Global Artificial Intelligence Ai Chipset Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
73.24 Billion
USD
558.18 Billion
2024
2032
| 2025 –2032 | |
| USD 73.24 Billion | |
| USD 558.18 Billion | |
|
|
|
|
하드웨어(프로세서, 메모리, 네트워크), 기술(머신러닝, 자연어 처리, 상황 인식 컴퓨팅, 컴퓨터 비전, 예측 분석), 기능(훈련, 추론), 최종 사용자(소비자 전자, 의료, 제조, 자동차, 농업, 소매, 사이버 보안, 인사, 마케팅, 법률, 핀테크, 정부)별 글로벌 인공지능(AI) 칩셋 시장 세분화 - 산업 동향 및 2032년까지의 전망
인공지능(AI) 칩셋 시장 규모
- 글로벌 인공지능(AI) 칩셋 시장 규모는 2024년에 732억 4천만 달러 로 평가되었으며, 예측 기간 동안 28.9%의 CAGR 로 2032년까지 5,581억 8천만 달러에 도달할 것으로 예상됩니다 .
- 시장 성장은 주로 AI 애플리케이션에서 고속 프로세서에 대한 수요 증가, 의료, 자동차, 금융, 제조와 같은 분야에서 AI 도입 증가, 공공 및 민간 부문 모두에서 AI 연구 개발에 대한 투자 증가에 의해 촉진됩니다.
- 신경형 및 양자 컴퓨팅 요소의 통합을 포함한 칩 아키텍처의 발전으로 새로운 성능 벤치마크가 실현되고 복잡하고 실시간 시나리오에서 AI 도입이 가속화될 것으로 예상됩니다.
인공지능(AI) 칩셋 시장 분석
- AI 칩셋 시장은 데이터 중심 기술의 확산과 산업 전반에 걸친 머신 러닝 및 딥 러닝 모델 구현 증가로 인해 강력한 확장을 경험하고 있습니다.
- 엣지 컴퓨팅이 급속도로 발전하면서 실시간 데이터 처리가 가능한 에너지 효율적인 AI 칩에 대한 수요가 증가하고 있습니다.
- 북미는 2024년 44.3%의 가장 큰 매출 점유율로 인공지능(AI) 칩셋 시장을 장악했으며, 이는 AI 개발에 대한 강력한 투자, 잘 확립된 데이터 센터 인프라, 산업 전반에 걸친 AI 기반 솔루션의 광범위한 배포에 힘입은 것입니다.
- 아시아 태평양 지역은 신흥 경제권에서 AI 기반 기술 도입 증가, 스마트 시티 및 산업 자동화 프로젝트에 대한 투자 증가, 중국, 대만, 한국 등 국가에 저비용 반도체 제조 허브가 존재함에 따라 글로벌 인공지능(AI) 칩셋 시장에서 가장 높은 성장률을 보일 것으로 예상됩니다.
- 프로세서 부문은 2024년 61.5%의 매출 점유율로 시장을 장악하며 가장 큰 매출 점유율을 기록했습니다. 이는 딥 러닝 및 신경망 학습과 같은 AI 워크로드 전반에 걸쳐 고성능 컴퓨팅에 대한 수요가 증가함에 따라 주도되었습니다. 그래픽 처리 장치(GPU)와 주문형 반도체(ASIC)는 병렬 처리 기능과 AI 작업에 최적화된 설계로 특히 수요가 높습니다. 이 부문은 기술 발전과 클라우드 및 엣지 환경 모두에서 배포 증가의 혜택을 지속적으로 누리고 있습니다.
보고서 범위 및 인공 지능(AI) 칩셋 시장 세분화
|
속성 |
인공지능(AI) 칩셋 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 부문, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 유봉 분석이 포함되어 있습니다. |
인공지능(AI) 칩셋 시장 동향
"에지 디바이스에서 AI 칩셋 통합 확대"
- 실시간 처리 및 저지연 의사 결정에 대한 요구가 증가함에 따라 엣지 디바이스에 AI 칩셋 도입이 증가하고 있습니다. 이러한 칩셋은 로컬 처리 기능을 지원하여 클라우드 인프라 의존도를 낮춥니다. 이러한 변화는 자율주행, 산업 자동화, 영상 감시와 같은 애플리케이션에서 특히 중요합니다.
