보험 시장 규모, 점유율 및 추세 분석 보고서의 글로벌 인공지능(AI) – 산업 개요 및 2032년까지의 예측

TOC 요청 TOC 요청 분석가에게 문의 분석가에게 문의 무료 샘플 보고서 무료 샘플 보고서 구매하기 전에 문의 구매하기 전에 문의 지금 구매 지금 구매

보험 시장 규모, 점유율 및 추세 분석 보고서의 글로벌 인공지능(AI) – 산업 개요 및 2032년까지의 예측

  • ICT
  • Upcoming Report
  • Mar 2025
  • Global
  • 350 Pages
  • 테이블 수: 220
  • 그림 수: 60
  • Author : Megha Gupta

민첩한 공급망 컨설팅으로 관세 문제를 극복하세요

공급망 생태계 분석이 이제 DBMR 보고서의 일부가 되었습니다

Global Artificial Intelligence Ai In Insurance Market

시장 규모 (USD 10억)

연평균 성장률 :  % Diagram

Chart Image USD 6.44 Billion USD 63.27 Billion 2024 2032
Diagram 예측 기간
2025 –2032
Diagram 시장 규모(기준 연도)
USD 6.44 Billion
Diagram 시장 규모(예측 연도)
USD 63.27 Billion
Diagram 연평균 성장률
%
Diagram 주요 시장 플레이어
  • Microsoft
  • Infosys Limited
  • Tractable Ltd
  • InsurifyInc.
  • Slice Insurance Technologies Inc. Google

보험 시장 내 글로벌 인공지능(AI) 세분화, 구성 요소(하드웨어, 소프트웨어 및 서비스), 기술(머신러닝 및 딥러닝, 자연어 처리(NLP), 머신 비전 및 로봇 자동화), 배포 모델(온프레미스 및 클라우드), 기업 규모(대기업 및 중소기업), 애플리케이션(클레임 관리, 위험 관리 및 규정 준수, 챗봇 및 기타), 부문(생명 보험, 건강 보험, 타이틀 보험, 자동차 보험 및 기타) - 2032년까지의 산업 동향 및 예측

보험 시장의 인공지능(AI)

보험 시장 규모에서의 인공지능(AI)

  • 보험 분야의 글로벌 인공지능(AI) 시장 규모는 2024년에 64억 4천만 달러 로 평가되었으며, 2032년에는 632억 7천만 달러 에 이를 것으로 예상됩니다 .
  • 2025년부터 2032년까지의 예측 기간 동안 시장은 주로 예측 분석의 발전에 의해 주도되어 33.06%의 CAGR로 성장할 것으로 예상됩니다.
  • 이러한 성장은 더 나은 위험 평가 및 가격 책정, IoT 통합, 더 빠른 청구 처리와 같은 요인에 의해 촉진됩니다.

보험 시장 분석에서의 인공지능(AI)

  • 보험 분야의 인공 지능은 머신 러닝, 자연어 처리, 예측 분석과 같은 인공 지능 기술을 사용하여 위험 평가, 청구 처리, 사기 탐지 및 고객 참여를 향상시키는 것을 의미합니다.
  • 시장 성장은 AI 기반 자동화 도입 증가, 실시간 데이터 분석 수요 증가, 그리고 향상된 사기 탐지 기술에 대한 필요성에 의해 주도되고 있습니다. 보험사들이 디지털 혁신을 도입함에 따라, AI 솔루션은 효율성 향상 및 운영 비용 절감을 위한 필수 요소로 자리 잡고 있습니다.
  • AI와 빅데이터, IoT, 클라우드 컴퓨팅의 통합은 보험 산업의 지형을 변화시키고 있습니다. AI 기반 도구는 개인 맞춤형 보험 가격 책정, 자동화된 인수, 예측 위험 모델링을 가능하게 하여 의사 결정 프로세스를 최적화합니다.
  • 예를 들어, 디지털 중심 보험 회사인 Lemonade 는 AI 챗봇을 사용하여 몇 분 안에 청구를 처리하고 Allstate는 AI 기반 분석을 사용하여 고객 데이터를 기반으로 정책 권장 사항을 최적화합니다.
  • 보험 시장의 AI는 자동화, 실시간 분석, AI 기반 의사 결정 기술의 발전에 힘입어 지속적인 성장을 보일 것으로 예상됩니다. 인슈어테크(InsurTech)에 대한 투자 증가와 원활한 디지털 경험에 대한 수요는 시장 확장을 더욱 가속화할 것이며, 보험사들은 경쟁력 유지를 위해 AI 도입을 우선시할 것입니다.

