Asia Pacific Deep Learning Neural Networks Dnns Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
35.66 Billion
USD
300.33 Billion
2024
2032
| 2025 –2032 | |
| USD 35.66 Billion | |
| USD 300.33 Billion | |
|
|
|
|
아시아 태평양 딥러닝 신경망(DNN) 시장 세분화, 구성 요소(하드웨어, 소프트웨어 및 서비스), 애플리케이션(이미지 인식, 자연어 처리, 음성 인식, 데이터 마이닝), 최종 사용자(은행, 금융 서비스 및 보험(BFSI), IT 및 통신, 의료, 소매, 자동차, 제조, 항공우주 및 방위, 보안, 기타) - 산업 동향 및 2032년까지의 전망
딥러닝 신경망(DNN) 시장 규모
- 아시아 태평양 딥러닝 신경망(DNN) 시장 규모는 2024년에 356억 6천만 달러 로 평가되었으며, 예측 기간 동안 30.52%의 CAGR 로 2032년까지 3,003억 3천만 달러 에 도달할 것으로 예상됩니다 .
- 이러한 놀라운 시장 확장은 스마트 홈 기술, 의료, 자동차, 제조 등 여러 분야에서 인공지능(AI) 도입이 가속화된 데 기인합니다. 커넥티드 기기와 IoT 인프라의 발전 또한 가정 및 상업 분야 모두에서 DNN 수요 증가에 크게 기여하고 있습니다.
- • 또한, 지능적이고 안전하며 자동화된 시스템에 대한 수요가 증가함에 따라 딥러닝 신경망(DNN)이 예측 분석, 패턴 인식 및 지능형 의사 결정을 위한 기반 기술로 자리매김하고 있습니다. 이러한 요인들은 DNN이 주류로 자리 잡도록 이끌며 아시아 태평양 지역 전역의 디지털 혁신을 가속화하고 있습니다.
딥러닝 신경망(DNN) 시장 분석
- 딥러닝 신경망(DNN)은 아시아 태평양 지역 산업, 특히 스마트 홈 자동화, 보안 시스템, 지능형 감시 분야의 디지털 혁신에 필수적인 요소가 되고 있습니다. 이러한 고급 알고리즘은 기계가 이미지 및 음성 인식, 예측 분석, 자율적 의사 결정 등의 작업을 인간과 유사한 정확도로 수행할 수 있도록 지원합니다.
- 아시아 태평양 DNN 시장은 주거 및 상업 환경에서 스마트 기술의 빠른 도입으로 인해 견고한 성장을 보이고 있습니다. 중국, 일본, 한국, 인도 등 각국의 정부와 기업들은 AI 기반 인프라에 막대한 투자를 하고 있으며, 이를 통해 도시 및 준도시 지역에서 DNN 기반 솔루션 구축이 가속화되고 있습니다.
- 지능적이고 안전하며 원격으로 접근 가능한 솔루션에 대한 소비자 수요 증가 또한 DNN 시장을 촉진하고 있습니다. 스마트홈 생태계에서 DNN은 출입 통제를 위한 얼굴 인식, 음성 명령 통합, 행동 패턴 모니터링 등의 기능을 강화하여 새로운 차원의 자동화, 개인화, 편의성을 제공합니다.
- 더욱이 아시아 태평양 지역 전역에 걸쳐 IoT 기기의 확산, 연산 능력 향상, 그리고 5G 인프라 확장은 DNN이 일상생활에 원활하게 통합되는 것을 촉진하고 있습니다. 이러한 추세는 의료, 소매, 금융, 운송 등의 분야를 크게 변화시키고 있으며, DNN은 아시아 태평양 지역 차세대 디지털 경제의 핵심으로 자리매김하고 있습니다.
- 중국은 아시아 태평양 딥러닝 신경망(DNN) 시장의 급속한 확장을 주도하는 주요 국가로, 2025년부터 2032년까지 이 지역의 예상 CAGR 33.12%에 크게 기여할 것으로 예상됩니다.
- 하드웨어 부문은 2024년에 가장 큰 시장 수익 점유율을 차지했는데, 이는 DNN 모델의 학습 및 추론을 위한 GPU, TPU, FPGA와 같은 고성능 컴퓨팅(HPC) 하드웨어의 배포 증가에 따른 것입니다.
