글로벌 패션 AI 시장 규모, 점유율 및 추세 분석 보고서 – 산업 개요 및 2033년까지의 전망

TOC 요청 TOC 요청 분석가에게 문의 분석가에게 문의 무료 샘플 보고서 무료 샘플 보고서 구매하기 전에 문의 구매하기 전에 문의 지금 구매 지금 구매

글로벌 패션 AI 시장 규모, 점유율 및 추세 분석 보고서 – 산업 개요 및 2033년까지의 전망

  • ICT
  • Upcoming Report
  • Jan 2021
  • Global
  • 350 Pages
  • 테이블 수: 220
  • 그림 수: 60
  • Author : Megha Gupta

민첩한 공급망 컨설팅으로 관세 문제를 극복하세요

공급망 생태계 분석이 이제 DBMR 보고서의 일부가 되었습니다

Global Ai In Fashion Market

시장 규모 (USD 10억)

연평균 성장률 :  % Diagram

Chart Image USD 1.17 Billion USD 16.16 Billion 2025 2033
Diagram 예측 기간
2026 –2033
Diagram 시장 규모(기준 연도)
USD 1.17 Billion
Diagram 시장 규모(예측 연도)
USD 16.16 Billion
Diagram 연평균 성장률
%
Diagram 주요 시장 플레이어
  • Microsoft
  • IBM Corporation
  • Google
  • Amazon.comInc.
  • SAP SE

글로벌 패션 AI 시장 세분화, 구성 요소(솔루션 및 서비스), 배포 모드(클라우드 및 온프레미스), 애플리케이션(제품 추천, 제품 검색 및 발견, 창의적 디자인 및 트렌드 예측, 공급망 관리 및 수요 계획, 고객 관계 관리, 가상 비서 등), 범주(의류, 신발, 뷰티 및 화장품, 액세서리, 시계, 보석 등), 최종 사용자(패션 매장 및 패션 디자이너) - 2033년까지의 산업 동향 및 예측

패션 시장의 AI

패션 시장 규모에서의 AI

  • 글로벌 패션 AI 시장 규모는 2025년에 11억 7천만 달러 로 평가되었으며, 예측 기간 동안 38.85%의 CAGR2033년까지 161억 6천만 달러 에 도달할 것으로 예상됩니다 .
  • 시장 성장은 패션 소매 및 디자인 프로세스 전반에 걸쳐 인공지능(AI)이 통합되면서 제품 개발, 트렌드 예측, 개인화된 쇼핑 경험의 자동화가 가능해진 데 크게 기인합니다. 고객 참여도와 재고 효율성을 개선하기 위한 데이터 기반 인사이트에 대한 수요 증가로 패션 브랜드들은 AI 기반 도구와 분석 플랫폼을 도입하고 있습니다.
  • 더욱이, 개인 맞춤형 패션 추천과 가상 시착 경험에 대한 소비자 선호도가 높아짐에 따라 온라인 리테일러와 디자이너들의 AI 도입이 가속화되고 있습니다. 이러한 융합 요인들은 향상된 운영 효율성, 예측 분석, 그리고 고객 중심 혁신을 통해 글로벌 패션 생태계를 재편하고 있으며, 이를 통해 시장 확장을 촉진하고 있습니다.

