약물 발견 시장 규모, 점유율 및 추세 분석 보고서의 글로벌 인공지능(AI) – 산업 개요 및 2032년까지의 예측

TOC 요청 TOC 요청 분석가에게 문의 분석가에게 문의 무료 샘플 보고서 무료 샘플 보고서 구매하기 전에 문의 구매하기 전에 문의 지금 구매 지금 구매

약물 발견 시장 규모, 점유율 및 추세 분석 보고서의 글로벌 인공지능(AI) – 산업 개요 및 2032년까지의 예측

  • Healthcare
  • Upcoming Report
  • Mar 2025
  • Global
  • 350 Pages
  • 테이블 수: 220
  • 그림 수: 60
  • Author : Sachin Pawar

민첩한 공급망 컨설팅으로 관세 문제를 극복하세요

공급망 생태계 분석이 이제 DBMR 보고서의 일부가 되었습니다

Global Artificial Intelligence Ai In Drug Discovery Market

시장 규모 (USD 10억)

연평균 성장률 :  % Diagram

Chart Image USD 981.64 Million USD 1,483.82 Million 2024 2032
Diagram 예측 기간
2025 –2032
Diagram 시장 규모(기준 연도)
USD 981.64 Million
Diagram 시장 규모(예측 연도)
USD 1,483.82 Million
Diagram 연평균 성장률
%
Diagram주요 시장 플레이어
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

글로벌 인공지능(AI) 신약 발굴 시장 세분화, 응용 분야별(신약 후보물질, 약물 최적화 및 용도 변경, 전임상 시험 및 승인, 약물 모니터링, 새로운 질병 관련 표적 및 경로 탐색, 질병 메커니즘 이해, 정보 수집 및 종합, 가설 수립 및 검증, 신규 약물 설계, 기존 약물의 약물 표적 탐색 등), 기술(머신러닝, 딥러닝, 자연어 처리 등), 약물 유형(소분자 및 대분자), 제공 분야(소프트웨어 및 서비스), 적응증(면역 종양학, 신경 퇴행성 질환, 심혈관 질환, 대사 질환 등), 최종 용도(임상시험수탁기관(CRO), 제약 및 생명공학 기업, 연구 센터 및 학술 기관 등) - 2032년까지의 산업 동향 및 예측

약물 발견 시장의 인공지능(AI)

약물 발견 시장 규모에서의 인공지능(AI)

  • 2024년 글로벌 인공지능(AI) 신약개발 시장 규모는 9억 8,164만 달러로 평가됐으며, 2032년에는 14억 8,382만 달러에 이를 것으로 예상된다.
  • 2025년부터 2032년까지의 예측 기간 동안 시장은 주로 의료 데이터의 가용성 증가에 의해 주도되어 5.30%의 CAGR로 성장할 것으로 예상됩니다.
  • 이러한 성장은 만성 질환의 유병률 증가, 약물 발견 프로세스를 향상시키는 AI 기술의 발전과 같은 요인에 의해 촉진됩니다.

약물 발견 시장 분석에서의 인공지능(AI)

  • 시장은 머신 러닝, 딥 러닝과 같은 AI 기술의 발전으로 인해 급속한 성장을 경험하고 있으며, 이러한 기술은 약물 발견 프로세스를 간소화하고 비용을 절감하고 있습니다.
  • AI는 약물 최적화, 재활용, 전임상 시험 및 임상 시험 설계에 널리 채택되어 약물 개발 일정을 크게 가속화하고 있습니다.
  • 북미는 강력한 제약 부문으로 시장을 선도하고 있으며, 아시아 태평양 지역은 연구 개발에 대한 투자 증가로 인해 급속한 성장이 예상됩니다.

예를 들어, 머신 러닝, 딥 러닝과 같은 AI 기술은 임상 시험의 성공률을 예측하고, 약물 후보를 최적화하고, 새로운 치료 표적을 식별하는 데 사용되어 약물 개발에 소요되는 시간과 비용을 크게 줄이고 있습니다.

  • 신약 개발에 AI를 도입함으로써 기존 신약 개발 과정에서 발생하던 높은 비용, 긴 시간, 낮은 성공률 등의 문제를 해결하여 제약 산업에 혁명을 일으키고 있습니다 .

약물 발견 시장 세분화의 보고 범위 및 인공 지능(AI)

속성

약물 발견 분야의 인공지능(AI) 주요 시장 통찰력

다루는 세그먼트

  • 응용 분야별 : 신약 후보물질, 약물 최적화 및 재활용 전임상 시험 및 승인, 약물 모니터링, 새로운 질병 관련 표적 및 경로 찾기, 질병 메커니즘 이해, 정보 수집 및 종합, 가설 형성 및 검증, 신규 약물 설계, 기존 약물의 약물 표적 찾기 등
  • 기술별:   머신 러닝, 딥 러닝 , 자연어 처리 등
  • 약물 유형별:  소분자 및 대분자
  • 제공:  소프트웨어 및 서비스
  • 적응증 : 면역 종양학, 신경 퇴행성 질환, 심혈관 질환, 대사 질환 및 기타
  • 최종 사용 : 계약 연구 기관(CRO), 제약 및 생명 공학 회사, 연구 센터 및 학술 기관 및 기타

포함 국가

북아메리카

  • 우리를
  • 캐나다
  • 멕시코

유럽

  • 독일
  • 프랑스
  • 영국
  • 네덜란드
  • 스위스
  • 벨기에
  • 러시아 제국
  • 이탈리아
  • 스페인
  • 칠면조
  • 유럽의 나머지 지역