보험 시장 세분화 의 보고서 범위 및 인공 지능(AI)

속성

보험 분야의 인공지능(AI) 주요 시장 통찰력

다루는 세그먼트

  • 구성 요소별: 하드웨어, 소프트웨어 및 서비스
  • 기술별: 머신 러닝 및 딥 러닝, 자연어 처리(NLP), 머신 비전, 로봇 자동화
  • 배포 모델별: 온프레미스 및 클라우드
  • 기업 규모별: 대기업 및 중소기업
  • 응용 분야별: 클레임 관리, 위험 관리 및 규정 준수, 챗봇 등
  • 부문별: 생명보험, 건강보험, 타이틀보험, 자동차보험 및 기타

포함 국가

북아메리카

  • 우리를
  • 캐나다
  • 멕시코

유럽

  • 독일
  • 프랑스
  • 영국
  • 네덜란드
  • 스위스
  • 벨기에
  • 러시아 제국
  • 이탈리아
  • 스페인
  • 칠면조
  • 유럽의 나머지 지역

아시아 태평양

  • 중국
  • 일본
  • 인도
  • 대한민국
  • 싱가포르
  • 말레이시아
  • 호주
  • 태국
  • 인도네시아 공화국
  • 필리핀 제도
  • 아시아 태평양의 나머지 지역

중동 및 아프리카

  • 사우디 아라비아
  • 아랍에미리트
  • 남아프리카 공화국
  • 이집트
  • 이스라엘
  • 중동 및 아프리카의 나머지 지역

남아메리카

  • 브라질
  • 아르헨티나
  • 남미의 나머지 지역

주요 시장 참여자

  • 마이크로소프트(미국)
  • Infosys Limited(인도)
  • Tractable (영국)
  • Insurify, Inc. (미국)
  • 슬라이스 보험 테크놀로지스(미국)
  • 구글(미국)
  • 오라클(미국)
  • Amazon Web Services Inc.(미국)
  • IBM(미국)
  • 아바아모(미국)
  • CAPE Analytics(미국)
  • Wipro(인도)
  • 아코 일반 보험(인도)
  • Shift Technology(프랑스)
  • 퀀템플릿(영국)
  • 취리히(스위스)
  • 레모네이드 주식회사(미국)

시장 기회

  • AI 기반 위험 평가 확장

부가가치 데이터 정보 세트

Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 부문, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 유봉 분석이 포함되어 있습니다.

보험 시장 동향 에서의 인공지능(AI)

“AI 기반 챗봇 및 가상 비서 사용 증가”

  • 보험 시장에서 글로벌 인공지능(AI)의 두드러진 추세 중 하나는 AI 기반 채팅봇과 가상 비서의 사용이 증가하고 있다는 것입니다.
  • 이러한 추세는 보험사가 문의 처리, 청구 처리, 개인화된 정책 권장 사항 제공을 위해 대화형 AI를 통합하여 응답 시간을 단축하고 효율성을 개선함으로써 촉진되었습니다.
  • 예를 들어 GEICO의 가상 비서인 Kate 는 보험 계약자에게 실시간 지원을 제공하고 Lemonade의 AI 챗봇인 Maya는 몇 분 안에 원활한 청구 처리를 용이하게 합니다.
  • 디지털 기반의 24시간 연중무휴 고객 서비스에 대한 수요가 증가함에 따라 보험 산업에서 AI 기반 채팅봇 도입이 가속화되고 있습니다.
  • 보험사들이 운영 비용 절감과 사용자 경험 향상을 모색함에 따라 대화형 AI의 역할은 계속 확대될 것입니다. 향후 감정 AI와 음성 인식 기술의 발전은 챗봇 기능을 더욱 정교하게 만들어 더욱 인간적이고 개인화된 상호작용을 제공할 것으로 예상됩니다.