패션 시장 분석의 AI

  • 패션 분야의 AI는 머신러닝, 컴퓨터 비전, 예측 분석을 활용하여 제품 디자인, 제조, 마케팅, 소매 등 핵심 운영 방식을 혁신합니다. 방대한 양의 소비자 및 트렌드 데이터를 분석하여 브랜드는 AI를 통해 수요를 정확하게 예측하고, 공급망을 최적화하며, 맞춤형 패션 경험을 제공할 수 있습니다.
  • 디지털 채널 의존도 증가, 빠른 이커머스 성장, 그리고 개인화에 대한 경쟁 심화는 패션 업계에서 AI 도입을 확대하는 주요 요인입니다. 브랜드가 혁신과 지속가능성을 우선시함에 따라, AI 기술은 업계 내 지능형 자동화, 창의적 효율성, 그리고 전략적 의사 결정을 촉진하는 데 중요한 역할을 지속적으로 수행하고 있습니다.
  • 북미는 2025년 패션 시장에서 AI를 40% 이상의 점유율로 지배할 것으로 예상 되며, 이는 주요 패션 브랜드의 강력한 입지와 AI 통합을 지원하는 첨단 기술 인프라 덕분입니다.
  • 아시아 태평양 지역은 인터넷 보급률 증가, 전자 상거래 플랫폼 확장, 중국, 일본, 인도 등 신흥 경제권의 디지털화로 인해 예측 기간 동안 패션 AI 시장에서 가장 빠르게 성장하는 지역이 될 것으로 예상됩니다.
  • 솔루션 부문은 제품 설계, 재고 관리, 트렌드 예측 등 다양한 분야에서 AI 기반 도구 도입이 증가함에 따라 2025년 시장 점유율 61.9%를 기록하며 시장을 장악했습니다. 패션 리테일러와 브랜드는 고객 참여를 강화하고 운영 비효율성을 줄이기 위해 개인 맞춤형 추천, 시각적 검색, 예측 분석을 위해 AI 솔루션에 점점 더 의존하고 있습니다. 방대한 데이터 세트를 처리하여 소비자 선호도와 시장 트렌드에 대한 실시간 인사이트를 제공하는 AI 솔루션의 역량은 업계의 지배력을 더욱 강화할 것입니다.

패션 시장 세분화의 보고서 범위 및 AI

속성

패션 분야의 AI 핵심 시장 통찰력

다루는 세그먼트

  • 구성 요소별: 솔루션 및 서비스
  • 배포 모드별: 클라우드 및 온프레미스
  • 응용 분야별: 제품 추천, 제품 검색 및 발견, 창의적 디자인 및 트렌드 예측, 공급망 관리 및 수요 계획, 고객 관계 관리, 가상 비서 등
  • 카테고리별: 의류, 신발, 뷰티 및 화장품, 액세서리, 시계, 보석 및 기타
  • 최종 사용자: 패션 매장 및 패션 디자이너

포함 국가

북아메리카

  • 우리를
  • 캐나다
  • 멕시코

유럽

  • 독일
  • 프랑스
  • 영국
  • 네덜란드
  • 스위스
  • 벨기에
  • 러시아 제국
  • 이탈리아
  • 스페인
  • 칠면조
  • 유럽의 나머지 지역

아시아 태평양

  • 중국
  • 일본
  • 인도
  • 대한민국
  • 싱가포르
  • 말레이시아
  • 호주
  • 태국
  • 인도네시아 공화국
  • 필리핀 제도
  • 아시아 태평양의 나머지 지역

중동 및 아프리카

  • 사우디 아라비아
  • 아랍에미리트
  • 남아프리카 공화국
  • 이집트
  • 이스라엘
  • 중동 및 아프리카의 나머지 지역

남아메리카

  • 브라질
  • 아르헨티나
  • 남미의 나머지 지역

주요 시장 참여자

시장 기회

  • 가상 체험 및 스타일링 플랫폼 확장
  • 지속 가능하고 순환적인 패션 관행에 AI 통합

부가가치 데이터 정보 세트

Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 부문, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 유봉 분석이 포함되어 있습니다.

