을 근본적으로 변화시키고 있습니다. Neo4j와 TigerGraph와 같은 기업들은 금융 서비스 제공업체(BFSI), 통신, 소매 등 다양한 분야의 증가하는 수요를 충족하기 위해 클라우드 서비스를 적극적으로 확장하고 있습니다.
  • 기업들이 데이터 인프라를 현대화하고, 통찰력 확보 시간을 단축하고, AI 및 머신 러닝 워크플로우와의 원활한 통합을 달성하고자 함에 따라 클라우드 기반 그래프 데이터베이스에 대한 수요가 급격히 증가하고 있습니다.

그래프 데이터베이스 시장 동향

운전사

“실시간 데이터 분석에 대한 수요 증가”

  • 산업 전반에 걸쳐 실시간 데이터 분석에 대한 요구가 증가함에 따라 그래프 데이터베이스에 대한 수요도 크게 증가하고 있습니다.
    • 예를 들어, 2024년 3월, Neo4j는 그래프 데이터 과학 플랫폼에 대한 주요 업데이트를 발표하여 실시간 추천 및 사기 탐지 기능을 강화했습니다. 이 기능은 핀테크 기업과 전자상거래 플랫폼에서 빠르게 도입되고 있습니다. 주요 업체들의 이러한 개발은 향후 몇 년 동안 그래프 데이터베이스 시장을 촉진할 것으로 예상됩니다.
  • 기업들이 고도로 연결된 데이터의 양이 증가함에 따라, 그래프 데이터베이스는 기존 데이터베이스로는 효율적으로 처리할 수 없는 관계와 패턴을 즉시 분석할 수 있도록 지원합니다. 이는 사기 거래 감지, 공급망 장애 식별, 개인화된 콘텐츠 엔진 구축 등의 사용 사례에 매우 중요합니다.
  • 또한 은행, 통신, 소매와 같은 분야에서 즉각적인 통찰력에 대한 수요가 증가함에 따라 조직은 일괄 처리 모델에서 그래프 기술을 기반으로 하는 실시간 분석 솔루션으로 전환하고 있습니다.
  • TigerGraph, Amazon Neptune 및 Microsoft Azure Cosmos DB와 같은 회사의 클라우드 기반 솔루션은 실시간 그래프 분석에 대한 액세스를 더욱 확장하여 기업이 다양한 운영 환경에서 이러한 기능을 빠르고 비용 효율적으로 배포할 수 있도록 합니다.

제지/도전

"제한된 인력 전문성"

  • 그래프 데이터베이스 기술에 대한 인력 전문성 부족은 광범위한 시장 도입 및 구축에 큰 어려움을 야기합니다. 그래프 데이터베이스는 그래프 이론, Cypher 또는 Gremlin과 같은 쿼리 언어, 그리고 스키마 설계에 대한 전문 지식을 요구하기 때문에 많은 조직에서 이러한 시스템을 효과적으로 구현하고 관리할 수 있는 자격을 갖춘 전문가를 찾는 데 어려움을 겪고 있습니다.
    • 예를 들어, Neo4j가 널리 채택되었음에도 불구하고 많은 기업은 Neo4j 아키텍처와 그래프 쿼리 언어에 익숙한 개발자들을 온보딩하는 데 상당한 학습 곡선을 겪고 있습니다. 이러한 전문 지식 부족은 배포 일정 지연, 잘못된 구현 구성, 그리고 그래프 데이터베이스 기능 활용도 저하로 이어질 수 있습니다.
  • 목표 지향적인 교육 프로그램, 인증 과정, 그리고 사용자 친화적인 개발 도구를 통해 이러한 과제를 해결하는 것은 시장 확장에 필수적입니다. TigerGraph와 Neo4j와 같은 기업들은 숙련된 사용자 기반을 구축하기 위해 교육 프로그램과 커뮤니티 지원 플랫폼을 출시했지만, 인재 격차는 고급 그래프 기반 솔루션 확장의 걸림돌로 남아 있습니다.
  • 또한, 그래프 기술의 급속한 혁신은 기존 IT 팀을 압도하여 전문성 격차를 더욱 심화시킬 수 있습니다. 이 문제는 전문 교육에 투자할 자원이 부족한 중소기업에서 특히 심각합니다.
  • 전략적 파트너십, 학술 협력 및 간소화된 툴링을 통해 이러한 인재 부족을 해소하는 것은 조직이 실시간 분석, 사기 탐지 및 지식 그래프 애플리케이션을 위해 그래프 데이터베이스의 잠재력을 최대한 활용할 수 있도록 하는 데 필수적입니다.

그래프 데이터베이스 시장 범위

시장은 유형, 애플리케이션, 데이터베이스, 배포 모델, 분석 유형, 규모, 구성 요소 및 최종 사용자를 기준으로 세분화됩니다.