- 가전제품에 내장된 AI 칩셋은 기기의 지능화와 개인화를 강화하고 있습니다. 스마트폰, 스마트 스피커, 웨어러블 기기에는 이제 기기 내에서 복잡한 AI 작업을 처리하는 신경망 처리 장치가 내장되어 있습니다. 이러한 발전은 응답 시간, 배터리 수명, 그리고 사용자 경험을 크게 향상시킵니다.
- 엣지 AI 칩셋은 소형 기기에 적합하도록 더 작은 크기와 향상된 전력 효율로 설계되고 있습니다. 이러한 칩은 에너지 자원 소모 없이 지속적인 AI 기능을 제공합니다. 드론, 의료 기기, IoT 센서 등으로 그 적용 범위가 확대되고 있습니다.
- 예를 들어, 구글의 엣지 TPU 칩은 제조 및 소매업에서 기기 내 이미지 분류 및 분석에 사용되는 코랄(Coral) 기기에 탑재됩니다. 이 칩은 로컬에서 데이터를 처리하여 대역폭 사용량을 줄이고 실시간 의사 결정을 보장합니다. 코랄의 성공은 엣지 AI가 산업 전반에 걸쳐 어떻게 확장되고 있는지를 보여줍니다.
- 엣지 기반 AI 처리로의 전환은 소비자 및 산업 애플리케이션 모두를 혁신하고 있습니다. 지역적이고 효율적인 컴퓨팅에 맞춰 설계된 AI 칩셋은 성능과 혁신 측면에서 새로운 기준을 제시하고 있습니다. 지능적이고 반응형 시스템에 대한 수요가 계속 증가함에 따라 이러한 추세는 더욱 가속화될 것으로 예상됩니다.
인공지능(AI) 칩셋 시장 동향
운전사
“산업 전반에 걸쳐 AI 적용 급증”
- 의료, 금융, 자동차, 제조 등 다양한 분야에서 AI 도입이 증가함에 따라 고성능 칩셋에 대한 수요가 증가하고 있습니다. 이러한 분야는 진단, 사기 탐지, 예측 유지보수, 스마트 자동화에 AI를 활용합니다. AI 칩셋의 다재다능함은 현대 인프라의 필수 도구로 자리매김하고 있습니다.
- 기업들은 AI 개발에 막대한 투자를 하고 있으며, 이로 인해 복잡한 머신러닝 및 딥러닝 모델을 지원하는 특수 하드웨어에 대한 수요가 증가하고 있습니다. AI 칩셋은 이러한 모델을 효과적으로 학습하고 배포하는 데 필요한 연산 능력을 제공합니다. 기업들이 AI 역량을 확장함에 따라 강력한 프로세서에 대한 수요는 계속해서 증가하고 있습니다.
- AI 칩셋은 자율주행차 및 정밀 의학과 같은 차세대 애플리케이션에서 고급 기능을 구현합니다. 이러한 시스템은 빠르고 안정적이며 에너지 효율적인 처리 능력에 의존합니다. AI 칩은 실시간 데이터를 실행 가능한 인사이트로 변환하여 다양한 영역에서 결과를 개선하는 데 도움을 줍니다.
- 예를 들어, 테슬라의 맞춤형 완전 자율주행(FSD) 칩은 여러 센서의 데이터를 처리하여 외부 연결 없이도 자율주행차가 작동할 수 있도록 합니다. 이 칩의 성능과 속도 덕분에 테슬라는 운전자 지원 기능을 크게 발전시킬 수 있었습니다. 이 사례는 AI 구현에 있어 칩셋 혁신의 중요성을 강조합니다.