보험 시장 역학 에서의 인공지능(AI)

운전사

"자동화된 청구 처리에 대한 수요 증가"

  • 인공지능(AI)과 자동화에 대한 의존도 증가는 보험 시장에서 AI 성장의 핵심 동력입니다. 보험사들이 기존 클레임 처리 방식에서 AI 기반 자동화 방식으로 전환함에 따라, 효율적이고 정확한 클레임 처리의 필요성이 그 어느 때보다 중요해졌습니다.
  • 이러한 전환은 특히 건강, 자동차 및 재산 보험에서 두드러지게 나타납니다. 보험사는 AI 기반 청구 자동화를 활용하여 처리 시간을 단축하고 사기를 탐지하며 고객 경험을 향상시키고 있습니다.
  • 보험사가 방대한 양의 보험금 청구 데이터를 처리함에 따라 보험금 청구 관리의 복잡성이 증가했습니다. 이제 기업들은 손해 평가, 서류 검증, 원활한 보험 계약자 상호 작용 보장을 위해 AI 기반 보험금 청구 솔루션에 투자하고 있으며, 운영 비효율성도 줄이고 있습니다.
  • 빠르고 디지털 기반의 청구 처리에 대한 고객 선호도가 높아짐에 따라 AI 기반 자동화에 대한 수요가 더욱 증가하고 있습니다.
  • 기계 학습(ML)과 자연어 처리(NLP)를 통합함으로써 보험사는 의사 결정을 개선하고, 인간의 개입을 최소화하며, 보험 계약자의 신뢰를 강화할 수 있습니다.

예를 들어,

  • Progressive Insurance는 자동차 보험에 AI 기반 손상 평가 도구를 도입하여 컴퓨터 비전을 사용하여 사고 사진을 분석하고 실시간 수리 견적을 제공합니다.
  • Allstate의 AI 기반 청구 시스템은 사기 행위를 감지하고 일상적인 청구 평가를 자동화하여 더 빠른 해결을 보장합니다.
  • AI 기반 자동화 및 디지털 전환에 대한 투자가 증가함에 따라 AI 기반 청구 처리가 처리 시간 단축, 사기 청구 방지, 보험 계약자 만족도 향상에 중요한 역할을 하여 지속적인 시장 성장을 촉진할 것입니다.

기회

“AI 기반 위험 평가 확대”

  • AI 기반 위험 평가 모델의 도입 증가는 보험 시장에서 AI 활용에 중요한 기회를 제공합니다. 보험사들은 빅데이터 분석, 예측 모델링, 머신러닝(ML)을 활용하여 위험 평가를 개선하고, 보험 상품을 개인화하며, 인수 심사의 정확성을 높이고 있습니다.
  • 기존의 위험 평가 방식은 과거 데이터와 표준화된 기준에 의존하여 보험금 산정 및 보험금 청구 승인 과정에서 비효율성을 초래하는 경우가 많았습니다. AI 기반 도구는 실시간 행동 및 상황 데이터를 분석하여 보험사가 더욱 정확하고 역동적인 위험 평가를 수행할 수 있도록 지원합니다.
  • AI 기반 위험 평가를 통해 보험사는 실시간 운전 행동(자동차 보험), 생활 습관(건강 보험), 재산 사용 패턴(주택 보험)을 기반으로 보험료를 맞춤 설정할 수 있습니다.

예를 들어,

  • Swiss Re 는 AI 기반 예측 모델을 사용하여 기후 위험을 평가하고 보험사가 재산 및 재해 보험을 보다 정확하게 인수할 수 있도록 지원합니다.
  • AI 기반 보험 기술 기업인 Lemonade Inc.는 행동 데이터와 AI 알고리즘을 사용하여 위험을 평가하고 인수 심사를 간소화하여 즉각적인 정책 승인을 가능하게 합니다.
  • 보험 산업이 데이터 중심 및 고객 중심 모델로 전환함에 따라 AI 기반 위험 평가 솔루션은 효율성을 높이고 손실을 줄이며 보험 계약자 만족도를 높여 시장 참여자에게 상당한 성장 기회를 창출할 것입니다.

