Global Ai Training Dataset Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
2.72 Billion
USD
16.00 Billion
2024
2032
| 2025 –2032 | |
| USD 2.72 Billion | |
| USD 16.00 Billion | |
|
|
|
|
소프트웨어(데이터 수집 도구, 데이터 주석 소프트웨어, 기성 데이터 세트) 유형(이미지/비디오, 오디오, 텍스트), 수직(IT, 자동차, 정부, 의료, BFSI, 소매 및 전자 상거래)별 글로벌 AI 교육 데이터 세트 시장 세분화 - 산업 동향 및 2032년까지의 예측
AI 교육 데이터 세트 시장 규모
- 글로벌 AI 교육 데이터 세트 시장 규모는 2024년에 27억 2천만 달러 로 평가되었으며 예측 기간 동안 24.80%의 CAGR 로 2032년까지 160억 달러 에 도달할 것으로 예상됩니다 .
- 시장 성장은 의료, 자동차, 소매, BFSI와 같은 분야에서 인공 지능 및 머신 러닝 기술의 채택이 증가함에 따라 크게 촉진되었으며, 이로 인해 모델 정확도와 성능을 개선하기 위한 고품질 주석이 달린 교육 데이터 세트에 대한 수요가 급격히 증가했습니다.
- 또한 컴퓨터 비전 및 음성 인식부터 NLP 및 예측 분석에 이르기까지 데이터 집약적 애플리케이션의 확산으로 인해 조직은 확장 가능한 도메인별 데이터 세트에 투자하게 되었으며 이로 인해 AI 교육 데이터 세트 산업의 확장이 크게 촉진되었습니다.
AI 교육 데이터 세트 시장 분석
- AI 학습 데이터 세트는 지도 학습 및 반지도 학습 환경에서 머신 러닝 모델을 학습하는 데 사용되는 구조화되거나 주석이 달린 데이터로 구성됩니다. 이러한 데이터 세트에는 이미지, 오디오, 비디오, 텍스트 또는 다중 모드 입력이 포함될 수 있으며, AI 시스템이 최소한의 인적 개입으로 패턴을 인식하고 예측하며 의사 결정을 자동화하도록 학습하는 데 필수적입니다.
- AI 개발의 급속한 성장은 특히 진단, 사기 탐지, 자율 주행, 추천 엔진을 위한 지능형 시스템을 개발하는 분야에서 학습 데이터에 대한 엄청난 수요를 창출하고 있습니다. 결과적으로, 데이터 주석 서비스, 합성 데이터 플랫폼, 그리고 AI 마켓플레이스 생태계에 대한 투자 증가에 힘입어 시장은 견실한 성장을 경험하고 있습니다.
- 북미는 2024년 AI 교육 데이터 세트 시장에서 36.3%의 점유율을 차지하며 시장을 장악했습니다 . 이는 이 지역의 강력한 AI 생태계, 광범위한 R&D 투자, 주요 기술 기업 및 AI 스타트업의 존재 덕분입니다.
- 아시아 태평양 지역은 중국, 일본, 인도, 한국 등 경제권에서 급속한 디지털 전환, AI 사용 사례 확대, AI 개발에 대한 정부 지원 증가로 인해 예측 기간 동안 AI 교육 데이터 세트 시장에서 가장 빠르게 성장하는 지역이 될 것으로 예상됩니다.
- 이미지/비디오 부문은 안면 인식, 자율주행, 의료 진단, 소매점 감시 등 컴퓨터 비전 애플리케이션의 폭발적인 성장으로 2024년 시장 점유율 41.5%를 기록하며 시장을 장악했습니다. 이러한 모델은 객체를 고정밀로 식별, 분류 및 추적하기 위해 방대한 양의 주석이 포함된 이미지와 비디오 프레임을 필요로 합니다. 드론, 로봇, 스마트 인프라에 엣지 디바이스와 임베디드 비전 기술이 빠르게 성장함에 따라 시각적 데이터 세트에 대한 수요도 더욱 증가하고 있습니다. 또한 기업들은 합성 이미지 및 비디오 데이터 세트를 활용하여 실제 데이터를 보완하고 다양한 환경 조건에서 모델의 견고성을 향상시키고 있습니다.