패션 시장 트렌드 의 AI

패션 디자인을 위한 생성 AI 도입 증가

  • 패션 시장에서 AI는 창작 및 디자인 프로세스를 지원하는 생성형 AI 기술의 사용 증가로 인해 빠르게 성장하고 있습니다. 이러한 AI 모델을 통해 디자이너는 혁신적인 패턴, 스타일, 가상 샘플을 더욱 효율적으로 제작하여 출시 기간을 단축하고 창의적인 가능성을 확장할 수 있습니다.
    • 예를 들어, The Fabricant와 Adidas 같은 브랜드는 독창적인 디지털 의류를 제작하고 의류 컬렉션을 맞춤 제작하기 위해 생성형 AI 도구를 디자인 워크플로에 통합했습니다. 이러한 이니셔티브는 AI가 물리적 프로토타입 제작의 필요성을 최소화함으로써 창의적인 실험과 지속 가능한 디자인을 어떻게 지원하는지 보여줍니다.
  • 생성적 AI는 소셜 미디어, 런웨이 쇼, 소비자 행동 등 방대한 데이터 세트를 분석하여 트렌드 예측을 용이하게 하며, 디자이너에게 새로운 소비자 선호도에 맞춰 컬렉션을 맞춤 제작할 수 있는 통찰력을 제공합니다. 이러한 예측 기능은 패션 기업의 민첩성과 시장 대응력을 향상시킵니다.
  • 또한, AI 기반 3D 모델링 및 가상 시착 플랫폼은 몰입적이고 인터랙티브한 쇼핑 경험을 제공하여 고객 참여를 향상시킵니다. 이 기술을 통해 고객은 옷의 핏과 스타일을 디지털로 시각화하여 구매 신뢰도를 높이고 반품률을 줄일 수 있습니다.
  • AI 스타트업, 패션 브랜드, 그리고 기술 제공업체 간의 협력이 증가함에 따라 패션 업계의 고유한 니즈에 맞춘 특화된 AI 애플리케이션 개발이 가속화되고 있습니다. 이러한 파트너십은 AI를 디자인, 제조, 그리고 리테일 운영에 완벽하게 통합하는 혁신을 주도하고 있습니다.
  • 전반적으로 패션 분야에서 생성적 AI 도입이 확대되는 것은 패션 업계의 창의성, 지속가능성, 그리고 고객 경험을 혁신하는 광범위한 디지털 변혁을 시사합니다. 이러한 추세는 혁신과 경쟁 우위 확보를 위한 촉매제로서 AI의 전략적 역할을 강조합니다.

패션 시장 역학에서의 AI

운전사

개인화된 쇼핑 경험에 대한 수요 증가

  • 맞춤형 패션 제품에 대한 소비자의 수요는 업계에서 AI 기술 도입이 증가하는 주요 원동력입니다. AI를 통해 브랜드는 개인의 선호도와 구매 이력을 분석하여 다양한 고객층에 맞는 맞춤형 추천과 독점 디자인을 제공할 수 있습니다.
    • 예를 들어, Stitch Fix는 고급 AI 알고리즘과 인간 스타일리스트를 결합하여 고객에게 고도로 개인화된 의류 상품을 제공하여 참여도와 만족도를 향상시킵니다. 이러한 AI 기반 개인화 모델은 기술과 전문가의 통찰력을 결합하여 패션 소매업의 새로운 기준을 제시하고 있습니다.
  • 이커머스와 모바일 쇼핑 플랫폼의 확장으로 원활하고 직관적인 개인 맞춤 경험에 대한 기대가 높아졌습니다. AI는 브랜드가 실시간 소비자 데이터를 기반으로 재고 관리, 가격 책정 및 프로모션을 최적화하여 전환율과 충성도를 높이는 데 도움을 줍니다.
  • 또한, 개인화는 고객이 자신의 스타일과 사이즈에 맞는 현명한 선택을 할 수 있도록 하여 지속 가능한 소비 패턴에 점점 더 큰 영향을 미치고 있으며, 과잉 생산과 낭비를 줄이고 있습니다. AI가 정확한 핏과 스타일을 추천하는 능력은 이러한 마인드풀 패션으로의 전환을 뒷받침합니다.
  • 제품 개발 및 마케팅 전략 수립에 있어 데이터 분석과 AI 기반 인사이트의 중요성이 커짐에 따라 업계 전반에서 개인화 역량에 대한 투자가 더욱 강화되고 있습니다. 이러한 변화하는 환경은 더욱 소비자 중심적인 비즈니스 모델과 경쟁 우위를 강화하고 있습니다.

