Global Ai Powered Diagnostic Imaging Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
3.46 Billion
USD
22.58 Billion
2024
2032
| 2025 –2032 | |
| USD 3.46 Billion | |
| USD 22.58 Billion | |
|
|
|
|
글로벌 AI 기반 진단 영상 시장 세분화, 솔루션(소프트웨어 도구/플랫폼 및 서비스), 영상 획득 기술(X선, 컴퓨터 단층촬영, 자기공명영상, 초음파 영상, 분자 영상), 애플리케이션(디지털 병리학, 종양학, 심혈관, 신경학, 폐(호흡기계), 유방(유방촬영), 간(위장), 구강 진단 및 기타), 최종 사용자(병원 및 진료소, 연구소 및 진단 센터 및 기타) - 산업 동향 및 2032년까지의 예측
AI 기반 진단 영상 시장 규모
- 글로벌 AI 기반 진단 영상 시장 규모는 2024년에 34억 6천만 달러 로 평가되었으며 예측 기간 동안 26.40%의 CAGR 로 2032년까지 225억 8천만 달러 에 도달할 것으로 예상됩니다 .
- 이러한 성장은 조기 및 정확한 질병 탐지에 대한 수요 증가, 이미지 분석 효율성과 진단 정확도를 향상시키는 AI 알고리즘의 발전과 같은 요인에 의해 촉진됩니다.
AI 기반 진단 영상 시장 분석
- AI 기반 진단 영상 시스템은 고급 머신 러닝 알고리즘을 활용하여 영상 해석을 강화하고 진단 정확도를 높이며 방사선과 및 관련 의료 분야의 워크플로를 간소화합니다.
- 이러한 시스템에 대한 수요는 만성 질환의 유병률 증가, 인구 고령화 증가, 조기 및 정확한 진단에 대한 필요성 증가로 인해 크게 증가하고 있습니다.
- 북미는 견고한 의료 인프라, 첨단 영상 기술의 조기 도입, 핵심 AI 솔루션 공급업체의 강력한 입지로 인해 38.79%의 시장 점유율로 AI 기반 진단 영상 시장을 주도할 것으로 예상됩니다.
- 아시아 태평양 지역은 의료 디지털화의 확대, 질병 부담 증가, 의료 분야에서 AI에 대한 정부 지원 증가로 인해 예측 기간 동안 AI 기반 진단 영상 시장에서 23.3%의 시장 점유율을 기록하며 가장 빠르게 성장하는 지역이 될 것으로 예상됩니다.
- 소프트웨어 도구/플랫폼 부문은 기존 이미징 시스템과 원활하게 통합되어 고급 분석, 자동 이미지 해석 및 워크플로 최적화를 제공하는 능력으로 인해 58.70%의 시장 점유율로 시장을 지배할 것으로 예상됩니다.
보고서 범위 및 AI 기반 진단 영상 시장 세분화
|
속성 |
AI 기반 진단 영상 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 적용 범위, 주요 업체 등 시장 시나리오에 대한 통찰력 외에도 수입 수출 분석, 생산 능력 개요, 생산 소비 분석, 가격 추세 분석, 기후 변화 시나리오, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선택 기준, PESTLE 분석, Porter 분석 및 규제 프레임워크가 포함됩니다. |
AI 기반 진단 영상 시장 동향
“딥러닝과 클라우드 기반 이미징 솔루션의 통합”
- AI 기반 진단 영상 시장의 두드러진 추세 중 하나는 영상 처리 및 진단을 향상시키기 위해 딥 러닝 알고리즘과 클라우드 기반 플랫폼의 채택이 증가하고 있다는 것입니다.
- 이러한 기술은 비정상의 자동 감지, 실시간 분석 및 영상 데이터에 대한 원격 액세스를 가능하게 하여 진단 속도와 정확도를 크게 향상시킵니다.
- 예를 들어, 클라우드 통합 AI 솔루션을 사용하면 방사선과 의사가 여러 위치에서 협업하고, 훈련 모델을 위한 대규모 데이터 세트에 액세스하고, 무거운 온프레미스 인프라 없이 진단을 수행할 수 있으므로 임상 환경에서 확장성과 효율성이 향상됩니다.
- 이러한 혁신은 진단 워크플로우를 혁신하고, 질병의 조기 감지를 가능하게 하며, 해석 오류를 줄이고, 전 세계적으로 지능형 영상 플랫폼 도입을 촉진하고 있습니다.