- AI 기술의 산업 간 도입은 AI 칩셋 시장의 장기적인 성장을 촉진하고 있습니다. 이러한 프로세서는 더욱 스마트한 시스템과 효율적인 의사 결정을 가능하게 하는 데 필수적입니다. AI가 일상 업무에 더욱 깊이 자리 잡으면서 고급 칩셋에 대한 수요는 계속해서 급증할 것입니다.
제지/도전
“높은 개발 비용과 기술적 복잡성”
- AI 칩셋 설계에는 복잡한 아키텍처, 첨단 제조, 그리고 전문 기술이 필요하며, 이로 인해 높은 개발 비용이 발생합니다. 기존 프로세서와 달리 AI 칩은 병렬 컴퓨팅과 적응형 학습 모델을 지원해야 합니다. 이러한 복잡성은 신규 진입 기업에 장벽을 제공하고 제품 개발 기간을 연장합니다.
- AI 소프트웨어의 급속한 발전은 호환성과 성능 유지를 위해 지속적인 하드웨어 업그레이드를 요구합니다. 칩 제조업체들은 신속한 혁신에 대한 압박에 직면하고 있으며, 이는 연구 및 운영 비용을 증가시킵니다. 이러한 역동성은 경쟁이 치열한 환경에서 운영되는 기업들의 지속가능성 과제를 야기합니다.
- 소규모 기업과 스타트업은 AI 하드웨어 분야에서 경쟁하는 데 필요한 재정 및 기술 자원이 부족한 경우가 많습니다. 대기업의 독점은 다양성을 제한하고 AI 칩셋 가용성의 민주화를 지연시킵니다. 협력적인 노력이 없다면 이러한 격차는 더 광범위한 시장 참여를 저해할 수 있습니다.
- 예를 들어, 인텔은 AI 중심의 너바나(Nervana)와 하바나 랩스(Habana Labs) 칩 생산 차질로 엔비디아(NVIDIA) 등 경쟁사에 대한 경쟁력이 약화되었습니다. 제품 출시 지연과 통합 문제로 인해 주요 시장에서 시장 점유율이 제한되었습니다. 이는 기존 기업들조차 AI 칩 혁신에 어려움을 겪고 있음을 보여줍니다.
- AI 칩셋 개발의 비용과 복잡성은 시장 확장의 주요 과제로 남아 있습니다. 이러한 장벽을 극복하려면 모듈형 설계 전략, 생태계 협력, 그리고 확장 가능한 생산 기술이 필요합니다. 이러한 문제를 해결하는 것은 광범위한 도입과 시장 성숙도를 달성하는 데 필수적입니다.
인공지능(AI) 칩셋 시장 범위
시장은 하드웨어, 기술, 기능, 최종 사용자를 기준으로 세분화됩니다.
• 하드웨어별
하드웨어 기준으로 인공지능(AI) 칩셋 시장은 프로세서, 메모리, 네트워크로 구분됩니다. 프로세서 부문은 2024년 61.5%의 매출 점유율로 시장을 장악했으며, 이는 딥러닝 및 신경망 학습과 같은 AI 워크로드 전반에 걸쳐 고성능 컴퓨팅에 대한 수요가 증가함에 따라 주도되었습니다. 그래픽 처리 장치(GPU)와 주문형 반도체(ASIC)는 병렬 처리 기능과 AI 작업에 최적화된 설계로 특히 수요가 높습니다. 이 부문은 기술 발전과 클라우드 및 엣지 환경 모두에서 구축 증가의 혜택을 지속적으로 누리고 있습니다.
네트워크 부문은 복잡한 시스템 내 AI 구성 요소 간의 효율적인 데이터 전송에 대한 수요 증가에 힘입어 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 고속 상호 연결과 AI 최적화 네트워킹 솔루션은 실시간 처리 및 AI 모델 추론을 위해 지연 시간 단축과 대역폭 최적화가 필수적인 데이터 센터 및 엣지 구축에 필수적입니다.