보고서 범위 및 AI 교육 데이터 세트 시장 세분화
|
속성 |
AI 교육 데이터 세트 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 부문, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 유봉 분석이 포함되어 있습니다. |
AI 교육 데이터 세트 시장 동향
합성 훈련 데이터의 채택 증가
- 합성 데이터가 기존 데이터 주석에 대한 확장 가능하고 개인 정보 보호가 준수되는 대안으로 주목을 받으면서 AI 교육 데이터 세트 시장은 빠르게 발전하고 있으며, 데이터 부족, 편향 및 민감한 정보 노출과 관련된 제한 사항을 극복하고 있습니다.
- 예를 들어 NVIDIA와 Mostly AI와 같은 회사는 의료, 자동차, 금융을 포함한 산업에서 컴퓨터 비전, 자연어 처리, 자율 시스템을 훈련하기 위한 고품질의 레이블이 지정된 데이터 세트를 생성할 수 있는 합성 데이터 생성 플랫폼을 전문으로 합니다.
- 합성 데이터의 유연성 덕분에 편향을 완화하고 모델 일반화를 향상시키는 희귀 이벤트 시나리오나 균형 잡힌 데이터 세트를 생성할 수 있습니다.
- 개인 데이터 사용에 대한 규제 감시가 강화됨에 따라 분석 유용성을 유지하면서 개인 정보를 보호하는 합성 데이터 세트 도입이 촉진됩니다.
- 생성적 적대 네트워크(GAN) 및 시뮬레이션 기술의 발전으로 현실적이고 다양한 합성 데이터 샘플이 가능해져 AI 개발 주기가 가속화됩니다.
- 합성 데이터 세트는 머신 러닝 모델에서 훈련 효과를 최적화하고 과적합 위험을 줄이기 위해 실제 데이터 세트와 점점 더 통합되고 있습니다.
AI 교육 데이터 세트 시장 동향
운전사
산업 전반에 걸쳐 도메인별 및 다국어 데이터 세트에 대한 수요 증가
- 의료, 자동차, 소매, 통신 등 수직 분야 전반에 걸쳐 AI 도입이 확대됨에 따라 언어, 컨텍스트 및 작업별 모델 교육을 지원하기 위해 세심하게 큐레이팅된 도메인별 및 다국어 데이터 세트에 대한 필요성이 커지고 있습니다.
- 예를 들어 Appen과 Lionbridge는 언어와 전문 분야에 걸쳐 광범위한 주석이 달린 데이터 세트를 제공하여 기업이 현지 시장과 규제 환경에 맞춰 고객 서비스, 의료 진단 및 자율 주행차 분야에서 강력한 AI 애플리케이션을 개발할 수 있도록 지원합니다.
- AI 제품 현지화 및 개인화 증가로 인해 정확도와 사용자 만족도를 높이기 위해 고품질의 상황 관련 학습 데이터가 필요합니다. 특히 의료 및 금융 분야의 산업 규제 준수를 위해서는 AI 모델이 법적 및 윤리적 기준을 충족하도록 도메인 기반 데이터 큐레이션이 필수적입니다.
- 대화형 AI, 감정 분석 및 언어 번역 도구의 인기 증가로 인해 여러 언어와 방언으로 구성된 다양한 텍스트, 음성 및 이미지 데이터 세트에 대한 수요가 급증하고 있습니다.
- AI 개발자와 데이터 주석 회사 간의 전략적 파트너십을 통해 전문화된 데이터 세트의 주문형 생성이 용이해져 AI 솔루션의 출시 시간이 단축됩니다.
제지/도전
수동 데이터 주석의 높은 비용과 시간 집약성
- 수동 주석은 노동 집약적이고 오류가 발생하기 쉬우며 비용이 많이 들기 때문에 여전히 심각한 병목 현상으로 남아 있으며, 종종 도메인 전문가와 긴 검증 주기가 필요하여 AI 모델 학습 및 배포 속도가 느려집니다.
- 예를 들어, 자율 주행 개발자나 의료 영상 회사와 같이 복잡한 이미지나 비디오 데이터 세트에 대한 수동 레이블링에 의존하는 기업은 엄격한 품질 요구 사항에도 불구하고 높은 운영 비용과 확장성 문제에 직면합니다.
- 도메인 전문성을 갖춘 숙련된 주석자를 모집하고 교육하는 데 어려움이 있어 프로젝트 전반에서 데이터 품질의 지연과 변동성이 심화됩니다.
- 주석 불일치와 품질 관리 문제로 인해 재작업과 다층적인 검토 프로세스가 필요하며, 이는 시간과 비용을 증가시킵니다. AI 모델 복잡성의 발전으로 데이터셋 크기가 증가함에 따라 주석 처리에 대한 수요는 더욱 커지고, 이는 인력과 예산에 더욱 부담을 가중시킵니다.