보고서 범위 및 딥러닝 신경망(DNN) 시장 세분화
|
속성 |
딥러닝 신경망(DNN) 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
아시아 태평양
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 적용 범위, 주요 기업 등 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 가격 분석, 브랜드 점유율 분석, 소비자 설문 조사, 인구 통계 분석, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선택 기준, PESTLE 분석, Porter 분석 및 규제 프레임워크가 포함되어 있습니다. |
딥러닝 신경망(DNN) 시장 동향
“ AI 통합 가속화 및 실시간 데이터 처리 수요 ”
- 금융, 의료, 소매, 제조 등 여러 분야에 걸쳐 인공지능(AI)이 통합되면서 딥러닝 신경망(DNN)에 대한 수요가 크게 증가하고 있습니다. 기업들은 예측 분석, 고객 행동 모델링, 사기 탐지, 개인 맞춤형 추천 시스템 등 실시간 고정밀 데이터 해석이 필요한 작업에 DNN을 점점 더 많이 활용하고 있습니다.
- 예를 들어, 2024년 3월, IBM은 Watsonx AI 및 데이터 플랫폼을 개선하여 BFSI 부문의 지능형 자동화 및 고객 참여를 위한 더욱 정교한 DNN 모델을 지원했습니다. 이러한 발전을 통해 금융 기관은 AI 기반 인사이트를 통해 실시간 위험 평가를 강화하고 고객 경험을 개선할 수 있습니다.
- 더욱이, DNN은 이미지, 음성, 비디오와 같은 비정형 데이터를 실시간으로 처리할 수 있어 현대 AI 애플리케이션에 필수적인 요소입니다. 기업들이 디지털 혁신에 집중함에 따라, 경쟁력 유지와 운영 효율성 향상을 위해 확장 가능하고 클라우드와 통합된 DNN 솔루션 도입이 필수적이 되고 있습니다.
딥러닝 신경망(DNN) 시장 동향
운전사
“스마트 기기와 IoT 생태계 확장”
- 사물 인터넷(IoT) 기기의 확산과 스마트 인프라 사용 증가로 인해 엣지에서의 DNN 구축이 가속화되고 있습니다. DNN은 자율주행차, 스마트 홈 시스템, 산업 자동화 시스템 등 연결된 기기에서 지연 시간을 줄이고 로컬 처리를 지원하여 실시간 의사 결정을 가능하게 합니다.
- 예를 들어, 2024년 4월, Qualcomm Technologies, Inc.는 교통 제어 및 에너지 관리와 같은 스마트 시티 애플리케이션의 응답성을 강화하기 위해 고급 DNN 모델이 통합된 AI 기반 엣지 컴퓨팅 플랫폼을 출시했습니다.
- DNN과 IoT 및 엣지 컴퓨팅의 융합은 다양한 부문, 특히 아시아 태평양, 미국, 유럽 일부 지역과 같이 스마트 인프라에 대한 투자가 활발한 지역에서 강력한 수요를 견인할 것으로 예상됩니다.
제지/도전
“ 높은 계산 비용과 에너지 소비 ”
- 딥러닝 신경망(DNN) 시장이 직면한 주요 과제는 복잡한 모델을 학습하고 배포하는 데 필요한 엄청난 연산 능력과 에너지입니다. 이러한 요구 사항을 충족하기 위해서는 고성능 GPU, 대규모 데이터 스토리지, 그리고 고급 냉각 시스템을 사용해야 하며, 이는 운영 비용을 증가시킵니다.
- 이는 특히 인프라와 자금 조달이 제한될 수 있는 개발도상국의 중소기업(SME)에게 장벽이 됩니다. 또한, 환경적 지속가능성이 전 세계적인 우선순위가 됨에 따라, 대규모 DNN 훈련과 관련된 높은 탄소 발자국은 규제 기관과 이해관계자들의 주목을 받고 있습니다.
- 결과적으로 업계는 DNN 도입을 모든 경제 계층에서 보다 지속 가능하고 접근 가능하게 만들기 위해 더욱 효율적인 알고리즘과 저전력 AI 하드웨어를 개발하라는 압박에 직면해 있습니다.
딥러닝 신경망(DNN) 시장 범위
시장은 구성 요소, 응용 프로그램, 최종 사용자를 기준으로 세분화됩니다.
- 구성 요소별
딥러닝 신경망(DNN) 시장은 구성 요소를 기준으로 하드웨어, 소프트웨어, 서비스로 구분됩니다. 하드웨어 부문은 2024년 시장 매출 점유율이 가장 높았는데, 이는 DNN 모델의 학습 및 추론을 위한 GPU, TPU, FPGA와 같은 고성능 컴퓨팅(HPC) 하드웨어의 도입 증가에 힘입은 것입니다. 기업과 연구 기관의 딥러닝 워크로드를 위한 확장 가능한 인프라에 대한 수요가 증가함에 따라 AI 전용 하드웨어에 대한 수요도 더욱 증가하고 있습니다.