제지/도전

"데이터 개인정보 보호 및 규정 준수"

  • 보험 분야에서 AI 기반 솔루션의 광범위한 도입은 데이터 프라이버시, 보안 및 규정 준수와 관련하여 심각한 우려를 불러일으킵니다. 보험사는 위험 평가, 보험금 청구 처리 및 사기 탐지를 강화하기 위해 방대한 양의 개인, 금융 및 행동 데이터에 의존하고 있으며, 이로 인해 데이터 보호는 중대한 과제가 되고 있습니다.
  • 유럽의 GDPR(일반 데이터 보호 규정) , 미국의 CCPA(캘리포니아 소비자 개인정보 보호법) 및 HIPAA(건강보험 양도성 및 책임법) 와 같은 부문별 법률과 같은 엄격한 규정 은 보험사가 고객 데이터를 수집, 처리 및 저장하는 방법에 대한 엄격한 지침을 부과합니다.
  • 또한, 보험 인수 및 청구 처리에 있어서 AI 기반 의사 결정은 알고리즘 편향과 투명성 부족에 대한 우려를 불러일으켰습니다.

예를 들어,

  • 중국의 개인정보보호법(PIPL)은 중국에서 운영되는 외국 보험사에 엄격한 규제를 부과하여 AI 기반 데이터 분석 및 정책 맞춤화에 영향을 미쳤습니다.
  • 이러한 규제 및 개인정보 보호 문제는 보험 산업 내 AI 도입을 지연시키고, 규정 준수 비용을 증가시키며, 혁신을 저해할 수 있습니다. 보험사는 AI 발전과 엄격한 규제 준수 사이에서 균형을 맞춰야 하며, 이는 향후 몇 년 동안 시장 확장 둔화와 신중한 AI 구현 전략으로 이어질 수 있습니다.

보험 시장 범위 내 인공지능(AI)

시장은 구성 요소, 기술, 배포 모델, 기업 규모, 응용 프로그램 및 부문을 기준으로 세분화됩니다.

분할

하위 세분화

구성 요소별

  • 하드웨어
  • 소프트웨어
  • 서비스

기술로

  • 머신러닝 및 딥러닝
  • 자연어 처리(NLP)
  • 머신 비전
  • 로봇 자동화

배포 모델별

  • 온프레미스
  • 구름

기업 규모별

 

  • 대기업
  • 중소기업 기업

응용 프로그램별

  • 클레임 관리
  • 위험 관리 및 규정 준수
  • 챗봇
  • 기타

부문별

  • 생명 보험
  • 건강 보험
  • 타이틀 보험
  • 자동차 보험
  • 기타

보험 시장의 인공지능(AI) 지역 분석

“북미는 보험 시장 에서 인공지능(AI)의 지배적인 지역입니다.”

  • 북미는 AI 기반 기술의 조기 도입, 강력한 규제 프레임워크, 해당 지역의 선도적인 AI 솔루션 공급업체 의 존재 에 힘입어 보험 시장 에서 인공지능(AI)을 주도하고 있습니다 .
  • 미국 주요 보험사들이 AI 기반 인수, 클레임 자동화, 사기 감지에 상당한 투자를 했기 때문에 상당한 점유율을 차지하고 있습니다.
  • 이 지역의 첨단 IT 인프라와 보험사들의 높은 AI 도입률은 시장 선도적 입지를 더욱 공고히 하는 데 기여하고 있습니다. 미국과 캐나다 기업들은 머신러닝, 자연어 처리, 예측 분석을 활용하여 고객 경험과 운영 효율성을 향상시키고 있습니다.
  • 또한 AI 투명성과 윤리적 AI 사용을 촉진하는 규제 이니셔티브는 보험사가 규정을 준수하는 동시에 AI 기반 의사 결정을 통합하도록 장려하여 북미가 시장에서 지배적인 플레이어로서의 입지를 강화했습니다.