제지/도전

높은 구현 비용 및 데이터 개인 정보 보호 문제

  • 고급 AI 시스템을 개발하고 통합하는 데 드는 비용 집약적인 특성은 패션 기업, 특히 중소기업에게 상당한 어려움을 안겨줍니다. 소프트웨어 개발, 인프라, 전문 인력 확보와 관련된 높은 비용은 광범위한 도입을 제한할 수 있습니다.
    • 예를 들어, 부티크 브랜드와 신진 디자이너들은 대형 글로벌 패션 브랜드와 마찬가지로 AI 이니셔티브에 대한 자금 조달에 어려움을 겪을 수 있으며, 이는 기술 도입 및 시장 포지셔닝의 불균형을 초래할 수 있습니다. 이러한 재정적 장벽을 극복하는 것은 산업 전반에 걸쳐 AI의 이점을 대중화하는 데 매우 중요합니다.
  • AI 시스템이 효과적으로 작동하려면 방대한 양의 소비자 데이터가 필요하므로 데이터 프라이버시 및 보안 문제는 추가적인 과제를 야기합니다. GDPR 및 CCPA와 같은 규정을 준수하려면 사용자 정보를 보호하고 고객 신뢰를 유지하기 위한 엄격한 데이터 처리 관행이 필요합니다.
  • 또한, 윤리적인 AI 사용을 보장하면서 이기종 데이터 소스를 관리하고 통합하는 복잡성은 구현을 더욱 복잡하게 만듭니다. AI 의사결정 프로세스의 투명성과 알고리즘 편향 완화는 지속적인 관심이 필요한 지속적인 과제입니다.
  • 확장 가능한 AI 솔루션, 전략적 파트너십, 그리고 견고한 데이터 거버넌스 프레임워크를 통해 이러한 재정적 및 규제적 과제를 해결하는 것은 패션 분야에서 AI의 잠재력을 최대한 발휘하는 데 필수적입니다. 지속적인 투자와 협력은 혁신과 개인정보 보호 및 포용성 간의 균형을 맞추는 데 핵심적입니다.

패션 시장 범위의 AI

시장은 구성 요소, 배포 모드, 애플리케이션, 범주 및 최종 사용자를 기준으로 세분화됩니다.

  • 구성 요소별

패션 AI 시장은 구성 요소를 기준으로 솔루션과 서비스로 구분됩니다. 솔루션 부문은 2025년 61.9%의 시장 점유율로 시장을 장악했으며, 이는 제품 디자인, 재고 관리, 트렌드 예측 등 다양한 분야에서 AI 기반 도구 도입이 증가함에 따라 더욱 두드러졌습니다. 패션 리테일러와 브랜드는 고객 참여를 강화하고 운영 비효율성을 줄이기 위해 개인 맞춤형 추천, 시각적 검색, 예측 분석을 위해 AI 솔루션에 점점 더 의존하고 있습니다. 방대한 데이터 세트를 처리하여 소비자 선호도와 시장 트렌드에 대한 실시간 인사이트를 제공하는 AI 솔루션의 역량은 업계의 지배력을 더욱 강화합니다.

서비스 부문은 AI 시스템에 대한 컨설팅, 통합 및 유지보수 지원 수요 증가에 힘입어 2026년부터 2033년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 패션 브랜드는 자사의 고유한 디자인 워크플로우와 리테일 목표에 맞춰 AI 도구를 구축하고 맞춤화할 수 있는 전문 서비스를 점점 더 많이 찾고 있습니다. 또한, AI 구현의 복잡성과 머신러닝 알고리즘의 지속적인 발전으로 인해 최적화 및 확장성을 위한 장기적인 서비스 파트너십의 필요성이 커지고 있습니다.

  • 배포 모드별

패션 AI 시장은 구축 방식에 따라 클라우드와 온프레미스로 구분됩니다. 클라우드 부문은 확장성, 낮은 인프라 비용, 그리고 전자상거래 및 리테일 플랫폼과의 손쉬운 통합으로 2025년 시장을 장악했습니다. 클라우드 기반 AI 솔루션을 통해 패션 기업은 실시간 데이터 분석을 활용하고 디자인부터 배송까지 프로세스를 효율적으로 자동화할 수 있습니다. 온라인 리테일 및 옴니채널 모델의 광범위한 도입은 AI 기반 애플리케이션의 선호 방식으로 클라우드 구축을 더욱 강화했습니다.