소프트웨어 부문은 딥러닝 프레임워크(TensorFlow, PyTorch, MXNet 등)의 발전과 자연어 처리, 컴퓨터 비전, 추천 시스템을 위한 사전 학습된 모델 및 라이브러리 사용 증가로 인해 2025년부터 2032년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 클라우드 기반 AI 플랫폼 또한 모델 개발 및 배포 간소화를 통해 이러한 성장을 촉진하고 있습니다.
- 응용 프로그램별
딥러닝 신경망(DNN) 시장은 응용 분야별로 이미지 인식, 음성 인식, 자연어 처리(NLP), 데이터 마이닝으로 구분됩니다. 이미지 인식 부문은 자율주행차, 의료 진단, 안면 인식, 감시 시스템 등에서 널리 채택되면서 2024년 시장 점유율 1위를 기록했습니다. 시각 데이터 분석 및 실시간 이미지 처리를 위한 합성곱 신경망(CNN)의 사용 증가는 이 부문의 성장을 크게 촉진하고 있습니다.
자연어 처리(NLP) 부문은 생성형 AI, 가상 비서, 챗봇, 감정 분석 도구, AI 기반 번역 서비스의 급속한 발전에 힘입어 2025년부터 2032년까지 가장 빠른 성장을 보일 것으로 예상됩니다. 고객 서비스, 교육, 기업 자동화 분야에서 NLP의 활용도가 확대되면서 시장 성장세가 지속될 것으로 예상됩니다.
- 최종 사용자별
최종 사용자 기준으로 딥러닝 신경망(DNN) 시장은 은행, 금융 서비스 및 보험(BFSI), IT 및 통신, 의료, 소매, 자동차, 제조, 항공우주 및 방위, 보안 등으로 세분화됩니다. IT 및 통신 부문은 실시간 네트워크 최적화, 이상 감지, 예측 유지 관리에 대한 수요 증가로 2024년 시장을 주도했습니다. 통신 사업자들은 지능형 가상 에이전트와 데이터 분석을 통해 고객 경험을 개선하고 서비스 제공을 자동화하기 위해 DNN을 활용하고 있습니다.
의료 영상, 신약 개발, 진단 및 환자 위험 평가 분야에서 DNN 도입이 증가함에 따라 헬스케어 분야는 2025년부터 2032년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 딥러닝 모델은 방대한 비정형 의료 데이터를 처리할 수 있어 개인 맞춤형 의료에 혁신을 일으키고 연구 개발(R&D) 워크플로우를 가속화하고 있습니다.
딥러닝 신경망(DNN) 시장 지역 분석
- 중국은 아시아 태평양 딥러닝 신경망(DNN) 시장의 급속한 확장을 주도하는 주요 국가로, 2025년부터 2032년까지 이 지역의 예상 CAGR 33.12%에 크게 기여할 것으로 예상됩니다.
- 국가의 성장은 "차세대 인공지능 개발 계획"과 같은 국가적 전략을 통한 인공지능에 대한 정부의 막대한 투자에 힘입어 이루어졌으며, 산업 전반에 걸쳐 DNN의 광범위한 통합을 촉진하고 있습니다.
- 중국의 대규모 소비자 기반과 스마트 시티 이니셔티브는 얼굴 인식, 지능형 감시, 자율주행차, 개인화된 전자상거래 경험 분야에서 DNN 기반 솔루션의 확산을 촉진하고 있습니다.
- 또한, 바이두, 알리바바, 텐센트, 화웨이 등 국내의 주요 기업들은 AI 칩셋, 클라우드 플랫폼, 딥러닝 프레임워크를 적극적으로 개발하고 있으며, 이를 통해 DNN 애플리케이션의 더 빠르고 현지화된 배포가 용이해지고 있습니다.
- 저렴한 전자 제품 제조 생태계와 광범위한 5G 인프라 구축이 결합되어 진입 장벽이 낮아지고 도시와 농촌 시장 모두에서 DNN 기반 시스템 도입이 가능해지고 있습니다.
- 중국이 세계적인 AI 강국으로 자리매김함에 따라, 국내 딥러닝 신경망(DNN) 시장은 공격적인 혁신, 유리한 정책 프레임워크, 기업과 정부 간 협력 확대로 혜택을 받고 있으며, 이를 통해 아시아 태평양 지역에서의 리더십을 더욱 공고히 하고 있습니다.