아시아 태평양

  • 중국
  • 일본
  • 인도
  • 대한민국
  • 싱가포르
  • 말레이시아
  • 호주
  • 태국
  • 인도네시아 공화국
  • 필리핀 제도
  • 아시아 태평양의 나머지 지역

중동 및 아프리카

  • 사우디 아라비아
  • 아랍에미리트
  • 남아프리카 공화국
  • 이집트
  • 이스라엘
  • 중동 및 아프리카의 나머지 지역

남아메리카

  • 브라질
  • 아르헨티나
  • 남미의 나머지 지역

주요 시장 참여자

  • 엔비디아 코퍼레이션(미국)
  • IBM Corp. (미국)
  • Atomwise Inc. (미국)
  • 마이크로소프트(미국)
  • Benevolent AI(영국)
  • 아리아제약(주)(미국)
  • DEEP GENOMICS(캐나다)
  • 엑스사이언티아(영국)
  • 인실리코 메디슨(홍콩)
  • Cyclica(캐나다)
  • NuMedii, Inc. (미국)
  • 엔비사제닉스(미국)
  • 오우킨 주식회사(미국)
  • BERG LLC(미국)
  • 슈뢰딩거 주식회사(미국)
  • XtalPi Inc.(중국)
  • BIOAGE Inc. (미국)

시장 기회

  • 제약 산업의 R&D 투자 증가
  • 임상 시험을 위한 향상된 예측 모델링

부가가치 데이터 정보 세트

Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 적용 범위, 주요 업체 등 시장 시나리오에 대한 통찰력 외에도 수입 수출 분석, 생산 능력 개요, 생산 소비 분석, 가격 추세 분석, 기후 변화 시나리오, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선택 기준, PESTLE 분석, Porter 분석 및 규제 프레임워크가 포함됩니다.

약물 발견 시장 동향에서의 인공지능(AI)

“AI 기반 혁신으로 신약 개발 혁신”

  • 약물 발견 시장에서 AI의 두드러진 추세 중 하나는 약물 개발 프로세스를 간소화하기 위해 머신 러닝과 딥 러닝 기술의 도입이 증가하고 있다는 것입니다 .
  • 이러한 첨단 기술은 방대한 데이터 세트를 분석하고, 분자 결합 특성을 예측하고, 잠재적인 약물 후보를 식별함으로써 약물 발견의 효율성과 정확성을 향상시킵니다.
  • 예를 들어, AI 기반 플랫폼은 기존 약물을 새로운 치료 영역에 재활용하는 데 사용되어 기존 약물 발견 방법과 관련된 시간과 비용을 크게 줄이고 있습니다.
  • AI를 통합하면 성공률을 예측하고 환자 집단을 식별하여 임상 시험을 보다 효율적으로 설계할 수 있으며, 약물 개발의 전반적인 성공도 향상됩니다.
  • 이러한 추세는 제약 산업을 변화시키고, 혁신적인 치료법 개발을 가속화하며, 충족되지 않은 의료적 요구를 해결함으로써 시장에서 AI 기반 솔루션에 대한 수요를 촉진하고 있습니다.

약물 발견 시장 역학에서의 인공지능(AI)

운전사

“제약 산업의 R&D 투자 증가”

  • 제약 회사들은 경쟁력을 유지하고 변화하는 환자 요구를 충족하기 위해 새로운 약물과 치료법을 개발하기 위해 R&D 예산을 늘리고 있습니다.
  • AI 도구는 신약 개발을 위한 R&D 프로세스에 통합되어 신약 후보를 더 빨리 식별하고, 성공률을 높이고, 초기 단계 연구를 최적화합니다.
  • AI는 고처리량 스크리닝을 가능하게 하여 화합물 테스트 프로세스를 크게 가속화하고 추가 개발을 위한 유망한 후보 물질을 식별합니다.
  • AI는 유전체학, 임상 시험, 환자 인구 통계 등에서 얻은 방대한 데이터 세트를 처리하여 숨겨진 패턴을 발견하고, 이를 통해 새로운 치료 목표를 더 빨리 식별할 수 있습니다.
  • AI 알고리즘이 환자 모집과 시험 설계를 최적화함으로써, 제약 회사는 임상 시험을 보다 효율적으로 수행하여 시간과 비용을 줄일 수 있습니다.

예를 들어,

  • 사노피는 엑스사이언티아(Exscientia) 와 협력하여 AI를 활용한 신약 후보물질을 설계하고 임상 시험 진입을 앞당겼습니다. 두 회사의 협력 중 하나를 통해 기존 치료법보다 훨씬 짧은 시간 안에 자가면역 질환 치료에 유망한 후보물질을 발굴했습니다.
  • GlaxoSmithKline(GSK)24M은 AI를 적용하여 R&D 프로세스를 최적화하고, 새로운 약물 표적을 식별하고 희귀 질환 등에 대한 새로운 치료법 개발을 가속화하기 위해 협력하고 있습니다.
  • 연구개발에 대한 투자가 증가하고 AI의 힘이 더해지면서 ​​제약 산업이 새로운 약물을 더 빠르고, 비용 효율적으로, 그리고 더 정확하게 발견할 수 있는 능력이 크게 향상되고 있습니다.