온프레미스 부문은 프리미엄 패션 브랜드의 향상된 데이터 보안 및 제어에 대한 수요 증가로 인해 2026년부터 2033년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 자체 디자인과 기밀 소비자 데이터를 처리하는 기업은 더욱 강화된 맞춤화 및 개인정보 보호 보장을 위해 온프레미스 솔루션을 선호합니다. 규제 및 데이터 보호 기준을 준수하면서 AI 모델을 내부적으로 관리할 수 있는 능력은 고급 패션 기업에 온프레미스 구축의 매력을 더욱 강화합니다.

  • 응용 프로그램별

패션 AI 시장은 적용 분야별로 제품 추천, 제품 검색 및 발견, 창의적 디자인 및 트렌드 예측, 공급망 관리 및 수요 계획, 고객 관계 관리, 가상 비서 등으로 세분화됩니다. 제품 추천 분야는 온라인 패션 리테일 플랫폼에 AI 알고리즘이 광범위하게 통합됨에 따라 2025년 시장을 장악했습니다. 이러한 시스템은 소비자 행동, 구매 내역, 검색 패턴을 분석하여 판매 전환율을 높이는 개인 맞춤형 추천을 제공합니다. 전자상거래 대기업들은 사용자 참여도와 고객 유지율을 높이기 위해 추천 엔진에 점점 더 의존하고 있습니다.

AI를 통해 디자이너들이 미래 스타일과 색상 트렌드를 정밀하게 예측할 수 있게 되면서, 크리에이티브 디자인 및 트렌드 예측 분야는 2026년부터 2033년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. AI 기반 디자인 도구는 소셜 미디어 인사이트, 과거 데이터, 패션 아카이브를 분석하여 혁신적인 컬렉션을 구상하고 디자인 주기를 단축합니다. 이러한 기능은 창의성을 향상하는 동시에 시장 수요에 발맞춰 브랜드가 빠르게 변화하는 패션 환경에서 민첩하고 경쟁력을 유지할 수 있도록 지원합니다.

  • 카테고리별

패션 AI 시장은 카테고리별로 의류, 신발, 뷰티 및 화장품, 액세서리, 시계, 주얼리 등으로 세분화됩니다. 2025년에는 의류 부문이 시장을 장악했는데, 이는 온라인 의류 판매에서 생성되는 방대한 데이터와 AI 기반 가상 피팅 및 사이즈 추천 시스템에 대한 관심이 높아졌기 때문입니다. 패션 리테일러들은 AI를 활용하여 의류 컬렉션을 개인화하고 여러 판매 채널에서 재고를 효율적으로 관리합니다. 의류 부문은 다양한 제품과 소비자층을 보유하고 있어 AI 투자의 주요 분야입니다.

뷰티 및 화장품 부문은 2026년부터 2033년까지 가장 빠른 속도로 성장할 것으로 예상되며, 이는 개인 맞춤형 스킨케어 분석, 가상 체험 도구, 제품 구성에 AI를 활용함에 따라 더욱 가속화될 것입니다. 뷰티 브랜드들은 AI를 활용하여 소비자 선호도를 파악하고 증강 현실 애플리케이션을 통해 맞춤형 제품 추천을 제공하고 있습니다. 가상 쇼핑 경험에 AI를 접목하면 사용자 만족도가 향상되고 뷰티 기술 생태계의 혁신이 촉진됩니다.

  • 최종 사용자별

패션 AI 시장은 최종 사용자 기준으로 패션 매장과 패션 디자이너로 구분됩니다. 패션 매장 부문은 매출 예측, 고객 참여, 재고 최적화를 위한 AI 기반 분석의 빠른 도입으로 2025년 시장 매출 점유율이 가장 높았습니다. 소매 체인점과 온라인 매장은 비주얼 머천다이징 및 예측 수요 분석에 AI를 활용하여 변화하는 소비자 취향에 맞는 제품을 제공합니다. 옴니채널 소매 전략에 AI를 통합하면 패션 매장의 효율성이 더욱 향상됩니다.