• 유형별

그래프 데이터베이스 시장은 유형별로 RDF(Resource Description Framework)와 LPG(Labeled Property Graph)로 구분됩니다. LPG(Labeled Property Graph) 부문은 노드, 엣지, 키-값 속성 간의 복잡한 관계를 표현하는 유연성을 바탕으로 2024년 시장 매출 점유율 1위를 차지했습니다. LPG의 직관적인 데이터 모델링 구조는 지식 그래프, 추천 엔진, 실시간 사기 탐지 등의 사용 사례를 고성능으로 지원하여 트랜잭션 및 분석 워크로드 모두에 적합합니다.

RDF 부문은 표준화된 시맨틱 웹 프레임워크와 링크드 데이터 및 온톨로지 기반 추론과의 강력한 호환성을 바탕으로 2025년부터 2032년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. RDF는 정부 및 학계에서 데이터 통합 ​​및 W3C 표준 준수를 위해 점점 더 많이 채택되고 있으며, 특히 이기종 데이터 소스 간의 강력한 상호운용성을 요구하는 프로젝트에서 활발하게 활용되고 있습니다.

• 응용 프로그램별

그래프 데이터베이스 시장은 응용 분야별로 사기 탐지, 예방, 그리고 추천 엔진으로 구분됩니다. 사기 탐지 및 예방은 숨겨진 패턴을 파악하고 실시간으로 이상 징후를 탐지하기 위해 은행 및 전자상거래 분야에서 도입이 증가함에 따라 2024년 가장 큰 매출 점유율을 기록했습니다. 그래프 데이터베이스는 연결된 데이터 인사이트를 통해 의심스러운 행동을 식별하는 데 탁월하며, 기업에 점점 더 정교해지는 사기 수법에 대응할 수 있는 고급 도구를 제공합니다.

추천 엔진 부문은 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상되며, 이는 소매, 스트리밍, 소셜 플랫폼 등의 분야에서 고도로 개인화된 사용자 경험에 대한 수요 증가에 힘입어 더욱 가속화될 것입니다. 그래프 기반 추천은 다차원적 관계를 활용하여 정확한 콘텐츠와 제품 추천을 제공하여 고객 참여도와 만족도를 크게 향상시킵니다.

• 데이터베이스별

데이터베이스 유형을 기준으로 그래프 데이터베이스 시장은 관계형(SQL)과 비관계형(NoSQL)으로 구분됩니다. 비관계형(NoSQL) 부문은 높은 확장성, 스키마 유연성, 그리고 비정형 및 반정형 데이터 처리 능력 덕분에 2024년에 가장 큰 시장 점유율을 기록했습니다. NoSQL 그래프 데이터베이스는 민첩한 애플리케이션 개발과 실시간 분석을 지원하여 소셜 네트워크, 사이버 보안, 지식 관리와 같은 역동적인 환경에서 널리 채택되고 있습니다.

관계형(SQL) 부문은 기업들이 기존 SQL 환경에 그래프 기능을 통합함에 따라 2025년부터 2032년까지 가장 빠른 연평균 성장률(CAGR)로 성장할 것으로 예상됩니다. 이러한 하이브리드 방식을 통해 기업은 기존 관계형 인프라를 활용하면서 고급 관계 쿼리 기능을 확보하고 운영 중단 및 교육 필요성을 최소화할 수 있습니다.

• 배포 모델별

배포 모델을 기준으로 그래프 데이터베이스 시장은 온프레미스와 클라우드로 구분됩니다. 클라우드 부문은 확장 가능하고 비용 효율적이며 유지 관리가 필요 없는 배포 옵션에 대한 선호도가 높아짐에 따라 2024년에 가장 큰 매출 점유율을 차지했습니다. 클라우드 기반 그래프 데이터베이스는 온디맨드 성능, 다른 클라우드 서비스와의 간편한 통합, 그리고 글로벌 접근성을 제공하여 분산된 팀과 최신 애플리케이션 개발에 이상적입니다.

온프레미스 부문은 2025년부터 2032년까지 가장 빠른 성장을 보일 것으로 예상되며, 특히 금융, 의료, 국방 등 규제가 엄격한 분야의 기업들을 중심으로 성장세가 두드러질 것으로 예상됩니다. 이러한 기업들은 데이터 관리 강화, 엄격한 개인정보 보호 정책 준수, 그리고 외부 위협으로부터의 보안을 위해 온프레미스 환경을 선호합니다.

• 분석 유형별

분석 유형을 기준으로 그래프 데이터베이스 시장은 경로 분석, 연결성 분석, 커뮤니티 분석, 중심성 분석으로 구분됩니다. 경로 분석은 물류 최적화, 사기 행태 탐지, 고객 여정 매핑에 중요한 역할을 하며 2024년 시장 점유율 1위를 차지했습니다. 경로 분석은 기업이 거래 및 운영 데이터의 순서, 종속성, 인과 관계를 파악할 수 있도록 지원합니다.

커뮤니티 분석은 마케팅, 소셜 네트워크 분석, 사이버 보안 분야에 적용되면서 2025년부터 2032년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 커뮤니티 분석은 클러스터, 인플루언서 그룹, 그리고 행동 패턴을 파악하는 데 도움을 주어, 더욱 집중적인 개입과 생태계 역학에 대한 심층적인 통찰력을 제공합니다.