일본 딥러닝 신경망(DNN) 시장 통찰력
일본 딥러닝 신경망(DNN) 시장은 첨단 기술 환경, 자동화 수요 증가, 그리고 고도로 도시화된 사회에 힘입어 상당한 성장을 보이고 있습니다. 로봇 공학과 AI 기반 시스템에 대한 일본의 집중적인 투자는 실시간 분석, 의료 진단, 자동차 시스템, 스마트 홈 애플리케이션 분야에서 DNN 도입 증가를 뒷받침하고 있습니다. 또한, 일본의 고령화는 DNN 알고리즘을 활용하여 안전성, 편의성, 그리고 의료 서비스의 질을 향상시키는 AI 기반 보조 기술에 대한 기회를 창출하고 있습니다.
인도 딥러닝 신경망(DNN) 시장 통찰력
인도 딥러닝 신경망(DNN) 시장은 디지털 생태계 확장, 기술 스타트업 환경의 호황, 그리고 국가 AI 전략 및 디지털 인디아와 같은 정부 주도의 AI 정책 강화로 인해 빠르게 성장할 것으로 예상됩니다. 의료, 금융 서비스(BFSI), 전자상거래 등의 산업이 빠르게 디지털화됨에 따라 사기 탐지, 고객 분석, 개인 맞춤형 추천을 위한 DNN 기반 도구에 대한 수요가 급증하고 있습니다. 또한, 비용에 민감한 인도 시장은 클라우드 기반 및 오픈소스 DNN 프레임워크의 부상으로 수혜를 입어 광범위한 실험과 도입이 촉진되고 있습니다.
딥러닝 신경망(DNN) 시장 점유율
딥러닝 신경망(DNN) 산업은 주로 다음을 포함한 기존 기업들이 주도하고 있습니다.
- LYUDA RESEARCH, LLC(미국)
- Alphabet Inc. (Google) (미국)
- IBM(미국)
- 마이크론 테크놀로지스(미국)
- Neural Technologies Limited(영국)
- 뉴로디멘션(NEURODIMENSION, INC.)(미국)
- 뉴럴웨어(미국)
- NVIDIA Corporation(미국)
- Skymind Inc.(미국)
- 삼성(한국)
- Qualcomm Technologies, Inc.(미국)
- 인텔 코퍼레이션(미국)
- Amazon Web Services, Inc.(미국)
- 마이크로소프트(미국)
- GMDH LLC.(미국)
- Sensory Inc.(미국)
- Ward Systems Group, Inc.(미국)
- Xilinx Inc.(미국)
- 스타마인드(스위스)
아시아 태평양 딥러닝 신경망(DNN) 시장의 최신 동향
- 2025년 2월, 중국 국가개발개혁위원회(NDRC)와 반도체 기업들은 오픈 소스 도메인별 DNN 모델을 지원하기 위한 획기적인 규제 개혁안을 발표했습니다. 이 이니셔티브는 저렴한 GPU 기반 학습을 지원하고, 국내 혁신을 촉진하며, 해외 인프라 의존도를 낮춤으로써 고급 AI 개발을 민주화하는 것을 목표로 합니다.
- 2024년, 화웨이는 자사의 오픈소스 딥러닝 프레임워크인 MindSpore(v2.3)를 완전히 개편하여 HarmonyOS 및 Ascend 칩의 ARM 기반 NPU에 최적화했습니다. 이 업데이트는 아시아 태평양 지역의 스마트폰, IoT 기기 및 엣지 컴퓨팅 플랫폼에서 온디바이스 DNN 성능을 강화합니다.
- 2025년 2월, 네이처(Nature) 저널은 중국과 서구 AI 모델 간의 경쟁이 가속화되고 있으며, 중국의 소규모 DNN이 성능 격차를 좁히고 있다고 보고했습니다. 이는 아시아 태평양 지역의 고품질 현지 개발 신경망 모델 생태계가 성숙해지고 있음을 보여줍니다.
- 2025년 초, Origin Quantum은 Phoenix와 파트너십을 맺고 DNN 학습에 자사의 "Wukong" 초전도 양자 칩을 활용했습니다. 중국에서 이루어진 이 최첨단 협업은 양자 컴퓨팅과 신경망 워크플로우를 통합하려는 새로운 관심을 보여줍니다.
- 2025년 6월, 중국 샤먼에서 MLANN 2025 컨퍼런스가 개최되어 머신러닝 및 신경망 분야의 선도적인 연구자들과 업계 전문가들이 한자리에 모였습니다. 이 행사에서는 의료, 로봇공학, 스마트 제조 분야에서 새로운 아키텍처, 최적화 기법, 그리고 실제 DNN 적용 사례가 소개되었습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