기회

“임상 시험을 위한 향상된 예측 모델링”

  • AI는 표본 크기, 종료 지점, 치료 요법 등 가장 적합한 시험 매개변수를 식별하여 임상 시험 설계를 최적화하고, 이를 통해 더욱 효율적이고 효과적인 연구를 수행할 수 있습니다.
  • AI는 전자 건강 기록 및 기타 데이터를 분석하여 특정 포함/제외 기준에 따라 임상 시험에 적합한 환자를 식별하는 데 도움을 주어 모집 속도와 정확성을 개선할 수 있습니다.
  • AI 모델은 과거 데이터와 실시간 통찰력을 기반으로 임상 시험의 성공 또는 실패 가능성을 예측할 수 있으므로, 시험 프로토콜을 조기에 조정하고 성공 가능성을 높일 수 있습니다.
  • AI는 예측 분석을 사용하여 중도 포기 위험이 있는 환자를 식별하고, 그들이 계속 참여하도록 하기 위한 개입 방안을 제안함으로써 완료되지 않은 임상 시험의 수를 줄일 수 있습니다.
  • AI는 참여자 선정부터 결과 예측까지 임상 시험 과정을 간소화하는 능력을 갖추고 있어 기존 시험 방법과 관련된 비용을 크게 줄일 수 있습니다.

예를 들어,

  • 화이자는 IBM 왓슨 헬스 와 협력하여 AI를 활용하여 임상 시험 참여자 모집을 개선하고 희귀 질환 치료제 개발을 위한 시험 설계를 최적화했습니다. AI 기반 접근 방식은 참여자 모집을 가속화하고 시험 결과를 개선하는 데 도움이 되었습니다.
  • 노바티스는 AI를 활용하여 환자 반응을 예측하고 유전자 치료 임상시험 설계를 최적화했습니다. 이러한 AI 기반 접근 방식을 통해 더욱 표적화된 치료법과 더욱 효율적인 임상시험이 가능해졌습니다.
  • AI는 임상 시험에서 예측 모델링을 향상시키는 능력을 갖추고 있어 시험 설계의 효율성 향상, 환자 모집 속도 향상, 비용 절감, 시험 결과 개선 등 상당한 이점을 제공하며, 궁극적으로 새로운 치료법 개발을 가속화합니다.

제지/도전

“초기 투자 비용이 높다”

  • AI 기반 도구에는 강력한 컴퓨팅 시스템, 데이터 저장 솔루션, 특수 소프트웨어 등 값비싼 기술 인프라가 필요하므로 초기 투자 비용이 높습니다.
  • AI와 신약 개발에 대한 지식을 갖춘 데이터 과학자, AI 전문가, 생물제약 연구원 등 숙련된 전문가를 채용하는 데는 비용이 많이 들고, R&D에 AI를 구현하는 데 따르는 재정적 부담이 커집니다.
  • 기존의 약물 발견 워크플로, 특히 레거시 시스템에 AI 도구를 통합하려면 적응, 교육 및 최적화를 위해 상당한 재정적 자원이 필요합니다.
  • AI 기술은 머신 러닝과 데이터 분석의 발전에 맞춰 지속적인 유지 관리, 소프트웨어 업데이트, 하드웨어 업그레이드가 필요하며, 이는 장기적인 운영 비용을 증가시킵니다.
  • 약물 발견 분야의 AI 시스템은 방대하고 고품질의 데이터 세트에 의존하며, 이러한 데이터 세트를 인수하거나 라이선스를 부여하는 것은 소규모 회사나 스타트업에게는 비용이 많이 들 수 있어 AI 구현 비용이 더욱 높아집니다.

예를 들어,

  • BenevolentAI는 AI 기반 신약 개발 플랫폼과 전문성에 막대한 투자를 통해 신약 개발 프로세스를 간소화했으며, 특히 종양학 분야에 집중했습니다. 초기 투자가 많았음에도 불구하고, BenevolentAI의 접근 방식은 신약 개발 속도를 높이고 성공률을 향상시켰습니다.
  • AI를 활용해 신약을 개발하는 스타트업인 Insilico Medicine은 AI 기반 플랫폼을 구축하기 위해 상당한 사전 투자를 필요로 했습니다. 이를 통해 섬유증과 암과 같은 질병에 대한 약물 개발을 가속화할 수 있었지만 비용이 많이 들었고 규모가 작은 경쟁업체가 따라잡기가 어려웠습니다.
  • 신약 개발을 위한 AI의 높은 초기 투자 비용은 소규모 기업과 스타트업에게 장벽으로 작용하여, 이러한 기술을 감당할 수 있는 대기업과의 경쟁 능력을 제한합니다. 이러한 과제를 극복하기 위해서는 제약 업계의 더 광범위한 참여자들이 AI를 더 쉽게 활용할 수 있도록 혁신적인 자금 조달 모델이나 파트너십이 필요할 수 있습니다.

약물 발견 시장 범위에서의 인공지능(AI)

시장은 응용 프로그램, 제품 유형, 기술, 확대 유형, 최종 사용자 및 유통 채널을 기준으로 세분화됩니다.