• 크기별

조직 규모를 기준으로 시장은 대기업과 중소기업(SME)으로 구분됩니다. 대기업은 부서와 지역 전반에 걸쳐 방대하고 복잡한 데이터 세트를 관리해야 하는 광범위한 수요로 인해 2024년 매출 점유율이 가장 높았습니다. 이러한 조직은 기업 지식 그래프, 사기 분석 및 공급망 최적화를 위해 그래프 데이터베이스를 활용합니다.

중소기업(SME) 부문은 디지털 혁신 이니셔티브 확대와 클라우드 기반 그래프 솔루션 접근성 확대로 2025년부터 2032년까지 가장 빠른 속도로 성장할 것으로 예상됩니다. 중소기업은 기존 인프라에 대한 대규모 투자 없이도 향상된 고객 인사이트와 간소화된 의사 결정의 이점을 누릴 수 있습니다.

• 구성 요소별

그래프 데이터베이스 시장은 구성 요소를 기준으로 소프트웨어와 서비스로 구분됩니다. 소프트웨어 부문은 데이터 쿼리, 시각화 및 통합을 위한 그래프 엔진과 데이터베이스 관리 플랫폼의 도입 증가에 힘입어 2024년에 가장 큰 시장 점유율을 기록했습니다. 지속적인 제품 혁신과 오픈 소스 가용성 증가는 이 부문을 더욱 강화하고 있습니다.

서비스 부문은 컨설팅, 교육, 통합 및 지원 서비스에 대한 수요 증가에 힘입어 2025년부터 2032년까지 가장 높은 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 더 많은 기업이 그래프 기술을 도입함에 따라, 원활한 도입, 성능 조정, 그리고 비즈니스 목표와의 전략적 연계를 위해 전문가 서비스가 필수적입니다.

• 최종 사용자별

최종 사용자 기준으로 그래프 데이터베이스 시장은 은행, 금융 서비스 및 보험(BFSI), 통신 및 IT, 의료 및 생명 과학, 운송 및 물류, 소매 및 전자상거래, 에너지 및 공공 서비스, 정부 및 공공, 제조, 기타로 세분화됩니다. BFSI 부문은 강력한 사기 탐지, 위험 관리 및 규정 준수에 대한 요구로 인해 2024년에 가장 큰 시장 점유율을 기록했습니다. 그래프 데이터베이스는 BFSI 업체에게 복잡한 거래 관계를 매핑하고 금융 범죄 네트워크를 추적할 수 있는 기능을 제공합니다.

의료 및 생명과학 분야는 유전체학, 신약 개발, 환자 데이터 통합 ​​분야의 응용 분야 증가로 인해 2025년부터 2032년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 그래프 기술은 연구자와 임상의가 연결된 환경에서 생물학적 네트워크와 의료 기록을 분석할 수 있도록 지원하여 혁신과 개인 맞춤형 치료를 가속화합니다.

그래프 데이터베이스 시장 지역 분석

  • 북미는 2024년 42.5%의 가장 큰 수익 점유율로 그래프 데이터베이스 시장을 장악했으며, 이는 고급 분석 도구의 조기 도입, AI 및 머신 러닝에 대한 강력한 투자, BFSI, 의료, IT와 같은 산업에서 실시간 데이터 처리에 대한 필요성 증가에 힘입은 것입니다.
  • 이 지역의 조직은 구조화된 데이터 세트와 구조화되지 않은 데이터 세트에 걸쳐 사기 탐지, 추천 엔진 및 복잡한 네트워크 분석을 위해 그래프 데이터베이스를 활용합니다.
  • 시장 확장은 선도적인 공급업체의 존재, 증가하는 클라우드 도입, 확장 가능한 고성능 데이터 관리 솔루션에 대한 기업 수요에 의해 뒷받침됩니다.

미국 그래프 데이터베이스 시장 통찰력

미국의 그래프 데이터베이스 시장은 2024년 북미 지역에서 가장 큰 매출 점유율을 기록했는데, 이는 광범위한 기업 디지털화와 그래프 기반 분석의 데이터 플랫폼 통합에 힘입은 것입니다. 미국의 첨단 클라우드 인프라와 데이터 중심 규제 환경은 금융, 의료 및 소매 부문의 도입을 촉진합니다. 미국 기업들은 고객 경험 향상, 사이버 보안 및 관계 인텔리전스를 위해 그래프 데이터베이스를 점점 더 많이 구축하고 있으며, 이는 솔루션 제공업체와 클라우드 플랫폼으로 구성된 강력한 생태계의 지원을 받고 있습니다.

유럽 ​​그래프 데이터베이스 시장 통찰력

유럽 ​​그래프 데이터베이스 시장은 GDPR과 같은 엄격한 데이터 거버넌스 기준과 데이터 계보, 투명성 및 상호운용성에 대한 지역 내 관심 증가로 인해 예측 기간 동안 강력한 CAGR로 성장할 것으로 예상됩니다. 통신, 금융 서비스(BFSI), 공공 서비스 분야에서 AI 기반 인사이트에 대한 수요 증가는 성장을 촉진합니다. 기업들은 사기 탐지 강화, 공급망 가시성 향상, 디지털 채널 전반의 개인화 전략 추진을 위해 그래프 기술을 도입하고 있습니다.