패션 디자이너 분야는 2026년부터 2033년까지 가장 빠른 성장을 보일 것으로 예상되는데, 이는 창의적인 디자인, 패턴 생성, 트렌드 예측을 지원하는 AI 도구 도입에 힘입은 것입니다. 디자이너들은 AI 기반 플랫폼을 활용하여 콘셉트 개발을 간소화하고 글로벌 패션 데이터에서 인사이트를 얻고 있습니다. 이 기술은 더욱 빠른 프로토타입 제작과 혁신적인 디자인 실험을 가능하게 하여 패션 업계에서 데이터 기반 창의성의 새로운 시대를 열어갈 것입니다.

패션 시장 지역 분석의 AI

  • 북미는 2025년 40%가 넘는 가장 큰 수익 점유율로 패션 AI 시장을 장악했으며, 이는 주요 패션 브랜드의 강력한 입지와 AI 통합을 지원하는 첨단 기술 인프라 덕분입니다.
  • 디지털 전환에 대한 이 지역의 높은 투자와 개인화된 패션 경험에 대한 수요로 인해 전자 상거래 및 소매 플랫폼 전반에 걸쳐 AI 솔루션의 빠른 도입이 촉진되었습니다.
  • 또한, 강력한 소비자 지출과 예측 분석 및 스마트 재고 관리를 통한 지속 가능성에 대한 집중은 해당 지역의 시장 성장을 강화합니다.

미국 AI 패션 시장 통찰력

미국 패션 AI 시장은 2025년 북미에서 가장 큰 매출 점유율을 기록했으며, 이는 AI 기반 디자인 도구, 가상 스타일리스트, 추천 시스템의 광범위한 도입에 힘입은 것입니다. 패션 리테일러들은 소비자 참여를 높이고 공급망 운영을 최적화하기 위해 AI를 점점 더 많이 활용하고 있습니다. 선도적인 AI 솔루션 제공업체와 패션 기술 스타트업의 등장과 개인 맞춤형 온라인 쇼핑에 대한 소비자들의 관심 증가는 미국 패션 시장 전반의 성장을 가속화하고 있습니다.

유럽 ​​패션 시장 AI 통찰력

유럽 ​​패션 AI 시장은 예측 기간 동안 상당한 연평균 성장률(CAGR)을 기록할 것으로 예상되며, 이는 소매 산업의 급속한 디지털화와 윤리적이고 지속 가능한 패션에 대한 관심 증가에 힘입은 것입니다. 유럽 브랜드들은 트렌드 예측, 가상 피팅룸, 생산 최적화를 위해 AI를 도입하여 낭비를 줄이고 맞춤 제작을 개선하고 있습니다. 디지털 혁신에 대한 유럽의 강력한 규제 지원과 옴니채널 소매 전략에 AI를 접목함으로써 유럽의 글로벌 시장 입지를 더욱 강화하고 있습니다.

영국 패션 시장 AI 통찰력

영국 패션 AI 시장은 예측 기간 동안 주목할 만한 성장을 기록할 것으로 예상되는데, 이는 영국의 활발한 전자상거래 부문과 패션 기술 혁신의 조기 도입에 힘입은 것입니다. 영국의 소매업체와 디자이너들은 AI를 활용하여 가상 시착 솔루션과 패션 트렌드 예측 분석을 통해 고객 경험을 향상시키고 있습니다. 지속가능성에 대한 중요성이 커지고 과잉 생산을 줄이는 AI의 역할이 더해지면서 ​​시장 확장이 더욱 촉진되고 있습니다.

독일 패션 시장 AI 통찰력

독일 패션 AI 시장은 스마트 제조, 공급망 투명성, 그리고 제품 개인화를 위한 AI 기술 도입에 힘입어 상당한 성장세를 보일 것으로 예상됩니다. 독일 패션 브랜드들은 AI를 활용하여 디자인 효율성을 높이고 지속 가능한 생산 방식을 구현하고 있습니다. 독일은 탄탄한 기술 인프라와 데이터 기반 혁신에 대한 집중적인 투자를 통해 유럽 패션 산업 전반의 AI 도입에 크게 기여하고 있습니다.