분할

하위 세분화

응용 프로그램별

  • 신약 후보물질
  • 약물 최적화 및 재활용
  • 전임상 시험 및 승인
  • 약물 모니터링
  • 새로운 질병 관련 표적 및 경로 찾기
  • 질병 메커니즘 이해
  • 정보 집계 및 종합
  • 가설의 형성 및 검증
  • De Novo 약물 설계
  • 기존 약물의 약물 표적 찾기
  • 기타

기술로

  • 머신 러닝
  • 딥러닝
  • 자연어 처리
  • 기타

약물 유형별

  • 소분자
  • 대형 분자

제공함으로써

  • 소프트웨어
  • 서비스

표시에 의해

  • 면역종양학
  • 신경퇴행성 질환
  • 심혈관 질환
  • 대사 질환
  • 기타

최종 사용 기준

 

  • 계약 연구 기관(CRO)
  • 제약 및 생명공학 회사
  • 연구 센터 및 학술 기관
  • 기타

약물 발견 시장의 인공지능(AI) 지역 분석

“북미는 약물 발견 시장에서 인공지능(AI)의 지배적인 지역입니다.”

  • 북미는 첨단 의료 인프라, 최첨단 의료 기술의 높은 도입, 주요 시장 참여자의 강력한 입지에 힘입어 약물 발견 시장 에서 인공지능(AI) 분야를 주도하고 있습니다 .
  • 미국 에는 화이자 , 존슨앤드존슨 , 머크 , 일라이 릴리 등 대형 제약 회사들이 있으며 , 이들은 신약 개발에 AI를 도입하는 데 앞장서고 있습니다. 이러한 회사들은 신약 개발 프로세스를 간소화하고 결과를 개선하기 위해 AI에 막대한 투자를 하고 있습니다.
  • 북미는 IBM Watson HealthGoogle DeepMind 와 같은 주요 AI 기업들이 신약 개발 혁신을 주도하는 탄탄한 기술 생태계를 갖추고 있습니다 . 이러한 기업들은 AI 연구를 선도하고 있으며, 제약 R&D를 위한 강력한 AI 도구를 제공하고 있습니다.
  • 북미는 GDP의 상당 부분을 꾸준히 연구 개발(R&D)에 투자하고 있습니다. 이러한 투자는 기업들이 신약 및 치료법 개발을 가속화할 방법을 모색함에 따라 신약 개발에 첨단 AI 기술을 도입하는 데 큰 도움이 되고 있습니다.
  • 북미 지역에서는 제약 회사와 AI 스타트업 또는 기술 기업 간의 수많은 파트너십이 이루어졌습니다. 예를 들어, 노바티스가 마이크로소프트 와 협력하여 신약 개발에 AI를 활용하는 사례는 이 지역이 AI를 활용하여 신약 개발 혁신을 선도하고 있음을 보여줍니다.

“아시아 태평양 지역이 가장 높은 성장률을 기록할 것으로 예상됩니다.”

  • 아시아 태평양 지역은 의료 인프라의 급속한 확장, 눈 건강에 대한 인식 제고, 수술 건수 증가에 힘입어 약물 발견 분야에서 인공지능(AI)이 가장 높은 성장률을 보일 것으로 예상됩니다 .
  • 중국 , 인도 , 일본 등의 국가들은 제약 산업을 발전시키고 증가하는 의료 수요를 충족하기 위해 AI와 생명공학 에 막대한 투자를 하고 있습니다. 이러한 투자는 신약 개발에 AI를 도입하는 속도를 높이고 있습니다.
  • 아시아 태평양 지역 정부들은 다양한 이니셔티브를 통해 디지털 헬스케어와 AI 통합을 적극적으로 추진하고 있습니다. 예를 들어, 중국은 AI를 헬스케어에 통합하기 위한 국가 전략을 시행하여 신약 개발 분야에서 AI의 성장을 촉진하고 있습니다.
  • APAC 국가들은 인구가 많고 방대한 양의 건강 데이터를 보유하고 있으며, 이를 AI 기반 신약 개발에 활용할 수 있습니다. 이 지역의 탄탄한 디지털 인프라는 신약 개발을 위한 AI 기술의 통합을 지원합니다.
  • 아시아 태평양(APAC) 지역은 약물 발견 시장에서 AI가 가장 빠르게 성장하고 있는 지역으로, 투자 증가, 정부 지원 정책, 방대한 데이터 풀, AI 기술을 활용하는 바이오 기술 기업의 확장에 힘입어 성장하고 있습니다.

약물 발견 시장에서 인공지능(AI)의 점유율

시장 경쟁 구도는 경쟁사별 세부 정보를 제공합니다. 여기에는 회사 개요, 회사 재무 상태, 매출 창출, 시장 잠재력, 연구 개발 투자, 신규 시장 진출, 글로벌 입지, 생산 시설 및 설비, 생산 능력, 회사의 강점과 약점, 제품 출시, 제품 종류 및 범위, 응용 분야별 우위 등이 포함됩니다. 위에 제공된 데이터는 해당 회사의 시장 집중도와 관련된 데이터입니다.

시장에서 활동하는 주요 시장 리더는 다음과 같습니다.

  • 엔비디아 코퍼레이션(미국)
  • IBM Corp. (미국)
  • Atomwise Inc. (미국)
  • 마이크로소프트(미국)
  • Benevolent AI(영국)
  • 아리아제약(주)(미국)
  • DEEP GENOMICS(캐나다)
  • 엑스사이언티아(영국)
  • 인실리코 메디슨(홍콩)
  • Cyclica(캐나다)
  • NuMedii, Inc. (미국)
  • 엔비사제닉스(미국)
  • 오우킨 주식회사(미국)
  • BERG LLC(미국)
  • 슈뢰딩거 주식회사(미국)
  • XtalPi Inc.(중국)
  • BIOAGE Inc. (미국)