영국 그래프 데이터베이스 시장 통찰력

영국 그래프 데이터베이스 시장은 디지털 혁신에 대한 투자 증가와 정부 및 금융 부문에서 네트워크 분석의 중요성 증가에 힘입어 예측 기간 동안 견고한 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 영국의 핀테크 환경 확장과 사이버 보안에 대한 관심은 그래프 기반 사기 탐지 및 고객 여정 매핑 솔루션에 대한 수요를 견인하고 있습니다. 시맨틱 지식 그래프 구축에 중점을 둔 연구 기관과 기업에서도 도입이 증가하고 있습니다.

독일 그래프 데이터베이스 시장 통찰력

독일 그래프 데이터베이스 시장은 예측 기간 동안 꾸준히 성장할 것으로 예상되며, 이는 독일이 산업 4.0, 데이터 자동화, 그리고 지능형 의사 결정에 중점을 두고 있기 때문입니다. 독일 기업들은 생산 네트워크 최적화, 예측 유지보수, 그리고 IT 운영에 그래프 데이터베이스를 활용하고 있습니다. 특히 자동차, 제조, 그리고 공공 부문에서 그래프 분석을 기존 시스템 및 ERP 플랫폼에 통합하는 추세가 커지고 있습니다.

아시아 태평양 그래프 데이터베이스 시장 통찰력

아시아 태평양 그래프 데이터베이스 시장은 기업 디지털화 확대, 정부 지원 스마트 시티 사업, 그리고 중국, 인도, 일본, 한국 등 주요 국가의 빠른 클라우드 도입에 힘입어 2025년부터 2032년까지 가장 빠른 연평균 성장률(CAGR)로 성장할 것으로 예상됩니다. 기업들은 분산 환경에서 사기 탐지, 개인 맞춤형 서비스, 그리고 복잡한 데이터 통합을 지원하기 위해 그래프 데이터베이스를 적극적으로 활용하고 있습니다.

일본 그래프 데이터베이스 시장 통찰력

일본 그래프 데이터베이스 시장은 강력한 기술 인프라와 AI 기반 데이터 솔루션에 대한 수요 증가에 힘입어 꾸준히 성장하고 있습니다. 기업과 정부 기관은 시맨틱 검색 개선, 물류 최적화, 사이버 보안 위협 패턴 탐지를 위해 그래프 데이터베이스를 활용하고 있습니다. 또한, 일본의 Society 5.0 목표에 맞춰 그래프 분석이 IoT 및 스마트 제조 시스템에 통합되면서 시장이 성장하고 있습니다.

중국 그래프 데이터베이스 시장 통찰력

중국 그래프 데이터베이스 시장은 2024년 아시아 태평양 지역에서 가장 큰 매출 점유율을 기록했는데, 이는 정부의 데이터 혁신 추진과 기술, 금융, 물류 분야의 강력한 수요에 기인합니다. 빠르게 성장하는 중국의 디지털 생태계는 추천 시스템, 사기 탐지, 공급망 인텔리전스를 지원하기 위해 그래프 데이터베이스를 활용하고 있습니다. 국내 기업들은 풍부한 인재 풀과 우호적인 정책 프레임워크를 바탕으로 그래프 분야에서 적극적으로 혁신을 추진하고 있습니다.

그래프 데이터베이스 시장 점유율

그래프 데이터베이스 산업은 주로 다음을 포함한 잘 확립된 회사들이 주도하고 있습니다.

  • 휴렛팩커드 엔터프라이즈 개발 LP (미국)
  • IBM (미국)
  • 마이크로소프트 (미국)
  • 지멘스(독일)
  • ANSYS, Inc. (미국)
  • SAP SE (독일)
  • 오라클 (미국)
  • 로버트 보쉬 GmbH(독일)
  • Atos SE(프랑스)
  • ABB(스위스)
  • 켈튼(인도)
  • AVEVA 그룹 리미티드(영국)
  • DXC 테크놀로지 회사(미국)
  • 알테어 엔지니어링(주)(미국)
  • 헥사웨어 테크놀로지스 리미티드(인도)
  • 타타 컨설턴시 서비스 리미티드(인도)
  • Infosys Limited(인도)
  • NTT DATA 그룹 주식회사(일본)
  • 클라우드 소프트웨어 그룹(Cloud Software Group, Inc. 미국)
  • 레디스 주식회사(미국)