아시아 태평양 패션 시장 AI 통찰력

아시아 태평양 지역의 패션 AI 시장은 2026년부터 2033년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 이는 인터넷 보급률 증가, 전자상거래 플랫폼 확장, 그리고 중국, 일본, 인도 등 신흥 경제권의 디지털화에 힘입은 것입니다. 이 지역의 젊은 인구가 많고, 가처분소득이 증가하며 온라인 패션 쇼핑에 대한 관심이 높아지면서 제품 추천 및 가상 시착 도구에 AI 도입이 가속화되고 있습니다. 또한, 이 지역의 탄탄한 제조업 기반과 빠른 기술 발전은 AI 기반 패션 혁신을 위한 활발한 생태계를 조성하고 있습니다.

일본 패션 시장 AI 통찰력

일본 패션 AI 시장은 첨단 기술 생태계와 스마트 패션 경험에 대한 높은 소비자 수요 덕분에 강력한 성장세를 보이고 있습니다. 일본 리테일러와 디자이너들은 AI를 창의적인 디자인, 트렌드 분석, 고객 서비스 애플리케이션에 접목하고 있습니다. 패션 제조 분야의 혁신과 자동화에 대한 일본의 강조 또한 디자인 정확도와 운영 효율성 향상을 위한 AI 활용을 촉진하고 있습니다.

중국 패션 시장 AI 통찰력

중국 패션 AI 시장은 2025년 아시아 태평양 지역에서 가장 큰 시장 점유율을 차지할 것으로 예상되며, 이는 급속한 도시화, 급성장하는 전자상거래 부문, 그리고 AI 인프라에 대한 적극적인 투자 덕분입니다. 중국 패션 브랜드들은 예측 분석, 가상 패션쇼, 그리고 소비자 행동 분석에 AI를 적극적으로 도입하고 있습니다. 디지털 리테일 생태계에서 중국의 선도적인 역할과 AI 기반 패션 스타트업의 존재는 아시아 태평양 지역 시장 확장에 크게 기여하고 있습니다.

패션 시장 점유율에서의 AI

패션 산업의 AI는 주로 다음을 포함한 잘 알려진 회사들이 주도하고 있습니다.

  • 마이크로소프트 코퍼레이션(미국)
  • IBM Corporation(미국)
  • Google LLC(미국)
  • Amazon.com, Inc.(미국)
  • SAP SE(독일)
  • Adobe Inc.(미국)
  • 오라클 코퍼레이션(미국)
  • Catchoom Technologies, SL(스페인)
  • Huawei Technologies Co., Ltd. (중국)
  • Heuritech(프랑스)
  • WIDE EYES TECHNOLOGIES(스페인)
  • FindMine, Inc. (미국)
  • 인텔리스타일 유한회사(영국)
  • 릴리 AI(미국)
  • 사이트(이스라엘)