- 업계에서는 비용과 처리 시간을 줄이기 위해 반자동화 및 AI 지원 주석 도구를 적극적으로 탐색하고 있지만 모델 안정성과 통합 복잡성으로 인해 널리 채택되기까지는 여전히 어려움이 있습니다.
AI 교육 데이터 세트 시장 범위
시장은 소프트웨어, 유형, 수직별로 세분화됩니다.
- 소프트웨어로
AI 학습 데이터셋 시장은 소프트웨어 기준으로 데이터 수집 도구, 데이터 주석 소프트웨어, 그리고 기성 데이터셋으로 구분됩니다. 데이터 주석 소프트웨어 부문은 자동차, 의료, 소매업 등의 분야에서 지도 학습 모델을 학습하는 데 필수적인 고품질 레이블링 데이터를 생성하는 데 중요한 역할을 하며, 2024년 시장을 장악했습니다. 이러한 플랫폼은 이미지, 텍스트, 오디오, 비디오 등 다양한 데이터 유형을 지원하며, 레이블링 프로세스 속도를 높여주는 AI 지원 주석 기능을 탑재하는 경우가 많습니다. 기업들은 대용량 데이터셋을 처리하고, 분산된 팀 간의 실시간 협업을 지원하며, 레이블링 작업의 일관성을 보장하는 기능 때문에 이러한 도구를 선호합니다. 머신 러닝 파이프라인과의 광범위한 통합 및 다양한 모델 학습 프레임워크와의 호환성은 이러한 플랫폼의 우위를 더욱 강화합니다.
기성형 데이터셋 부문은 AI 솔루션의 출시 기간 단축을 목표로 하는 기업들의 수요 증가에 힘입어 2025년부터 2032년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 이러한 사전 라벨링된 데이터셋은 얼굴 인식, 사기 탐지, 의료 영상 등 특정 분야에 맞춰 큐레이션되어 제공되므로 AI 팀은 시간이 많이 소요되는 데이터 수집 단계를 생략할 수 있습니다. 특히 스타트업과 중소기업은 이러한 데이터셋의 경제성, 속도, 그리고 품질 보증의 이점을 누릴 수 있습니다. 또한, 모델 일반화가 핵심 과제로 부상함에 따라, 특히 전이 학습 및 기초 모델 개발 분야에서 벤치마킹 및 사전 학습 목적으로 기성형 데이터셋에 대한 수요가 증가하고 있습니다.
- 유형별
AI 학습 데이터셋 시장은 유형별로 이미지/비디오, 오디오, 텍스트로 구분됩니다. 이미지/비디오 부문은 안면 인식, 자율주행, 의료 진단, 소매점 감시 등 컴퓨터 비전 애플리케이션의 폭발적인 성장으로 2024년 시장 점유율 41.5%를 기록하며 가장 큰 비중을 차지했습니다. 이러한 모델은 객체를 고정밀로 식별, 분류, 추적하기 위해 방대한 양의 주석이 포함된 이미지와 비디오 프레임을 필요로 합니다. 드론, 로봇, 스마트 인프라 분야에서 엣지 디바이스와 임베디드 비전의 급속한 성장은 시각적 데이터셋에 대한 수요를 더욱 가속화하고 있습니다. 또한 기업들은 합성 이미지 및 비디오 데이터셋을 활용하여 실제 데이터를 보완하고 다양한 환경 조건에서 모델의 견고성을 향상시키고 있습니다.
오디오 부문은 가상 비서, 콜센터 자동화, 다국어 음성 인식 서비스 등 음성 기반 애플리케이션에서 AI가 널리 활용됨에 따라 2025년부터 2032년까지 가장 높은 성장률을 기록할 것으로 예상됩니다. 음성, 음향 이벤트, 배경 소음 맥락을 포함하는 주석이 달린 오디오 데이터 세트는 음성 인식 및 소리 분류 작업의 정확도를 향상시키는 데 필수적입니다. 감정 인지 음성 AI 및 시각 장애인을 위한 접근성 기술 연구 개발(R&D)이 확대됨에 따라 성장세가 더욱 가속화될 것입니다. 지역 언어 및 방언 음성 데이터 수요가 증가함에 따라 데이터 세트 제공업체들은 다양한 언어 및 음향 프로필을 지원하기 위해 서비스를 확장하고 있습니다.