약물 발견 시장에서 글로벌 인공지능(AI)의 최신 동향

  • 2024년 5월, 구글 딥마인드는 신약 개발 및 질병 표적화 개선을 위해 설계된 알파폴드(AlphaFold) AI 모델의 세 번째 버전을 공개했습니다. 이 고급 버전을 통해 딥마인드와 아이소모픽 랩스(Isomorphic Labs) 연구진은 인간 DNA를 포함한 모든 분자의 행동을 분석할 수 있게 되었습니다.
  • 2024년 4월, AI 기반 신약 발굴 및 개발을 전문으로 하는 혁신적인 기업인 자이라 테라퓨틱스(Xaira Therapeutics)는 ARCH 벤처 파트너스(ARCH Venture Partners) 및 포레사이트 랩스(Foresite Labs)와의 협력 투자 라운드를 통해 100만 달러 이상의 투자를 유치했습니다. 자이라 테라퓨틱스는 머신러닝, 데이터 생성 모델, 그리고 치료제 개발을 활용하여 기존에는 접근하기 어려웠던 약물 표적에 집중하고 있습니다.
  • 2023년 12월, 머크의 생명과학 부문인 밀리포어시그마(MilliporeSigma)는 최첨단 신약 개발 소프트웨어인 AIDDISON을 출시했습니다. 이 플랫폼은 Synthia 역합성 소프트웨어 API를 통합하여 가상 분자 설계와 실제 제조 가능성 간의 간극을 메웁니다. 생성적 AI, 머신러닝, 그리고 컴퓨터 지원 약물 설계(CAD)를 결합하여 약물 개발 프로세스를 간소화합니다.
  • 2023년 5월, 구글은 바이오테크 및 제약 회사의 신약 개발 가속화와 정밀 의학 개선을 지원하기 위한 두 가지 혁신적인 AI 기반 도구를 출시했습니다. 이 솔루션은 미국 시장에 새로운 치료법을 도입하는 데 드는 시간과 비용을 절감하도록 설계되었습니다. 세레벨 테라퓨틱스(Cerevel Therapeutics), 화이자(Pfizer), 콜로설 바이오사이언스(Colossal Biosciences) 등이 이러한 도구를 조기에 도입했습니다 .


SKU-

세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요

  • 대화형 데이터 분석 대시보드
  • 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
  • 사용자 정의 및 질의를 위한 리서치 분석가 액세스
  • 대화형 대시보드를 통한 경쟁자 분석
  • 최신 뉴스, 업데이트 및 추세 분석
  • 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
데모 요청