글로벌 그래프 데이터베이스 시장의 최신 동향

  • 2023년 5월, AWS는 그래프 데이터베이스 환경을 정의하고 오픈소스 표준을 설정하는 핵심 기업인 Neo4j와 파트너십을 체결했습니다. AWS Marketplace 판매업체로서 Neo4j는 그래프 데이터베이스 분야의 선두주자로 자리매김했습니다. 또한, AWS 데이터 및 분석 컴피턴시(Competency)를 획득하여 AWS 플랫폼에서 고급 데이터 솔루션을 제공하는 전문성을 입증했습니다.
  • 2023년 5월, SAP와 Google Cloud는 데이터 환경을 간소화하고 비즈니스 데이터의 잠재력을 극대화하기 위한 포괄적인 오픈 데이터 솔루션을 출시하는 등 강화된 파트너십을 발표했습니다. 이 새로운 이니셔티브는 SAP와 Google Cloud의 데이터 및 분석 기술을 결합하여 기업 데이터의 접근성과 유용성을 향상시킵니다. 또한, 기업 인공지능 개발의 발전을 촉진하여 기업의 혁신과 인사이트를 증진하는 것을 목표로 합니다.
  • 2023년 4월, Neo4j는 싱가포르의 그래프 기술 수요 증가에 대응하기 위해 Imperium Solutions와 파트너십을 체결했습니다. 이 협업을 통해 Imperium Solutions는 복잡한 엔터프라이즈급 과제 해결로 유명한 선도적인 그래프 데이터베이스 공급업체인 Neo4j의 잠재력을 고객이 최대한 활용할 수 있도록 지원할 것입니다. 이 파트너십은 방대한 데이터세트 내에서 관계와 패턴을 효율적으로 식별하는 능력을 향상시켜 해당 지역 기업의 가치를 높이는 것을 목표로 합니다.
  • 2023년 2월, IBM은 개발자들이 GraphQL API를 빠르고 최소한의 코딩으로 구축할 수 있도록 혁신적인 아키텍처를 갖춘 GraphQL 서버 개발사인 StepZen Inc.를 인수한다고 발표했습니다. StepZen은 높은 유연성을 제공하도록 설계되었으며, 다양한 API 접근 방식과 완벽하게 통합됩니다. 또한, SaaS(Software as a Service) 솔루션으로 제공되며, 프라이빗 클라우드 및 온프레미스 데이터 센터 구축을 지원하여 다양한 비즈니스 요구를 충족합니다.
  • 2022년 12월, LSEG와 마이크로소프트는 클라우드 인프라 개선과 함께 차세대 데이터 및 분석 솔루션 개발을 목표로 하는 10년 전략적 파트너십을 체결했습니다. 이 협력의 일환으로 마이크로소프트는 주식 인수를 통해 LSEG에 지분을 투자할 예정입니다. 이 파트너십은 Microsoft Azure, 인공지능, 그리고 Microsoft Teams를 활용하여 LSEG의 데이터 인프라를 설계하고 사용자를 위한 혁신적인 생산성, 데이터 분석 및 모델링 솔루션을 개발할 것입니다.


SKU-

세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요

  • 대화형 데이터 분석 대시보드
  • 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
  • 사용자 정의 및 질의를 위한 리서치 분석가 액세스
  • 대화형 대시보드를 통한 경쟁자 분석
  • 최신 뉴스, 업데이트 및 추세 분석
  • 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
데모 요청

목차

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL GRAPH DATABASE MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL GRAPH DATABASE MARKET

2.2.1 VENDOR POSITIONING GRID

2.2.2 TECHNOLOGY LIFE LINE CURVE

2.2.3 MARKET GUIDE

2.2.4 MULTIVARIATE MODELLING

2.2.5 TOP TO BOTTOM ANALYSIS

2.2.6 STANDARDS OF MEASUREMENT

2.2.7 VENDOR SHARE ANALYSIS

2.2.8 DATA POINTS FROM KEY PRIMARY INTERVIEWS

2.2.9 DATA POINTS FROM KEY SECONDARY DATABASES

2.3 GLOBAL GRAPH DATABASE MARKET: RESEARCH SNAPSHOT

2.4 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

5.1 PORTER’S FIVE FORCES ANALYSIS

5.2 REGULATORY STANDARDS

5.3 INDUSTRY ANALYSIS & FUTURISTIC SCENARIO

5.4 PENETRATION AND GROWTH POSPECT MAPPING

5.5 NEW BUSINESS AND EMERGING BUSINESS'S REVENUE OPPORTUNITIES

5.6 TECHNOLOGY ANALYSIS

5.6.1 KEY TECHNOLOGIES

5.6.2 COMPLEMENTARY TECHNOLOGIES

5.6.3 ADJACENT TECHNOLOGIES

FIGURE 1 TECHNOLOGY MATRIX

Company Product/Service offered

5.7 COMPANY COMPETITIVE ANALYSIS

5.7.1 STRATEGIC DEVELOPMENT

5.7.2 TECHNOLOGY IMPLEMENTATION PROCESS

5.7.2.1. CHALLENGES

5.7.2.2. INHOUSE IMPLEMENTATION/OUTSOURCED (THIRD PARTY) IMPLEMENTATION

5.7.3 CUSTOMER BASE

5.7.4 SERVICE POSITIONING

5.7.5 CUSTOMER FEEDBACK/RATING (B2B OR B2C)

5.7.6 APPLICATION REACH

5.7.7 SERVICE PLATFORM MATRIX

FIGURE 2 COMPANY COMPARATIVE ANALYSIS

Parameters Company A

Market Share

Growth (%)