- 수직별
AI 학습 데이터 세트 시장은 산업별로 IT, 자동차, 정부, 의료, 금융 서비스(BFSI), 소매 및 전자상거래로 구분됩니다. IT 부문은 기술 기업과 클라우드 서비스 제공업체들이 사이버 보안, 자동화, 고객 경험 향상을 위해 AI 학습에 막대한 투자를 함에 따라 2024년 시장을 주도했습니다. 이러한 기업들은 모델 개발, 테스트, 그리고 지속적인 학습을 지원하기 위해 자체 데이터 세트를 개발하거나 방대한 양의 정형 및 비정형 데이터를 확보하는 경우가 많습니다. 플랫폼과 서비스 전반에 걸친 소프트웨어 혁신과 AI 통합의 빠른 속도는 다양하고 업무별 맞춤형 데이터 세트에 대한 수요를 지속적으로 증가시키고 있습니다. 또한, IT 부문은 데이터 레이블링 및 처리를 위한 고급 도구를 활용하여 데이터 세트 활용 분야에서 선도적인 위치를 유지하고 있습니다.
헬스케어 부문은 질병 진단, 영상 분석, 로봇 수술, 환자 관리 시스템 등에서 AI 도입이 증가함에 따라 2025년부터 2032년까지 가장 빠른 성장을 보일 것으로 예상됩니다. 이 부문에서 AI 모델을 훈련하려면 MRI 스캔, 병리 슬라이드, 유전체 데이터, 임상 기록 등 방대한 양의 잘 큐레이션된 데이터 세트가 필요하며, 이러한 데이터 세트는 엄격한 규제 및 윤리 기준을 준수해야 합니다. 병원들이 데이터 기반 혁신을 위해 AI 기업과 협력하는 등 민관 협력이 증가함에 따라 데이터 세트 접근성이 향상되고 있습니다. 또한, 개인 맞춤형 예측 의료에 대한 요구는 종단적 및 다중 모드 환자 데이터에 대한 수요를 가속화하고 있으며, 이는 헬스케어를 AI 훈련 데이터 세트의 고성장 분야로 만들고 있습니다.
AI 교육 데이터 세트 시장 지역 분석
- 북미는 2024년 36.3%의 가장 큰 수익 점유율로 AI 교육 데이터 세트 시장을 장악했으며, 이는 이 지역의 강력한 AI 생태계, 광범위한 R&D 투자, 주요 기술 기업 및 AI 스타트업의 존재에 힘입은 것입니다.
- 북미 기업들은 의료, 금융, 자율 주행, 사이버 보안 분야의 애플리케이션을 위한 AI 모델 교육에 막대한 투자를 하고 있으며, 이로 인해 다양하고 고품질의 교육 데이터 세트에 대한 수요가 증가하고 있습니다.
- 이 지역은 첨단 클라우드 인프라, 높은 디지털 리터러시, AI 혁신을 위한 유리한 규제 지원의 혜택을 받으며 산업 전반에 걸쳐 대규모 데이터 세트 조달 및 사용에 기여합니다.
미국 AI 교육 데이터 세트 시장 통찰력
미국 AI 학습 데이터셋 시장은 2024년 북미에서 가장 큰 매출 점유율을 기록했는데, 이는 의료, 자동차, IT 등 산업 전반에 걸쳐 AI 도입이 활발하게 이루어진 데 기인합니다. 머신러닝 및 자연어 처리 애플리케이션의 급속한 발전은 특히 이미지, 음성, 텍스트 형식의 레이블링된 데이터에 대한 수요를 지속적으로 증가시키고 있습니다. 기술 대기업과 스타트업 모두 방대한 양의 학습 데이터를 활용하여 독자적인 AI 모델을 개발하고 있습니다. 민관 파트너십, 정부 지원 연구, 그리고 혁신 중심의 학계는 미국의 데이터셋 생태계를 더욱 가속화하고 있습니다.
유럽 AI 교육 데이터 세트 시장 통찰력
유럽 AI 학습 데이터 세트 시장은 엄격한 데이터 개인정보 보호 규정과 윤리적 AI 개발에 대한 관심 증가에 힘입어 예측 기간 동안 상당한 CAGR(연평균 성장률)로 성장할 것으로 예상됩니다. 자동화, AI 기반 공공 서비스, 스마트 제조의 증가는 유럽 전역에서 고품질 데이터 세트에 대한 수요를 견인하고 있습니다. 유럽 기업들은 GDPR(개인정보보호법) 준수 및 윤리 기준을 준수하면서 설명 가능하고 편향되지 않은 데이터 세트 사용을 강조하고 있습니다. 특히 자동차, 의료, 정부 등 정밀 학습 AI 모델이 중요한 분야에서 이러한 데이터 세트 도입이 두드러지게 증가하고 있습니다.