목차

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 MARKETS COVERED

2.5 GEOGRAPHIC SCOPE

2.6 YEARS CONSIDERED FOR THE STUDY

2.7 RESEARCH METHODOLOGY

2.8 TECHNOLOGY LIFE LINE CURVE

2.9 MULTIVARIATE MODELLING

2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS

2.11 DBMR MARKET POSITION GRID

2.12 MARKET APPLICATION COVERAGE GRID

2.13 DBMR MARKET CHALLENGE MATRIX

2.14 SECONDARY SOURCES

2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT

2.16 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

5.1 PESTEL ANALYSIS

5.2 PORTER’S FIVE FORCES MODEL

6 INDUSTRY INSIGHTS

6.1 MICRO AND MACRO ECONOMIC FACTORS

6.2 PENETRATION AND GROWTH PROSPECT MAPPING

6.3 KEY PRICING STRATEGIES

6.4 INTERVIEWS WITH SPECIALIST

6.5 ANALYIS AND RECOMMENDATION

7 INTELLECTUAL PROPERTY (IP) PORTFOLIO

7.1 PATENT QUALITY AND STRENGTH

7.2 PATENT FAMILIES

7.3 LICENSING AND COLLABORATIONS

7.4 COMPETITIVE LANDSCAPE

7.5 IP STRATEGY AND MANAGEMENT

7.6 OTHER

8 COST ANALYSIS BREAKDOWN

9 TECHNONLOGY ROADMAP

10 INNOVATION TRACKER AND STRATEGIC ANALYSIS

10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS

10.1.1 JOINT VENTURES

10.1.2 MERGERS AND ACQUISITIONS

10.1.3 LICENSING AND PARTNERSHIP

10.1.4 TECHNOLOGY COLLABORATIONS

10.1.5 STRATEGIC DIVESTMENTS

10.2 NUMBER OF PRODUCTS IN DEVELOPMENT

10.3 STAGE OF DEVELOPMENT

10.4 TIMELINES AND MILESTONES

10.5 INNOVATION STRATEGIES AND METHODOLOGIES

10.6 RISK ASSESSMENT AND MITIGATION

10.7 FUTURE OUTLOOK

11 REGULATORY COMPLIANCE

11.1 REGULATORY AUTHORITIES

11.2 REGULATORY CLASSIFICATIONS

11.2.1 CLASS I

11.2.2 CLASS II

11.2.3 CLASS III

11.3 REGULATORY SUBMISSIONS

11.4 INTERNATIONAL HARMONIZATION

11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS

11.6 REGULATORY CHALLENGES AND STRATEGIES

12 REIMBURSEMENT FRAMEWORK

13 OPPUTUNITY MAP ANALYSIS

14 VALUE CHAIN ANALYSIS

15 HEALTHCARE ECONOMY

15.1 HEALTHCARE EXPENDITURE

15.2 CAPITAL EXPENDITURE

15.3 CAPEX TRENDS

15.4 CAPEX ALLOCATION

15.5 FUNDING SOURCES

15.6 INDUSTRY BENCHMARKS

15.7 GDP RATION IN OVERALL GDP

15.8 HEALTHCARE SYSTEM STRUCTURE

15.9 GOVERNMENT POLICIES

15.1 ECONOMIC DEVELOPMENT

16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING

16.1 OVERVIEW

16.2 SOFTWARE

16.2.1 INTEGRATED

16.2.2 STANDALONE

16.3 SERVICES

17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY

17.1 OVERVIEW

17.2 MACHINE LEARNING (ML)

17.2.1 SUPERVISED LEARNING

17.2.2 UNSUPERVISED LEARNING

17.2.3 REINFORCEMENT LEARNING

17.3 DEEP LEARNING

17.4 NATURAL LANGUAGE PROCESSING (NLP)

17.5 OTHERS

18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE

18.1 OVERVIEW

18.2 SMALL MOLECULE

18.3 LARGE MOLECULE

19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION

19.1 OVERVIEW

19.2 NOVEL DRUG CANDIDATES

19.2.1 IDENTIFY BIOLOGICS TARGET

19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE

19.2.3 OTHERS

19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL

19.4 DRUG MONITORING

19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS

19.6 UNDERSTANDING DISEASE MECHANISMS

19.7 AGGREGATING AND SYNTHESIZING INFORMATION

19.8 FORM ATION & QUALIFICATION OF HYPOTHESES

19.9 DE NOVO DRUG DESIGN

19.1 FINDING DRUG TARGETS OF AN OLD DRUG

19.11 OTHERS

20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION

20.1 OVERVIEW

20.2 IMMUNO-ONCOLOGY

20.2.1 PROSTATE CANCER

20.2.2 BREAST CANCER

20.2.3 BRAIN CANCER

20.2.4 LUNG CANCER

20.2.5 PANCREATIC CANCER

20.2.6 COLORECTAL CANCER

20.2.7 LEUKEMIA

20.2.8 OTHERS

20.3 NEURODEGENERATIVE DISEASES

20.4 CARDIOVASCULAR DISEASES

20.5 METABOLIC DISEASES

20.6 OTHERS

21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER

21.1 OVERVIEW

21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES

21.3 CONTRACT RESEARCH ORGANIZATIONS

21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES

21.5 OTHERS

22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)

GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

22.1 OVERVIEW

22.2 NORTH AMERICA

22.2.1 U.S.

22.2.2 CANADA

22.2.3 MEXICO

22.3 EUROPE

22.3.1 GERMANY

22.3.2 U.K.

22.3.3 ITALY

22.3.4 FRANCE

22.3.5 SPAIN

22.3.6 SWITZERLAND

22.3.7 RUSSIA

22.3.8 TURKEY

22.3.9 BELGIUM

22.3.10 NETHERLANDS

22.3.11 REST OF EUROPE

22.4 ASIA-PACIFIC

22.4.1 JAPAN

22.4.2 CHINA

22.4.3 SOUTH KOREA

22.4.4 INDIA

22.4.5 AUSTRALIA & NEW ZEALAND

22.4.6 SINGAPORE

22.4.7 THAILAND

22.4.8 INDONESIA

22.4.9 MALAYSIA

22.4.10 PHILIPPINES

22.4.11 REST OF ASIA-PACIFIC

22.5 SOUTH AMERICA

22.5.1 BRAZIL

22.5.2 ARGENTINA

22.5.3 REST OF SOUTH AMERICA

22.6 MIDDLE EAST AND AFRICA

22.6.1 SOUTH AFRICA

22.6.2 EGYPT

22.6.3 SAUDI ARABIA

22.6.4 UNITED ARAB EMIRATES

22.6.5 ISRAEL

22.6.6 REST OF MIDDLE EAST AND AFRICA

23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE

23.1 COMPANY SHARE ANALYSIS: GLOBAL

23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

23.3 COMPANY SHARE ANALYSIS: EUROPE

23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

23.5 MERGERS & ACQUISITIONS

23.6 NEW PRODUCT DEVELOPMENT & APPROVALS

23.7 EXPANSIONS

23.8 REGULATORY CHANGES

23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES

24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS

25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE

25.1 MICROSOFT

25.1.1 COMPANY OVERVIEW

25.1.2 REVENUE ANALYSIS

25.1.3 PRODUCT PORTFOLIO

25.1.4 RECENT DEVELOPMENTS

25.2 SHANGHAI MEDICILON INC.

25.2.1 COMPANY OVERVIEW

25.2.2 REVENUE ANALYSIS

25.2.3 PRODUCT PORTFOLIO

25.2.4 RECENT DEVELOPMENTS

25.3 NVIDIA CORPORATION + ASTRAZENECA

25.3.1 COMPANY OVERVIEW

25.3.2 REVENUE ANALYSIS

25.3.3 PRODUCT PORTFOLIO

25.3.4 RECENT DEVELOPMENTS

25.4 ATOMWISE INC.

25.4.1 COMPANY OVERVIEW

25.4.2 REVENUE ANALYSIS

25.4.3 PRODUCT PORTFOLIO

25.4.4 RECENT DEVELOPMENTS

25.5 DEEP GENOMICS

25.5.1 COMPANY OVERVIEW

25.5.2 REVENUE ANALYSIS

25.5.3 PRODUCT PORTFOLIO

25.5.4 RECENT DEVELOPMENTS

25.6 CLOUD PHARMACEUTICALS INC.

25.6.1 COMPANY OVERVIEW

25.6.2 REVENUE ANALYSIS

25.6.3 PRODUCT PORTFOLIO

25.6.4 RECENT DEVELOPMENTS

25.7 INSILICO MEDICINE

25.7.1 COMPANY OVERVIEW

25.7.2 REVENUE ANALYSIS

25.7.3 PRODUCT PORTFOLIO

25.7.4 RECENT DEVELOPMENTS

25.8 BENEVOLENTAI

25.8.1 COMPANY OVERVIEW

25.8.2 REVENUE ANALYSIS

25.8.3 PRODUCT PORTFOLIO

25.8.4 RECENT DEVELOPMENTS

25.9 EXSCIENTIA

25.9.1 COMPANY OVERVIEW

25.9.2 REVENUE ANALYSIS

25.9.3 PRODUCT PORTFOLIO

25.9.4 RECENT DEVELOPMENTS

25.1 CYCLICA

25.10.1 COMPANY OVERVIEW

25.10.2 REVENUE ANALYSIS

25.10.3 PRODUCT PORTFOLIO

25.10.4 RECENT DEVELOPMENTS

25.11 OWKIN, INC

25.11.1 COMPANY OVERVIEW

25.11.2 REVENUE ANALYSIS

25.11.3 PRODUCT PORTFOLIO

25.11.4 RECENT DEVELOPMENTS

25.12 ENVISAGENICS

25.12.1 COMPANY OVERVIEW

25.12.2 REVENUE ANALYSIS

25.12.3 PRODUCT PORTFOLIO

25.12.4 RECENT DEVELOPMENTS

25.13 NUMEDII, INC.

25.13.1 COMPANY OVERVIEW

25.13.2 REVENUE ANALYSIS

25.13.3 PRODUCT PORTFOLIO

25.13.4 RECENT DEVELOPMENTS

25.14 BIOSYNTAGMA

25.14.1 COMPANY OVERVIEW

25.14.2 REVENUE ANALYSIS

25.14.3 PRODUCT PORTFOLIO

25.14.4 RECENT DEVELOPMENTS

25.15 COLLABORATIONS PHARMACEUTICALS, INC.

25.15.1 COMPANY OVERVIEW

25.15.2 REVENUE ANALYSIS

25.15.3 PRODUCT PORTFOLIO

25.15.4 RECENT DEVELOPMENTS

25.16 INVENIAI LLC

25.16.1 COMPANY OVERVIEW

25.16.2 REVENUE ANALYSIS

25.16.3 PRODUCT PORTFOLIO

25.16.4 RECENT DEVELOPMENTS

25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION

25.17.1 COMPANY OVERVIEW

25.17.2 REVENUE ANALYSIS

25.17.3 PRODUCT PORTFOLIO

25.17.4 RECENT DEVELOPMENTS

25.18 VALO HEALTH

25.18.1 COMPANY OVERVIEW

25.18.2 REVENUE ANALYSIS

25.18.3 PRODUCT PORTFOLIO

25.18.4 RECENT DEVELOPMENTS

25.19 AIFORIA

25.19.1 COMPANY OVERVIEW

25.19.2 REVENUE ANALYSIS

25.19.3 PRODUCT PORTFOLIO

25.19.4 RECENT DEVELOPMENTS

25.2 CHEMALIVE

25.20.1 COMPANY OVERVIEW

25.20.2 REVENUE ANALYSIS

25.20.3 PRODUCT PORTFOLIO

25.20.4 RECENT DEVELOPMENTS

25.21 DEEPMATTER GROUP LIMITED

25.21.1 COMPANY OVERVIEW

25.21.2 REVENUE ANALYSIS

25.21.3 PRODUCT PORTFOLIO

25.21.4 RECENT DEVELOPMENTS

25.22 MABSILICO.

25.22.1 COMPANY OVERVIEW

25.22.2 REVENUE ANALYSIS

25.22.3 PRODUCT PORTFOLIO

25.22.4 RECENT DEVELOPMENTS

25.23 OPTIBRIUM, LTD.

25.23.1 COMPANY OVERVIEW

25.23.2 REVENUE ANALYSIS

25.23.3 PRODUCT PORTFOLIO

25.23.4 RECENT DEVELOPMENTS

25.24 ABBVIE AND BIGHAT BIOSCIENCES

25.24.1 COMPANY OVERVIEW

25.24.2 REVENUE ANALYSIS

25.24.3 PRODUCT PORTFOLIO

25.24.4 RECENT DEVELOPMENTS

25.25 ADAGENE

25.25.1 COMPANY OVERVIEW

25.25.2 REVENUE ANALYSIS

25.25.3 PRODUCT PORTFOLIO

25.25.4 RECENT DEVELOPMENTS

25.26 PEPTICOM LTD.

25.26.1 COMPANY OVERVIEW

25.26.2 REVENUE ANALYSIS

25.26.3 PRODUCT PORTFOLIO

25.26.4 RECENT DEVELOPMENTS

25.27 DEARGEN INC.

25.27.1 COMPANY OVERVIEW

25.27.2 REVENUE ANALYSIS

25.27.3 PRODUCT PORTFOLIO

25.27.4 RECENT DEVELOPMENTS

25.28 GERO.AI

25.28.1 COMPANY OVERVIEW

25.28.2 REVENUE ANALYSIS

25.28.3 PRODUCT PORTFOLIO

25.28.4 RECENT DEVELOPMENTS

25.29 3BIGS CO. LTD.