글로벌 패션 시장의 AI 최신 동향

  • 2025년 9월, 비브렐은 리볼브(Revolve) 및 FWRD와 파트너십을 맺고 단일 플랫폼에서 대여, 재판매, 소매 경험을 통합하도록 설계된 AI 기반 개인 스타일링 도구인 엘라(Ella)를 출시했습니다. 이 협업은 AI 기반 패션 개인화의 중요한 진전을 의미하며, 소비자는 데이터 기반 인사이트를 기반으로 엄선된 의상을 추천받을 수 있습니다. 이러한 움직임은 럭셔리 패션 부문에서 옴니채널 소매 전략을 강화하고 고객 참여를 확대하는 데 있어 AI의 역할을 강화합니다.
  • 2025년 1월, 라즈베리 AI는 앤드리슨 호로비츠가 주도한 시리즈 A 투자에서 2,400만 달러의 투자를 유치하여 패션 디자인용 텍스트-이미지 생성 AI 플랫폼 개발을 가속화했습니다. 라즈베리 AI의 기술은 언더아머와 MCM 월드와이드와 같은 브랜드가 디자인 프로토타입을 신속하게 제작하여 제작 기간을 단축하고 비용 효율성을 향상시킬 수 있도록 지원합니다. 이번 투자는 패션 업계의 제품 개발 프로세스 혁신에 있어 생성 AI의 중요성이 점차 커지고 있음을 보여줍니다.
  • 2024년 12월, 브라우즈웨어(Browzwear)는 초현실적인 AI 기반 패션 모델 제작을 전문으로 하는 암스테르담 소재 스타트업 Lalaland.ai를 인수했다고 발표했습니다. 이번 인수를 통해 모델 다양성과 시각적 정확도를 향상시켜 디지털 패션 디자인 및 가상 샘플링 분야에서 브라우즈웨어의 역량을 확장할 수 있게 되었습니다. Lalaland.ai 기술을 통합함으로써 더욱 포용적이고 효율적인 패션 시각화를 지원하여 디지털 패션 표현 및 전자상거래 프레젠테이션을 혁신하는 AI의 역할을 강화할 것입니다.
  • 2024년 10월, 스탠퍼드 대학교의 지원을 받는 스타트업 Kridha Inc.는 브랜드를 직접 통합하지 않고도 수백만 개의 패션 웹사이트에서 운영할 수 있는 세계 최초의 범용 패션 AI 에이전트를 출시했습니다. 미국 패션 전자상거래 시장의 약 90%를 포괄하는 이 혁신은 소비자에게 원활한 제품 검색과 개인 맞춤 추천을 제공합니다. 이번 출시는 AI 도입의 중요한 전환점을 의미하며, 데이터 사일로를 해소하고 고급 크로스 플랫폼 인텔리전스를 통해 사용자 쇼핑 경험을 혁신합니다.
  • 2024년 8월, 인도 패션 기술 스타트업 Shoppin은 InfoEdge Ventures로부터 100만 달러를 투자받아 사용자가 프롬프트, 이미지, 스타일 큐를 사용하여 의류를 검색할 수 있도록 하는 AI 기반 검색 엔진을 개발했습니다. 이번 투자는 신흥 시장에서 제품 검색 정확도와 사용자 개인화를 개선하기 위해 AI 도입이 증가하고 있음을 보여줍니다. 이러한 발전은 글로벌 패션 리테일 생태계에서 AI 혁신의 핵심 기여자로서 인도의 입지를 더욱 강화할 것입니다.


SKU-

세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요

  • 대화형 데이터 분석 대시보드
  • 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
  • 사용자 정의 및 질의를 위한 리서치 분석가 액세스
  • 대화형 대시보드를 통한 경쟁자 분석
  • 최신 뉴스, 업데이트 및 추세 분석
  • 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
데모 요청

연구 방법론

데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.

DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.

사용자 정의 가능

Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

자주 묻는 질문

시장은 글로벌 패션 AI 시장 세분화, 구성 요소(솔루션 및 서비스), 배포 모드(클라우드 및 온프레미스), 애플리케이션(제품 추천, 제품 검색 및 발견, 창의적 디자인 및 트렌드 예측, 공급망 관리 및 수요 계획, 고객 관계 관리, 가상 비서 등), 범주(의류, 신발, 뷰티 및 화장품, 액세서리, 시계, 보석 등), 최종 사용자(패션 매장 및 패션 디자이너) - 2033년까지의 산업 동향 및 예측 기준으로 세분화됩니다.
글로벌 패션 AI 시장의 시장 규모는 2025년에 1.17 USD Billion USD로 평가되었습니다.
글로벌 패션 AI 시장는 2026년부터 2033년까지 연평균 성장률(CAGR) 38.85%로 성장할 것으로 예상됩니다.
시장 내 주요 기업으로는 Microsoft, IBM Corporation, Google, Amazon.comInc., SAP SE, Adobe, Oracle, Catchoom Technologies, S.L, Huawei Technologies Co.Ltd., Heuritech, WIDE EYES TECHNOLOGIES, FindMineInc., Intelistyle Ltd, Lily AI, Syte가 포함됩니다.
Testimonial