영국 AI 교육 데이터 세트 시장 통찰력
영국 AI 학습 데이터 세트 시장은 예측 기간 동안 상당한 연평균 성장률(CAGR)을 기록할 것으로 예상되며, 이는 AI 리더십 강화 및 디지털 혁신을 촉진하는 국가 차원의 정책 추진에 힘입은 것입니다. AI 연구 허브에 대한 투자와 금융 서비스(BFSI) 및 전자상거래와 같은 분야에서 지능형 자동화에 대한 수요가 증가함에 따라, 신뢰할 수 있고 사전 라벨링된 데이터 세트에 대한 수요가 증가하고 있습니다. 영국의 활발한 스타트업 생태계와 AI 서비스 제공업체들의 강력한 입지는 시장을 더욱 강화하고 있습니다. 책임감 있는 AI와 공정한 데이터 사용에 대한 강조는 편견 없는 고품질 데이터 세트 개발을 촉진하고 있습니다.
독일 AI 교육 데이터 세트 시장 통찰력
독일 AI 학습 데이터 세트 시장은 산업 자동화, 스마트 모빌리티, 그리고 의료 디지털화 분야에서 독일이 선도적인 위치를 차지함에 따라 꾸준히 성장할 것으로 예상됩니다. 독일 기업들은 예측 정비, 자율주행차, 의료 진단 등 정밀하고 특정 분야에 특화된 데이터 세트를 필요로 하는 분야에서 AI를 도입하는 추세가 증가하고 있습니다. 연구 기관, 기업, 그리고 정부 지원 AI 이니셔티브 간의 협력은 이 시장에 긍정적인 영향을 미칩니다. 독일은 품질, 데이터 보호, 그리고 혁신에 중점을 두고 있어 안전하고 확장 가능한 학습 데이터 솔루션에 대한 수요를 뒷받침하고 있습니다.
아시아 태평양 AI 교육 데이터 세트 시장 통찰력
아시아 태평양 지역 AI 학습 데이터 세트 시장은 2025년부터 2032년까지 예측 기간 동안 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 이는 급속한 디지털 전환, AI 활용 사례 확대, 그리고 중국, 일본, 인도, 한국 등 주요 국가의 AI 개발에 대한 정부 지원 확대에 힘입은 것입니다. 인터넷 연결 기기의 확산, 다국어 사용자 증가, 그리고 모바일 중심 시장의 확대는 다양한 데이터 수요를 창출하고 있습니다. 또한, 아시아 태평양 지역은 AI 인재와 비용 효율적인 데이터 라벨링 서비스의 글로벌 허브로서 다양한 산업 분야에서 데이터 세트 생산 및 소비를 더욱 가속화하고 있습니다.
일본 AI 교육 데이터 세트 시장 통찰력
일본 AI 학습 데이터셋 시장은 로봇 공학, 스마트 시티, 지능형 교통 시스템에 대한 일본의 집중적인 투자에 힘입어 꾸준히 성장하고 있습니다. 일본의 고도로 발달된 디지털 인프라와 커넥티드 기기의 광범위한 사용은 방대한 양의 정형 및 비정형 데이터를 생성하고 있습니다. 기업들은 특히 의료 및 물류 분야에서 인력 부족과 고령화 문제를 해결하기 위해 AI를 적극적으로 활용하고 있습니다. AI 도입이 가전제품 및 공공 서비스 분야로 확대됨에 따라 다중 모드 및 언어별 데이터셋에 대한 수요도 증가하고 있습니다.
중국 AI 교육 데이터 세트 시장 통찰력
중국 AI 학습 데이터 세트 시장은 2024년 아시아 태평양 지역에서 가장 큰 매출 점유율을 기록했으며, 이는 중국의 AI 우선 개발 전략, 대규모 디지털화, 그리고 스마트 기기 시장 장악력에 힘입은 것입니다. 안면 인식, 감시, 그리고 전자상거래 AI 시스템의 광범위한 도입은 라벨링된 데이터 세트에 대한 엄청난 수요를 창출했습니다. 정부 지원 프로그램과 국내 AI 기업의 성장은 데이터 생성, 주석 및 배포를 위한 강력한 생태계를 구축했습니다. 중국의 활발한 스마트 시티 및 자율주행차 개발 계획은 데이터 세트 제공업체들에게 막대한 기회를 지속적으로 창출하고 있습니다.