“아시아 태평양 지역이 가장 높은 성장률을 기록할 것으로 예상됩니다.”

  • 아시아 태평양 지역은 정부 주도의 디지털 전환 이니셔티브와 AI 기반 보험 기술에 대한 투자 증가에 힘입어 보험 시장 에서 인공지능(AI)이 가장 높은 성장률을 기록할 것으로 예상됩니다.
  • 중국, 인도, 일본 등의 국가에서는 급속한 디지털화가 진행 중이며, 이로 인해 AI 기반 채팅봇, 자동화된 청구 처리, 개인화된 정책 가격 책정 모델이 도입되어 고객 참여와 운영 효율성이 향상되고 있습니다.
  • Insurtech 스타트업의 확장, IoT 기반 위험 평가 솔루션의 침투 확대, AI 기반 사기 감지에 대한 수요 증가는 이 지역의 시장 성장을 더욱 촉진하고 있습니다.
  • 아시아 태평양 지역의 보험사들이 AI 기반 분석, 원격 정보 처리 및 예측 모델링을 지속적으로 통합함에 따라 이 지역은 신흥 보험 시장에서 확장을 모색하는 AI 솔루션 공급업체에게 상당한 기회를 제공합니다.

보험 시장 점유율에서의 인공지능(AI)

시장 경쟁 구도는 경쟁사별 세부 정보를 제공합니다. 여기에는 회사 개요, 회사 재무 상태, 매출 창출, 시장 잠재력, 연구 개발 투자, 신규 시장 진출, 글로벌 입지, 생산 시설 및 설비, 생산 능력, 회사의 강점과 약점, 제품 출시, 제품 종류 및 범위, 응용 분야별 우위 등이 포함됩니다. 위에 제공된 데이터는 해당 회사의 시장 집중도와 관련된 데이터입니다.

시장에서 활동하는 주요 시장 리더는 다음과 같습니다.

  • 마이크로소프트(미국)
  • Infosys Limited(인도)
  • Tractable (영국)
  • Insurify, Inc. (미국)
  • 슬라이스 보험 테크놀로지스(미국)
  • 구글(미국)
  • 오라클(미국)
  • Amazon Web Services Inc.(미국)
  • IBM(미국)
  • 아바아모(미국)
  • CAPE Analytics(미국)
  • Wipro(인도)
  • 아코 일반 보험(인도)
  • Shift Technology(프랑스)
  • 퀀템플릿(영국)
  • 취리히(스위스)
  • 레모네이드 주식회사(미국)

보험 시장에서 글로벌 인공지능(AI)의 최신 동향

  • 2023년 6월, AI 자동화 솔루션 전문 기업인 심플리파이(Simplifai)는 보험 업계를 위해 특별히 설계된 최초의 자체 GPT 도구인 심플리파이 인슈런스GPT(Simplifai InsuranceGPT) 를 출시했습니다 . 이 획기적인 혁신은 심플리파이의 AI 기반 노코드 플랫폼을 기반으로 하며, 회사의 강력한 비즈니스 프로세스 자동화 역량을 더욱 강화합니다.
  • 2023년 1월, 인프라 및 컨설팅 서비스를 통해 AI 대중화에 전념하는 AI inside Inc. 는 새로운 DX 솔루션을 출시했습니다 . 이 솔루션은 생명 보험 분야에 특화된 OCR 디지털 반구조화 건강 증명서를 활용하여 새로운 보험 상품 개발을 지원합니다.


SKU-

세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요

  • 대화형 데이터 분석 대시보드
  • 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
  • 사용자 정의 및 질의를 위한 리서치 분석가 액세스
  • 대화형 대시보드를 통한 경쟁자 분석
  • 최신 뉴스, 업데이트 및 추세 분석
  • 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
데모 요청

목차

1. INTRODUCTION

 

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

 

2. MARKET SEGMENTATION

 

2.1 KEY TAKEAWAYS

 

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET

 