• 기술에 의해
인공지능(AI) 칩셋 시장은 기술 기반으로 머신러닝, 자연어 처리, 상황 인식 컴퓨팅, 컴퓨터 비전, 예측 분석으로 구분됩니다. 머신러닝 부문은 사기 탐지, 추천 엔진, 고객 행동 분석 등 다양한 분야에서 광범위하게 도입되면서 2024년 시장 매출 점유율 1위를 차지했습니다. 다양한 산업 분야에서 데이터 기반 의사 결정을 중시하는 기업들이 늘어나면서, 머신러닝 기반 AI 칩셋은 가전제품, 클라우드 플랫폼, 엔터프라이즈 시스템에 통합되는 사례가 증가하고 있습니다.
컴퓨터 비전 분야는 이미지 및 비디오 분석 분야에서 AI 활용 확대에 힘입어 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 얼굴 인식, 자율주행차, 스마트 감시 시스템과 같은 애플리케이션은 컴퓨터 비전 기술에 크게 의존하며, 이를 위해서는 고해상도 시각 데이터를 실시간으로 처리할 수 있는 강력하고 비전에 특화된 칩셋이 필요합니다.
• 기능별
인공지능(AI) 칩셋 시장은 기능 기준으로 학습과 추론으로 구분됩니다. 학습 부문은 방대한 데이터 세트와 복잡한 신경망 모델을 처리할 수 있는 강력한 처리 장치에 대한 수요 증가에 힘입어 2024년 시장 점유율 1위를 차지하며 시장을 장악했습니다. AI 모델을 학습하려면 일반적으로 높은 워크로드를 처리할 수 있도록 설계된 고급 GPU와 ASIC이 필요하며, 특히 대규모 학습 애플리케이션을 지원하는 클라우드 기반 인프라에서 이러한 요구가 더욱 커집니다.
추론 분야는 엣지에서의 실시간 의사 결정에 대한 수요 증가로 인해 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 추론 중심 AI 칩셋은 전력 효율과 빠른 처리 속도에 최적화되어 있어 즉각적인 대응이 필수적인 모바일 기기, 산업 자동화, 자율 시스템 등의 애플리케이션에 이상적입니다.
• 최종 사용자별
최종 사용자 기준으로 인공지능(AI) 칩셋 시장은 가전, 의료, 제조, 자동차, 농업, 소매, 사이버 보안, 인사, 마케팅, 법률, 핀테크, 정부 부문으로 세분화됩니다. 가전 부문은 스마트폰, 스마트 TV, 웨어러블 기기에 AI 기능이 광범위하게 통합됨에 따라 2024년 시장 매출 점유율이 가장 높았습니다. AI 기능이 내장된 칩셋은 음성 비서, 얼굴 인식, 개인 맞춤형 콘텐츠 추천 기능을 제공하여 사용자 경험을 향상시킵니다.
의료 분야는 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상되며, 이는 의료 진단, 신약 개발, 로봇 수술 분야에서 AI 도입 증가에 힘입어 더욱 가속화될 것입니다. AI 칩셋은 의료 시스템에서 실시간 데이터 분석 및 예측 모델링을 가능하게 하여 진단 정확도와 운영 효율성을 향상시키는 데 중요한 역할을 합니다.
인공지능(AI) 칩셋 시장 지역 분석
- 북미는 2024년 44.3%의 가장 큰 매출 점유율로 인공지능(AI) 칩셋 시장을 장악했으며, 이는 AI 개발에 대한 강력한 투자, 잘 확립된 데이터 센터 인프라, 산업 전반에 걸친 AI 기반 솔루션의 광범위한 배포에 힘입은 것입니다.
- 이 지역은 고도로 발달된 기술 생태계, 선도적인 반도체 제조업체, 의료, 자동차, 금융과 같은 분야에서 높은 AI 도입률의 혜택을 받고 있습니다.
- 유리한 정부 이니셔티브, 머신 러닝 및 딥 러닝 도구에 대한 기업의 채택 증가, 소비자 및 산업 응용 분야에서 AI에 대한 수요 증가가 결합되어 이 지역의 시장 확장을 지속적으로 지원하고 있습니다.