AI 학습 데이터 세트 시장 점유율
AI 학습 데이터 세트 산업은 주로 다음을 포함한 잘 정립된 회사들이 주도하고 있습니다.
- 스케일 AI(미국)
- 애펜(호주)
- Lionbridge(미국)
- AWS(미국)
- 사마(미국)
- 클릭워커(영국)
- 코지토테크(미국)
- 클라우드팩토리(영국)
- TELUS International(캐나다)
- 이노데이터(미국)
- iMerit(미국)
- 트랜스퍼펙트(미국)
- 구글(미국)
- LXT(캐나다)
- IBM(미국)
- 마이크로소프트(미국)
- 엔비디아(미국)
글로벌 AI 교육 데이터 세트 시장의 최신 동향
- 2024년 9월, 이노데이터(Innodata)는 AI/ML 모델 학습의 데이터 확장성 및 접근성 문제를 해결하는 데 중요한 진전을 이루는 AI 데이터 마켓플레이스를 출시했습니다. 이 플랫폼은 데이터 과학 팀이 데이터 양, 다양성 및 개인정보 보호와 관련된 한계를 극복할 수 있도록 엄선된 온디맨드 합성 문서 데이터 세트를 제공합니다. 즉시 사용 가능한 데이터 세트에 대한 접근을 간소화함으로써, 이 마켓플레이스는 AI 모델 개발을 가속화하고 산업 전반에서 증가하는 합성 및 도메인별 학습 데이터 수요를 지원할 것으로 예상됩니다.
- 2024년 9월, SCALE AI는 범캐나다 인공지능 전략(Pan-Canadian Artificial Intelligence Strategy)에 따라 캐나다 전역의 9개 AI 기반 의료 프로젝트에 2,100만 달러를 투자한다고 발표했습니다. 이 이니셔티브는 병원과 AI 개발자 간의 협업을 촉진함으로써 의료 분야의 AI 학습 데이터셋 시장에 상당한 영향을 미칠 것으로 예상됩니다. 환자 진료 개선, 대기 시간 단축, 의료 운영 최적화를 목표로 하며, 이를 통해 임상, 행정 및 진단 분야에 맞춰 윤리적으로 수집된 고품질 데이터셋에 대한 수요를 증가시킵니다.
- 2024년 8월, Lionbridge Technologies, Inc.는 기업의 고품질 데이터세트를 활용한 AI 모델 학습을 지원하는 전용 플랫폼인 Aurora AI Studio를 출시했습니다. 이번 출시는 고급 AI 활용 사례를 지원하기 위해 전문적이고 주석이 잘 된 데이터에 대한 증가하는 수요를 충족합니다. Lionbridge의 데이터 큐레이션 및 주석 분야에 대한 글로벌 전문성을 활용하여 이 플랫폼은 상업용 AI 생태계를 강화하고 금융, 소매, 통신 등 다양한 산업 분야의 맞춤형, 다국어 및 산업별 데이터세트 수요를 견인할 것입니다.
- 2024년 8월, Accenture는 Google Cloud와 협력하여 자사의 Generative AI Center of Excellence를 통해 Generative AI 솔루션 구축을 가속화했습니다. 프로젝트의 45%가 운영 환경으로 전환됨에 따라, 이번 협력은 대규모 AI 운영화의 증가 추세를 보여줍니다. 이는 기업 전반의 고급 AI 모델을 지원하는 안전하고 다양하며 운영에 즉시 사용 가능한 학습 데이터 세트에 대한 시급한 필요성을 강조합니다. 또한, 이 이니셔티브는 사이버 보안을 통합하여 기업 AI 도입에 있어 책임 있는 데이터 처리 및 개인정보 보호 중심 데이터 세트의 역할을 강화합니다.
- 2024년 7월, 마이크로소프트 리서치는 고품질 합성 데이터 생성을 자동화하도록 설계된 다중 에이전트 워크플로 프레임워크인 AgentInstruct를 발표했습니다. 다양한 벤치마크를 통해 Orca-3 모델의 개선을 통해 입증된 이 프레임워크는 데이터 레이블 지정 시 사람의 개입을 최소화하여 비용을 절감하고 데이터셋 생성 속도를 높입니다. AgentInstruct는 특히 생성 AI 및 파운데이션 모델에서 대규모 모델 학습을 위한 합성 데이터 활용을 확대함으로써 AI 학습 데이터셋 시장을 재편할 것으로 예상됩니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