2.2.1 VENDOR POSITIONING GRID

2.2.2 TECHNOLOGY LIFE LINE CURVE

2.2.3 MARKET GUIDE

2.2.4 COMAPANY MARKET SHARE ANALYSIS

2.2.5 MULTIVARIATE MODELLING

2.2.6 TOP TO BOTTOM ANALYSIS 

2.2.7 STANDARDS OF MEASUREMENT

2.2.8 VENDOR SHARE ANALYSIS

2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS

2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES

 

2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET: RESEARCH SNAPSHOT

2.4 ASSUMPTIONS

 

3. MARKET OVERVIEW

 

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

 

4. EXECUTIVE SUMMARY

 

5. PREMIUM INSIGHT

 

5.1 PORTERS FIVE FORCES

5.2 REGULATORY STANDARDS

5.3 TECHNOLOGICAL TRENDS

5.4 PATENT ANALYSIS

5.5 CASE STUDY

5.6 VALUE CHAIN ANALYSIS

5.7 COMPANY COMPARITIVE ANALYSIS

5.8 THE IMPACT OF AI ON THE FUTURE OF INSURANCE

5.9 AI DRIVEN INNOVATION IN THE INSURANCE SECTOR

 

6. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY COMPONENT

 

6.1 OVERVIEW

6.2 HARDWARE

 

6.2.1 PROCESSORS

 

6.2.1.1. MICROPROCESSING UNIT

6.2.1.2. GRAPHICS PROCESSING UNIT

6.2.1.3. FIELD PROGRAMMABLE GATE ARRAYS

6.2.1.4. OTHERS

 

6.2.2 MEMORY

6.2.3 NETWORK

 

6.3 SOFTWARE

 

6.3.1 SOFTWARE TOOL

 

6.3.1.1. DATA DISCOVERY

6.3.1.2. DATA QUALITY AND DATA GOVERNANCE

6.3.1.3. DATA VISUALIZATION

 

6.3.2 PLATFORM

 

6.4 SERVICES

 

6.4.1 MANAGED SERVICES

6.4.2 PROFESSIONAL SERVICES

 

7. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY TECHNOLOGY

 

7.1 OVERVIEW

 

7.2 MACHINE LEARNING

 

7.2.1 DEEP LEARNING

 

7.2.1.1. CONVOLUTIONAL NEURAL NETWORK (CNN)

7.2.1.2. RECURRENT NEURAL NETWORK (RNN)

7.2.1.3. GENERATIVE ADVERSARIAL NETWORKS (GAN)

 

7.2.2 SUPERVISED LEARNING

7.2.3 UNSUPERVISED LEARNING

7.2.4 REINFORCEMENT LEARNING

 

7.3 NATURAL LANGUAGE PROCESSING (NLP)

7.4 COMPUTER VISION

7.5 CONTEXT AWARENESS

7.6 ROBOTIC AUTOMATION

7.7 OTHERS

 

8. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY DEPLOYMENT MODE

 

8.1 OVERVIEW

8.2 CLOUD

8.3 ON-PREMISE

 

9. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY ENTERPRISE SIZE

 

9.1 OVERVIEW

 

9.2 SMALL & MEDIUM SIZE ENTERPRISE

 

9.2.1 BY DEPLOYMENT MODE

 

9.2.1.1. CLOUD

9.2.1.2. ON-PREMISE

 

9.3 LARGE SIZE ENTERPRISE

 

9.3.1 BY DEPLOYMENT MODE

 

9.3.1.1. CLOUD

9.3.1.2. ON-PREMISE

 

10. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY APPLICATION

 

10.1 OVERVIEW

10.2 CLAIMS MANAGEMENT

10.3 RISK MANAGEMENT AND COMPLIANCE

10.4 CHATBOTS

10.5 FRAUD DETECTION

10.6 CUSTOMER RELATIONSHIP MANAGEMENT

10.7 CYBERSECURITY

10.8 OTHERS

 

11. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY END USER

 

11.1 OVERVIEW

11.2 INSURANCE COMPANIES

11.3 BROKERS

11.4 AGENTS

 

12. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY SECTOR

 

12.1 OVERVIEW

 

12.2 LIFE INSURANCE

 

12.2.1 BY COMPONENT

 

12.2.1.1. HARDWARE

12.2.1.2. SOFTWARE

12.2.1.3. SERVICES

 