Target Audience

Price Structure

Market Strategies

Customer Feedback

Service Positioning

Customer Feedback/Rating

Strategic Development

Application Reach

6 COMPANY SERVICE PLATFORM MATRIX

 

6.1 USED CASES & ITS ANALYSIS

7 FIG 4. USED CASE ANALYSIS

Company Product/Service offered

8 GLOBAL GRAPH DATABASE MARKET, BY MODEL TYPE

8.1 OVERVIEW

8.2 RESOURCE DESCRIPTION FRAMEWORK (RDF)

8.3 LABELED PROPERTY GRAPH (LPG)

8.4 HYPERGRAPHS

8.5 OTHERS

9 GLOBAL GRAPH DATABASE MARKET, BY SET OF OBJECTS

9.1 OVERVIEW

9.2 NODES

9.3 EDGES

9.4 OTHERS

10 GLOBAL GRAPH DATABASE MARKET, BY OFFERING

10.1 OVERVIEW

10.2 SOLUTION

10.2.1 BY DEPLOYMENT TYPE

10.2.1.1. ON-PREMISE

10.2.1.2. CLOUD

10.3 SERVICES

10.3.1 PROFESSIONAL SERVICES

10.3.2 MANAGED SERVICES

11 GLOBAL GRAPH DATABASE MARKET, BY ANALYSIS TYPE

11.1 OVERVIEW

11.2 PATH ANALYSIS

11.3 CONNECTIVITY ANALYSIS

11.4 COMMUNITY ANALYSIS

11.5 CENTRALITY ANALYSIS

12 GLOBAL GRAPH DATABASE MARKET, BY APPLICATION

12.1 OVERVIEW

12.2 FRAUD DETECTION

12.3 REAL-TIME RECOMMENDATION ENGINES

12.4 MASTER DATA MANAGEMENT (MDM)

12.5 NETWORK AND IT OPERATIONS

12.6 IDENTITY AND ACCESS MANAGEMENT (IAM)

13 GLOBAL GRAPH DATABASE MARKET, BY ORGANISATION TYPE

13.1 OVERVIEW

13.2 LARGE ENTERPRISES

13.3 SMALL & MEDIUM ENTERPRISES

14 GLOBAL GRAPH DATABASE MARKET, BY DEPLOYMENT MODE

14.1 OVERVIEW

14.2 ON-PREMISE

14.3 CLOUD

15 GLOBAL GRAPH DATABASE MARKET, BY END USER

15.1 OVERVIEW

15.2 MANUFACTURING & AUTOMOTIVE

15.2.1 BY OFFERING

15.2.1.1. SOLUTION

15.2.1.1.1. BY DEPLOYMENT TYPE

15.2.1.1.1.1 ON-PREMISE

15.2.1.1.1.2 CLOUD

15.2.1.1.1.3 SERVICES

15.2.1.1.1.4 PROFESSIONAL SERVICES

15.2.1.1.1.5 MANAGED SERVICES

15.3 RETAIL AND E-COMMERCE

15.3.1 SOLUTION

15.3.1.1. BY DEPLOYMENT TYPE

15.3.1.1.1. ON-PREMISE

15.3.1.1.2. CLOUD

15.3.1.2. SERVICES

15.3.1.2.1. PROFESSIONAL SERVICES

15.3.1.2.2. MANAGED SERVICES

15.4 HEALTHCARE AND PHARMACEUTICALS

15.4.1 SOLUTION

15.4.1.1. BY DEPLOYMENT TYPE

15.4.1.1.1. ON-PREMISE

15.4.1.1.2. CLOUD

15.4.1.2. SERVICES

15.4.1.2.1. PROFESSIONAL SERVICES

15.4.1.2.2. MANAGED SERVICES

15.5 BANKING, FINANCIAL SERVICES & INSURANCE

15.5.1 SOLUTION

15.5.1.1. BY DEPLOYMENT TYPE

15.5.1.1.1. ON-PREMISE

15.5.1.1.2. CLOUD

15.5.1.2. SERVICES

15.5.1.2.1. PROFESSIONAL SERVICES

15.5.1.2.2. MANAGED SERVICES

15.6 ENERGY & UTILITIES

15.6.1 SOLUTION

15.6.1.1. BY DEPLOYMENT TYPE

15.6.1.1.1. ON-PREMISE

15.6.1.1.2. CLOUD

15.6.1.2. SERVICES

15.6.1.2.1. PROFESSIONAL SERVICES

15.6.1.2.2. MANAGED SERVICES

15.7 GOVERNMENT & PUBLIC

15.7.1 SOLUTION

15.7.1.1. BY DEPLOYMENT TYPE

15.7.1.1.1. ON-PREMISE

15.7.1.1.2. CLOUD

15.7.1.2. SERVICES

15.7.1.2.1. PROFESSIONAL SERVICES

15.7.1.2.2. MANAGED SERVICES

15.8 TELECOM & IT

15.8.1 SOLUTION

15.8.1.1. BY DEPLOYMENT TYPE

15.8.1.1.1. ON-PREMISE

15.8.1.1.2. CLOUD

15.8.1.2. SERVICES

15.8.1.2.1. PROFESSIONAL SERVICES