미국 인공지능(AI) 칩셋 시장 분석
미국 AI 칩셋 시장은 2024년 북미에서 가장 큰 매출 점유율을 기록했습니다. 강력한 R&D 역량, 최첨단 AI 애플리케이션의 조기 도입, 그리고 NVIDIA, Intel, AMD와 같은 주요 업체들의 시장 지배력 덕분입니다. 미국은 AI 연구 및 혁신 분야의 세계적인 선두주자로서, 클라우드 플랫폼, 자율 시스템, 의료 진단 분야에서 칩셋이 광범위하게 사용되고 있습니다. 첨단 제조 및 사이버 보안 지원과 더불어 AI 기반 가전제품의 보급 확대는 미국 전역의 수요를 더욱 촉진하고 있습니다.
유럽 인공지능(AI) 칩셋 시장 분석
유럽 AI 칩셋 시장은 스마트 모빌리티, 제조, 공공 부문 애플리케이션 전반에 걸쳐 AI 도입에 대한 관심이 높아짐에 따라 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 이 지역 국가들은 특히 인더스트리 4.0과 스마트 시티와 같은 분야에서 디지털 혁신에 투자하고 있습니다. 데이터 프라이버시, 윤리적인 AI 개발, 그리고 지속가능성에 대한 강조는 에너지 효율적인 AI 칩셋의 도입을 촉진하고 있습니다. 지역 기술 허브의 존재와 국경 간 협력의 증가 또한 시장 확대에 기여하고 있습니다.
독일 인공지능(AI) 칩셋 시장 분석
독일 AI 칩셋 시장은 자동차 혁신과 산업 자동화 분야의 선도적 입지를 바탕으로 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. AI 칩셋은 예측 유지보수, 로봇 공학, 자율주행 애플리케이션에 점점 더 많이 도입되고 있습니다. 독일은 데이터 보안과 정밀 공학에 중점을 두고 있어 특히 스마트 팩토리와 연구 시설에서 맞춤형 AI 하드웨어 사용을 지원합니다. 디지털 주권 확보를 위한 지속적인 노력과 반도체 혁신에 대한 지원은 성장을 더욱 가속화합니다.
영국 인공지능(AI) 칩셋 시장 통찰력
영국 AI 칩셋 시장은 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상되며, 이는 AI 섹터 딜(AI Sector Deal)과 같은 정부 정책과 의료, 금융, 법률 서비스 분야의 AI 도입 확대에 힘입어 더욱 가속화될 것입니다. 영국은 AI 스타트업과 대학 주도 연구에 적극적으로 투자하여 유럽 AI 생태계에서 영국의 입지를 강화하고 있습니다. 사이버 보안, 신약 개발, 금융 모델링 분야에서 AI에 대한 관심이 높아지면서 높은 연산 효율성과 확장성을 제공하는 특수 칩셋에 대한 수요가 증가하고 있습니다.
아시아 태평양 인공지능(AI) 칩셋 시장 통찰력
아시아 태평양 지역 AI 칩셋 시장은 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 이는 급속한 디지털화, 강력한 정부 지원, 그리고 중국, 일본, 한국, 인도 등 각국의 AI 혁신 투자 증가에 힘입은 것입니다. 이 지역은 대규모 제조 역량, AI 스타트업 생태계의 성장, 그리고 전자상거래, 운송, 농업 등의 분야에서 AI 활용 확대라는 이점을 누리고 있습니다. AI 칩셋의 현지 생산과 비용 효율적인 솔루션에 대한 수요 증가는 신흥 경제권 전반의 접근성을 확대하고 있습니다.
중국 인공지능(AI) 칩셋 시장 분석
중국 AI 칩셋 시장은 2024년 아시아 태평양 지역에서 가장 큰 매출 점유율을 기록했으며, 이는 "차세대 인공지능 발전 계획"과 같은 정부 주도 사업과 스마트 인프라에 대한 적극적인 투자에 힘입은 것입니다. 중국은 선도적인 반도체 및 AI 기술 기업들의 본거지이며, 안면 인식, 감시, 가전제품 등 다양한 분야에서 AI 칩셋 수요가 급증하고 있습니다. 중국이 칩 제조 자립에 집중하고 도시 및 산업 환경에 AI를 빠르게 도입하는 것은 주요 성장 동력입니다.