AI 기반 진단 영상 시장 동향
운전사
“만성질환 조기·정확 진단 수요 증가”
- The growing global burden of chronic diseases such as cancer, cardiovascular disorders, and neurological conditions is significantly driving the demand for AI-powered diagnostic imaging solutions
- As early and accurate diagnosis becomes essential for effective treatment and improved patient outcomes, healthcare providers are increasingly adopting AI-driven tools to enhance image analysis and interpretation
- AI algorithms enable the detection of subtle patterns and abnormalities in imaging data, reducing diagnostic errors and accelerating clinical decision-making
For instance,
- According to the World Health Organization, non-communicable diseases account for approximately 74% of all global deaths as of 2022, underscoring the urgent need for advanced diagnostic technologies to detect these conditions early
- As the incidence of chronic diseases continues to rise, AI-powered imaging solutions play a vital role in improving diagnostic efficiency and supporting personalized treatment strategies
Opportunity
“Revolutionizing Diagnostics Through AI Integration and Workflow Automation”
- The integration of artificial intelligence in diagnostic imaging presents a major opportunity to enhance workflow efficiency, reduce diagnostic errors, and enable personalized care by automating image interpretation and clinical decision support
- AI can assist radiologists by rapidly analyzing vast amounts of imaging data, identifying anomalies, and prioritizing critical cases, leading to faster and more accurate diagnoses
- Advanced AI tools also offer predictive analytics capabilities, helping clinicians monitor disease progression and tailor treatment plans based on individual patient profiles
For instance,
- In October 2024, according to a study published in The Lancet Digital Health, AI algorithms demonstrated comparable or superior diagnostic accuracy to radiologists in interpreting mammograms and CT scans, particularly for breast cancer and lung nodules, highlighting AI’s potential in augmenting diagnostic capabilities and addressing radiologist shortages
- As AI continues to evolve, its integration into diagnostic imaging systems is expected to revolutionize patient care, improve early detection rates, and streamline healthcare delivery across diverse medical settings
Restraint/Challenge
“High Implementation Costs and Infrastructure Barriers”
- The high cost associated with deploying AI-powered diagnostic imaging systems remains a major challenge, particularly for smaller healthcare facilities and institutions in low- and middle-income regions
- These systems often require significant investments in advanced imaging equipment, software licenses, IT infrastructure, and staff training, making adoption financially burdensome for resource-constrained facilities
- Moreover, integration with existing hospital information systems and ensuring compliance with data privacy regulations add further complexity and costs to implementation
For instance,
- 2024년 9월, 국립보건의료우수연구소(NICE) 보고서는 AI 도구가 진단 정확도와 효율성을 향상시키지만 사이버 보안 및 데이터 저장 요구 사항을 포함한 초기 설정 및 유지 관리 비용이 많은 의료 서비스 제공자에게 큰 우려 사항이라고 강조했습니다.
- 결과적으로 진단 분야에서 AI의 유망한 이점에도 불구하고 재정적, 인프라적 문제로 인해 시장 도입이 늦어질 수 있으며, 특히 서비스가 부족한 지역에서는 고급 진단 솔루션에 대한 접근성이 제한될 수 있습니다.
AI 기반 진단 영상 시장 범위
시장은 솔루션, 이미지 수집 기술, 응용 프로그램 및 최종 용도를 기준으로 세분화됩니다.
|
분할 |
하위 세분화 |
|
솔루션별 |
|
|
이미지 획득 기술을 통해 |
|
|
응용 프로그램별 |
|
|
최종 사용 기준 |
|
2025년에는 소프트웨어 도구/플랫폼이 애플리케이션 부문에서 가장 큰 점유율을 차지하며 시장을 지배할 것으로 예상됩니다.
소프트웨어 도구/플랫폼 부문은 기존 영상 시스템과 원활하게 통합되어 고급 분석, 자동 영상 해석 및 워크플로 최적화 기능을 제공하는 능력 덕분에 2025년 AI 기반 진단 영상 시장에서 58.70%의 최대 점유율을 기록하며 시장을 장악할 것으로 예상됩니다. 이러한 플랫폼은 진단 정확도와 속도를 향상시키고, 인적 오류를 줄이며, 임상 의사 결정을 지원하여 현대 영상의학 진료에 필수적인 요소입니다.
컴퓨터 단층촬영은 예측 기간 동안 영상 획득 기술 시장에서 가장 큰 점유율을 차지할 것으로 예상됩니다.
2025년에는 컴퓨터 단층촬영(CT) 분야가 암, 심혈관 질환, 신경 질환 등 광범위한 질환 진단에 널리 사용됨에 따라 30.14%의 시장 점유율로 시장을 장악할 것으로 예상됩니다. AI 통합은 영상 재구성을 향상시키고, 스캔 시간을 단축하며, 진단 정확도를 향상시킵니다. 상세한 단면 영상을 제공하는 능력은 응급 및 일반 진단 모두에서 중요한 도구로 자리매김합니다.
AI 기반 진단 영상 시장 지역 분석
“북미는 AI 기반 진단 영상 시장에서 가장 큰 점유율을 차지하고 있습니다.”
- 북미는 견고한 의료 인프라, 첨단 영상 기술의 조기 도입, 핵심 AI 솔루션 공급업체의 강력한 입지에 힘입어 약 38.79%의 시장 점유율로 AI 기반 진단 영상 시장을 장악하고 있습니다.