15.8.1.2.2. MANAGED SERVICES

15.9 TRANSPORTATION & LOGISTICS

15.9.1 SOLUTION

15.9.1.1. BY DEPLOYMENT TYPE

15.9.1.1.1. ON-PREMISE

15.9.1.1.2. CLOUD

15.9.1.2. SERVICES

15.9.1.2.1. PROFESSIONAL SERVICES

15.9.1.2.2. MANAGED SERVICES

15.1 OTHERS

16 GLOBAL GRAPH DATABASE MARKET, BY REGION

16.1 GLOBAL GRAPH DATABASE MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

16.1.1 NORTH AMERICA

16.1.1.1. U.S.

16.1.1.2. CANADA

16.1.1.3. MEXICO

16.1.2 EUROPE

16.1.2.1. GERMANY

16.1.2.2. FRANCE

16.1.2.3. U.K.

16.1.2.4. ITALY

16.1.2.5. SPAIN

16.1.2.6. RUSSIA

16.1.2.7. TURKEY

16.1.2.8. BELGIUM

16.1.2.9. NETHERLANDS

16.1.2.10. SWITZERLAND

16.1.2.11. SWEDEN

16.1.2.12. DENMARK

16.1.2.13. POLAND

16.1.2.14. REST OF EUROPE

16.1.3 ASIA PACIFIC

16.1.3.1. JAPAN

16.1.3.2. CHINA

16.1.3.3. SOUTH KOREA

16.1.3.4. INDIA

16.1.3.5. AUSTRALIA AND NEW ZEALAND

16.1.3.6. SINGAPORE

16.1.3.7. THAILAND

16.1.3.8. MALAYSIA

16.1.3.9. INDONESIA

16.1.3.10. PHILIPPINES

16.1.3.11. TAIWAN

16.1.3.12. VIETNAM

16.1.3.13. REST OF ASIA PACIFIC

16.1.4 SOUTH AMERICA

16.1.4.1. BRAZIL

16.1.4.2. ARGENTINA

16.1.4.3. REST OF SOUTH AMERICA

16.1.5 MIDDLE EAST AND AFRICA

16.1.5.1. SOUTH AFRICA

16.1.5.2. EGYPT

16.1.5.3. SAUDI ARABIA

16.1.5.4. U.A.E

16.1.5.5. ISRAEL

16.1.5.6. KUWAIT

16.1.5.7. QATAR

16.1.5.8. REST OF MIDDLE EAST AND AFRICA

16.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES

17 GLOBAL GRAPH DATABASE MARKET, COMPANY LANDSCAPE

17.1 COMPANY SHARE ANALYSIS: GLOBAL

17.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

17.3 COMPANY SHARE ANALYSIS: EUROPE

17.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

17.5 MERGERS & ACQUISITIONS

17.6 NEW PRODUCT DEVELOPMENT & APPROVALS

17.7 EXPANSIONS

17.8 REGULATORY CHANGES

17.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS

18 GLOBAL GRAPH DATABASE MARKET, SWOT ANALYSIS

19 GLOBAL GRAPH DATABASE MARKET, COMPANY PROFILE

19.1 MICROSOFT CORPORATION

19.1.1 COMPANY SNAPSHOT

19.1.2 REVENUE ANALYSIS

19.1.3 PRODUCT PORTFOLIO

19.1.4 RECENT DEVELOPMENTS

19.2 IBM CORPORATION

19.2.1 COMPANY SNAPSHOT

19.2.2 REVENUE ANALYSIS

19.2.3 PRODUCT PORTFOLIO

19.2.4 RECENT DEVELOPMENTS

19.3 NEO4J INC.

19.3.1 COMPANY SNAPSHOT

19.3.2 REVENUE ANALYSIS

19.3.3 PRODUCT PORTFOLIO

19.3.4 RECENT DEVELOPMENTS

19.4 ORACLE CORPORATION

19.4.1 COMPANY SNAPSHOT

19.4.2 REVENUE ANALYSIS

19.4.3 PRODUCT PORTFOLIO

19.4.4 RECENT DEVELOPMENTS

19.5 DATASTAX INC.

19.5.1 COMPANY SNAPSHOT

19.5.2 REVENUE ANALYSIS

19.5.3 PRODUCT PORTFOLIO

19.5.4 RECENT DEVELOPMENTS

19.6 ARANGOGRAPH DB

19.6.1 COMPANY SNAPSHOT

19.6.2 REVENUE ANALYSIS

19.6.3 PRODUCT PORTFOLIO

19.6.4 RECENT DEVELOPMENTS

19.7 TIGERGRAPH

19.7.1 COMPANY SNAPSHOT

19.7.2 REVENUE ANALYSIS

19.7.3 PRODUCT PORTFOLIO

19.7.4 RECENT DEVELOPMENTS

19.8 AMAZON WEB SERVICES INC.

19.8.1 COMPANY SNAPSHOT

19.8.2 REVENUE ANALYSIS