25.29.1 COMPANY OVERVIEW

25.29.2 REVENUE ANALYSIS

25.29.3 PRODUCT PORTFOLIO

25.29.4 RECENT DEVELOPMENTS

25.3 BPGBIO INC.

25.30.1 COMPANY OVERVIEW

25.30.2 REVENUE ANALYSIS

25.30.3 PRODUCT PORTFOLIO

25.30.4 RECENT DEVELOPMENTS

25.31 SCHRÖDINGER, INC.

25.31.1 COMPANY OVERVIEW

25.31.2 REVENUE ANALYSIS

25.31.3 PRODUCT PORTFOLIO

25.31.4 RECENT DEVELOPMENTS

25.32 XTALPI INC.

25.32.1 COMPANY OVERVIEW

25.32.2 REVENUE ANALYSIS

25.32.3 PRODUCT PORTFOLIO

25.32.4 RECENT DEVELOPMENTS

25.33 BIOAGE INC.

25.33.1 COMPANY OVERVIEW

25.33.2 REVENUE ANALYSIS

25.33.3 PRODUCT PORTFOLIO

25.33.4 RECENT DEVELOPMENTS

26 RELATED REPORTS

27 QUESTIONNAIRE

28 CONCLUSION

29 ABOUT DATA BRIDGE MARKET RESEARCH

자세한 정보 보기 Right Arrow

연구 방법론

데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.

DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.

사용자 정의 가능

Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

자주 묻는 질문

The global artificial intelligence (ai) in drug discovery market size was valued at USD 981.64 million in 2024.
The global artificial intelligence (ai) in drug discovery market is to grow at a CAGR of 5.30 % during the forecast period of 2025 to 2032.
The artificial intelligence (ai) in drug discovery market is segmented on the basis of application, technology, drug type, offering, indication, and end use. On the basis of application, the market is segmented into novel drug candidates, drug optimization and repurposing preclinical testing and approval, drug monitoring, finding new diseases associated targets and pathways, understanding disease mechanisms, aggregating and synthesizing information, formation and qualification of hypotheses, de novo drug design, finding drug targets of an old drug and others. On the basis of technology, the market is segmented into machine learning, deep learning, natural language processing, and others. On the basis of drug type, the market is segmented into small molecule and large molecule. On the basis of offering, the market is segmented into software and services. On the basis of indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others. On the basis of end use, the market is segmented into direct contract research organizations (CROS), pharmaceutical and biotechnology companies, research centers and academic institutes, and others.
Companies such as NVIDIA Corporation (U.S.), IBM Corp. (U.S.), Atomwise Inc. (U.S.), Microsoft (U.S.), Benevolent AI (U.K.) are the major companies in the artificial intelligence (ai) in drug discovery market.
In January 2025, Bausch + Lomb Corporation, a global leader in eye health, has announced the commercial launch of its enVista Aspire monofocal and toric intraocular lenses (IOLs) in the European Union, following the receipt of a CE Mark. In September 2024, Haag-Streit announced the launch of METIS, its cutting-edge ophthalmic microscope system, which brings superior optical performance into the operating room with exceptional clarity, a brilliant coaxial red reflex, and optimized optics for precise color reproduction, high light transmission, and an expansive depth of field, making it ideal for delicate ophthalmic procedures. It will be officially launched in Q1 2025
The countries covered in the artificial intelligence (ai) in drug discovery market are U.S., Canada, Mexico, Germany, France, U.K., Italy, Spain, Russia, Turkey, Netherlands, Switzerland, Austria, Poland, Norway, Ireland, Hungary, Lithuania, rest of Europe, China, Japan, India, South Korea, Australia, Taiwan, Philippines, Thailand, Malaysia, Vietnam, Indonesia, Singapore, rest of Asia-Pacific, Brazil, Argentina, Chili, Colombia, Peru, Venezuela, Ecuador, Uruguay, Paraguay ,Bolivia, Trinidad And Tobago, Curaçao, rest Of South America, South Africa, Saudi Arabia, U.A.E, Egypt, Israel, Kuwait, rest of Middle East and Africa, Guatemala, Costa Rica, Honduras, EL Salvador, Nicaragua, and rest of Central America.
The Asia-Pacific (APAC) region is projected to be the fastest-growing market for artificial intelligence (AI) in drug discovery, with a notable compound annual growth rate (CAGR) expected in the coming years. This growth is driven by increasing investments in healthcare infrastructure, rising adoption of AI technologies, and a growing focus on drug discovery and development in the region.
U.S. is expected to dominate the artificial intelligence (AI) in drug discovery market. This is due to its well-established pharmaceutical and biotechnology sectors, significant investments in AI research, and strong collaborations between tech companies and healthcare organizations.
North America holds the largest share in the global artificial intelligence (AI) in drug discovery market. This dominance is attributed to its well-established pharmaceutical industry, significant investments in AI research, and the presence of leading pharmaceutical and biotechnology companies.
China, is expected to witness the highest compound annual growth rate (CAGR) in the artificial intelligence (AI) in drug discovery market. This growth is driven by increasing investments in AI technologies, expanding pharmaceutical industries, and government initiatives supporting innovation in healthcare.
AI-Driven innovations revolutionizing drug discovery, is emerging as a pivotal trend driving the global artificial intelligence (AI) in drug discovery market.
The major factors driving the growth of the artificial intelligence (ai) in drug discovery market is rising R&D investments in pharmaceutical industry.
The primary challenges include high initial investment costs.
The oncology segment is currently dominating the artificial intelligence (AI) in drug discovery market.
Testimonial