일본 인공지능(AI) 칩셋 시장 분석
일본 AI 칩셋 시장은 로봇공학, 노인 케어, 첨단 교통 시스템에 AI가 통합됨에 따라 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 일본의 기술 선도력과 탄탄한 전자 산업 기반은 소비자 및 산업 분야 모두에서 AI 하드웨어의 광범위한 도입을 가능하게 하고 있습니다. 일본이 인력 부족 문제를 해결하고 운영 효율성을 향상시키려는 노력에 따라 스마트 시티, 헬스케어, 자율주행 모빌리티 분야에서 추론 최적화 칩셋의 사용이 가속화될 것으로 예상됩니다.
인공지능(AI) 칩셋 시장 점유율
인공지능(AI) 칩셋 산업은 주로 다음을 포함한 기존 기업들이 주도하고 있습니다.
- 엔비디아 코퍼레이션(미국)
- 인텔 코퍼레이션(미국)
- Xilinx, Inc.(미국)
- 삼성전자(주)(한국)
- 마이크론 테크놀로지(미국)
- Qualcomm Technologies, Inc.(미국)
- IBM Corp. (미국)
- Google Inc.(미국)
- 마이크로소프트(미국)
- Amazon Web Services, Inc.(미국)
- Advanced Micro Devices, Inc(미국)
- 제너럴 비전 주식회사(미국)
- 미식(미국)
- 바이두(중국)
글로벌 인공지능(AI) 칩셋 시장의 최신 동향
- 2023년 1월, NXP 반도체는 i.MX 9 시리즈의 일부로 i.MX 95 제품군을 출시했습니다. 이 고성능 프로세서는 Arm Mali 기반 3D 그래픽, 자체 머신러닝 가속기, 그리고 고급 데이터 처리 기능을 통합했습니다. 자동차, 산업 및 HMI 애플리케이션 전반에 걸쳐 향상된 기능을 제공하여 NXP의 엣지 컴퓨팅 및 AI 기반 시장에서의 입지를 강화합니다.
- 2022년 9월, 키나라(Kinara)는 NXP 반도체(NXP Semiconductors)와 협력하여 NXP의 AI 지원 포트폴리오와 함께 Ara-1 Edge AI 프로세서를 제공합니다. 이 파트너십은 엣지에서 AI 가속을 확대하고 딥러닝 추론을 개선하여 다양한 애플리케이션을 위한 통합 AI 솔루션 제공 역량을 양사의 역량으로 확장하는 것을 목표로 합니다.
- 2022년 9월, 인텔은 4세대 인텔 제온 AI 칩, 사파이어 래피즈 확장 가능 프로세서, 그리고 데이터센터 GPU를 출시했습니다. 또한 AI에 최적화된 13세대 인텔 코어 프로세서도 공개했습니다. 이러한 개발은 게임, 콘텐츠 제작, 그리고 엔터프라이즈 AI 워크로드의 성능을 향상시켜 인텔의 AI 생태계를 강화하는 것을 목표로 합니다.
- 2022년 8월, 인텔은 클라우드 기반 솔루션을 통해 기업 고객의 AI 성능을 최적화하기 위해 Aible과 파트너십을 맺었습니다. 이 협업은 고급 벤치마킹 및 엔지니어링 최적화를 활용하여 신속한 구축과 측정 가능한 효과에 중점을 두고, 기업이 운영 영역 전반에 걸쳐 AI를 더욱 효율적으로 도입할 수 있도록 지원합니다.
- 2021년 11월, NXP 반도체는 자동차, 스마트 홈, 산업 자동화용으로 설계된 i.MX 93 애플리케이션 프로세서 제품군을 출시했습니다. 엣지 머신 러닝 기능을 탑재한 이 프로세서는 사용자 요구를 예측하고 이에 적응하여 커넥티드 환경에서 지능적이고 반응형 기기에 대한 증가하는 수요를 지원합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