- 미국은 만성질환 부담이 높고, AI 헬스케어 스타트업에 대한 투자가 증가하고, 임상 현장에서 AI 통합에 대한 규제 지원이 유리해 시장점유율이 60.5%에 달합니다.
- 기술 회사와 의료 서비스 제공자 간의 확립된 환불 정책과 협력 이니셔티브는 병원과 영상 센터 전반에 걸쳐 AI 배포를 더욱 가속화합니다.
- 이 지역은 또한 높은 수준의 방사선과 의사 교육과 기계 학습 모델의 지속적인 혁신으로 인해 더 빠른 진단과 더 나은 환자 결과를 지원합니다.
“아시아 태평양 지역은 AI 기반 진단 영상 시장에서 가장 높은 CAGR을 기록할 것으로 예상됩니다.”
- 아시아 태평양 지역은 의료 디지털화 확대, 질병 부담 증가, 의료 분야에서 AI에 대한 정부 지원 증가에 힘입어 AI 기반 진단 영상 시장 에서 23.3%의 시장 점유율을 기록하며 가장 높은 성장률을 기록할 것으로 예상됩니다.
- 중국, 인도, 일본과 같은 국가들은 의료 접근성 확대, 의료 영상 볼륨 증가, 효율적인 진단 도구에 대한 필요성 증가로 인해 시장 성장에 핵심적으로 기여하고 있습니다.
- 인구 고령화와 의료 혁신에 중점을 둔 일본은 조기 발견 및 정밀 진단을 지원하기 위해 AI 기반 영상 시스템을 계속 도입하고 있습니다.
- 인도는 정부 주도의 디지털 건강 이니셔티브, AI 투자 증가, 대규모 인구를 위한 확장 가능한 진단 솔루션 수요에 힘입어 AI 기반 진단 영상 시장에서 가장 높은 CAGR을 기록할 것으로 예상됩니다.
AI 기반 진단 영상 시장 점유율
시장 경쟁 구도는 경쟁사별 세부 정보를 제공합니다. 여기에는 회사 개요, 회사 재무 상태, 매출 창출, 시장 잠재력, 연구 개발 투자, 신규 시장 진출, 글로벌 입지, 생산 시설 및 설비, 생산 능력, 회사의 강점과 약점, 제품 출시, 제품 종류 및 범위, 응용 분야별 우위 등이 포함됩니다. 위에 제공된 데이터는 해당 회사의 시장 집중도와 관련된 데이터입니다.
시장에서 활동하는 주요 시장 리더는 다음과 같습니다.
- Siemens Healthineers AG (독일)
- GE 헬스케어 (미국)
- Koninklijke Philips NV (네덜란드)
- 캐논 메디컬 시스템즈 주식회사 (일본)
- 메라티브 (미국)
- 아이독(이스라엘)
- Tempus AI, Inc. (미국)
- HeartFlow, Inc. (미국)
- 버터플라이 네트워크 주식회사(미국)
- 에코누스 주식회사(미국)
- 루닛 주식회사(한국)
- 인퍼비전(중국)
- 큐어메트릭스 주식회사(미국)
- Qure.ai(인도)
- RadNet, Inc. (미국)
- 딥헬스(미국)
- 리버레인 테크놀로지스(미국)
- Viz.ai, Inc. (미국)
- 임비오(미국)
글로벌 AI 기반 진단 영상 시장의 최신 동향
- 2025년 1월, GE 헬스케어는 딥러닝 알고리즘을 통합하여 CT, MRI, X-ray 스캔의 영상 정확도를 향상시키는 AI 기반 이미징 스위트(AI-Powered Imaging Suite)를 출시했습니다. 이 스위트는 진단 오류를 줄이고, 스캔 프로토콜을 최적화하며, 환자 대기 시간을 단축하도록 설계되었습니다.
- In February 2025, IBM Watson Health (now part of Merative) introduced a new AI-driven platform aimed at improving imaging diagnostics for oncology. This platform leverages deep learning to detect and classify various types of cancer in radiology images, offering a 20% improvement in accuracy compared to previous versions. This system is designed to help radiologists identify early-stage cancers that might otherwise be missed, thereby improving patient outcomes
- In December 2024, Philips Healthcare unveiled a new version of its AI-based Radiology Platform, featuring AI-driven tools that aid in early detection of conditions such as heart disease, stroke, and cancers. The platform is being integrated into hospital systems globally to improve diagnostic speed and accuracy
- In November 2024, Siemens Healthineers introduced an upgraded version of its AI-Rad Companion, which automatically analyzes CT scans, X-rays, and mammograms to detect abnormalities such as lung cancer and fractures. The platform significantly speeds up the workflow for radiologists and improves diagnostic accuracy
- In October 2024, Aidoc announced a partnership with Canon Medical Systems to integrate AI solutions into Canon’s imaging systems. This collaboration aims to enhance stroke and trauma diagnostics by using AI to identify critical conditions such as brain hemorrhages and aneurysms in real-time
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