19.8.3 PRODUCT PORTFOLIO

19.8.4 RECENT DEVELOPMENTS

19.9 ONTOTEXT INC.

19.9.1 COMPANY SNAPSHOT

19.9.2 REVENUE ANALYSIS

19.9.3 PRODUCT PORTFOLIO

19.9.4 RECENT DEVELOPMENTS

19.1 STARDOG UNION

19.10.1 COMPANY SNAPSHOT

19.10.2 REVENUE ANALYSIS

19.10.3 PRODUCT PORTFOLIO

19.10.4 RECENT DEVELOPMENTS

19.11 SAP SE

19.11.1 COMPANY SNAPSHOT

19.11.2 REVENUE ANALYSIS

19.11.3 PRODUCT PORTFOLIO

19.11.4 RECENT DEVELOPMENTS

19.12 MARKLOGIC CORPORATION

19.12.1 COMPANY SNAPSHOT

19.12.2 REVENUE ANALYSIS

19.12.3 PRODUCT PORTFOLIO

19.12.4 RECENT DEVELOPMENTS

19.13 TIBCO SOFTWARE INC. (CLOUD SOFTWARE GROUP)

19.13.1 COMPANY SNAPSHOT

19.13.2 REVENUE ANALYSIS

19.13.3 PRODUCT PORTFOLIO

19.13.4 RECENT DEVELOPMENTS

19.14 FRANZ INC.

19.14.1 COMPANY SNAPSHOT

19.14.2 REVENUE ANALYSIS

19.14.3 PRODUCT PORTFOLIO

19.14.4 RECENT DEVELOPMENTS

19.15 OPENLINK SOFTWARE

19.15.1 COMPANY SNAPSHOT

19.15.2 REVENUE ANALYSIS

19.15.3 PRODUCT PORTFOLIO

19.15.4 RECENT DEVELOPMENTS

19.16 BITNINE CO. LTD.

19.16.1 COMPANY SNAPSHOT

19.16.2 REVENUE ANALYSIS

19.16.3 PRODUCT PORTFOLIO

19.16.4 RECENT DEVELOPMENTS

19.17 FLUREE

19.17.1 COMPANY SNAPSHOT

19.17.2 REVENUE ANALYSIS

19.17.3 PRODUCT PORTFOLIO

19.17.4 RECENT DEVELOPMENTS

19.18 DGRAPH

19.18.1 COMPANY SNAPSHOT

19.18.2 REVENUE ANALYSIS

19.18.3 PRODUCT PORTFOLIO

19.18.4 RECENT DEVELOPMENTS

19.19 REDIS LABS

19.19.1 COMPANY SNAPSHOT

19.19.2 REVENUE ANALYSIS

19.19.3 PRODUCT PORTFOLIO

19.19.4 RECENT DEVELOPMENTS

19.2 ALTAIR ENGINEERING INC.

19.20.1 COMPANY SNAPSHOT

19.20.2 REVENUE ANALYSIS

19.20.3 PRODUCT PORTFOLIO

19.20.4 RECENT DEVELOPMENTS

NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST

20 RELATED REPORTS

21 QUESTIONNAIRE

22 ABOUT DATA BRIDGE MARKET RESEARCH

자세한 정보 보기 Right Arrow

연구 방법론

데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.

DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.

사용자 정의 가능

Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

자주 묻는 질문

시장은 글로벌 그래프 데이터베이스 시장 세분화, 유형별(RDF(리소스 설명 프레임워크) 및 LPG(레이블드 속성 그래프)), 애플리케이션(사기 탐지, 예방 및 추천 엔진), 데이터베이스(관계형(SQL) 및 비관계형(NoSQL)), 배포 모델(온프레미스 및 클라우드), 분석 유형(경로 분석, 연결성 분석, 커뮤니티 분석 및 중심성 분석), 규모(대기업, 중소기업), 구성 요소(소프트웨어 및 서비스), 최종 사용자(은행, 금융 서비스 및 보험, 통신 및 IT, 의료 및 생명 과학, 운송 및 물류, 소매 및 전자 상거래, 에너지 및 유틸리티, 정부 및 공공, 제조 및 기타) - 산업 동향 및 2032년까지의 예측 기준으로 세분화됩니다.
글로벌 그래프 데이터베이스 시장의 시장 규모는 2024년에 2.70 USD Billion USD로 평가되었습니다.
글로벌 그래프 데이터베이스 시장는 2025년부터 2032년까지 연평균 성장률(CAGR) 18.2%로 성장할 것으로 예상됩니다.
시장 내 주요 기업으로는 Teradata , Hewlett Packard Enterprise Development LP , IBM Corporation , Microsoft , Siemens AG , ANSYSInc , SAP SE , Oracle , Robert Bosch GmbH , Swim.aiInc. ., Atos S.E. , ABB , KELLTON TECH , AVEVA Group plc , DXC Technology Company , Altair EngineeringInc , Hexaware Technologies Limited , Tata Consultancy Services Limited , Infosys Limited , NTT DATAInc. , TIBCO Software Inc. , Redis Ltd 가 포함됩니다.
Testimonial