12.3 HEALTH INSURANCE

 

12.3.1 BY COMPONENT

 

12.3.1.1. HARDWARE

12.3.1.2. SOFTWARE

12.3.1.3. SERVICES

 

12.4 TITLE INSURANCE

 

12.4.1 BY COMPONENT

 

12.4.1.1. HARDWARE

12.4.1.2. SOFTWARE

12.4.1.3. SERVICES

 

12.5 AUTO INSURANCE

 

12.5.1 BY COMPONENT

 

12.5.1.1. HARDWARE

12.5.1.2. SOFTWARE

12.5.1.3. SERVICES

 

12.6 OTHERS

 

13. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY GEOGRAPHY

 

13.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

 

13.1.1 NORTH AMERICA

 

13.1.1.1. U.S.

13.1.1.2. CANADA

13.1.1.3. MEXICO

 

13.1.2 EUROPE

 

13.1.2.1. GERMANY

13.1.2.2. FRANCE

13.1.2.3. U.K.

13.1.2.4. ITALY

13.1.2.5. SPAIN

13.1.2.6. RUSSIA

13.1.2.7. TURKEY

13.1.2.8. BELGIUM

13.1.2.9. NETHERLANDS

13.1.2.10. NORWAY

13.1.2.11. FINLAND

13.1.2.12. SWITZERLAND

13.1.2.13. DENMARK

13.1.2.14. SWEDEN

13.1.2.15. POLAND

13.1.2.16. REST OF EUROPE

 

13.1.3 ASIA PACIFIC

 

13.1.3.1. JAPAN

13.1.3.2. CHINA

13.1.3.3. SOUTH KOREA

13.1.3.4. INDIA

13.1.3.5. AUSTRALIA 

13.1.3.6. NEW ZEALAND

13.1.3.7. SINGAPORE

13.1.3.8. THAILAND

13.1.3.9. MALAYSIA

13.1.3.10. INDONESIA

13.1.3.11. PHILIPPINES

13.1.3.12. TAIWAN

13.1.3.13. VIETNAM

13.1.3.14. REST OF ASIA PACIFIC

 

13.1.4 SOUTH AMERICA

 

13.1.4.1. BRAZIL

13.1.4.2. ARGENTINA

13.1.4.3. REST OF SOUTH AMERICA

 

13.1.5 MIDDLE EAST AND AFRICA

 

13.1.5.1. SOUTH AFRICA

13.1.5.2. EGYPT

13.1.5.3. SAUDI ARABIA

13.1.5.4. U.A.E

13.1.5.5. OMAN

13.1.5.6. BAHRAIN

13.1.5.7. ISRAEL

13.1.5.8. KUWAIT

13.1.5.9. QATAR

13.1.5.10. REST OF MIDDLE EAST AND AFRICA

 

13.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES

 

14. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET,COMPANY LANDSCAPE

 

14.1 COMPANY SHARE ANALYSIS: GLOBAL

14.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

14.3 COMPANY SHARE ANALYSIS: EUROPE

14.4 COMPANY SHARE ANALYSIS: ASIA PACIFIC

14.5 MERGERS & ACQUISITIONS

14.6 NEW PRODUCT DEVELOPMENT AND APPROVALS

14.7 EXPANSIONS

14.8 REGULATORY CHANGES

14.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS

 

15. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, SWOT & DBMR ANALYSIS

 

16. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, COMPANY PROFILE

 

16.1 IBM

 

16.1.1 COMPANY SNAPSHOT

16.1.2 REVENUE ANALYSIS

16.1.3 PRODUCT PORTFOLIO

16.1.4 RECENT DEVELOPMENT

 

16.2 DAMCO GROUP

 

16.2.1 COMPANY SNAPSHOT

16.2.2 REVENUE ANALYSIS

16.2.3 PRODUCT PORTFOLIO

16.2.4 RECENT DEVELOPMENT

 

16.3 MICROSOFT

 

16.3.1 COMPANY SNAPSHOT

16.3.2 REVENUE ANALYSIS

16.3.3 PRODUCT PORTFOLIO

16.3.4 RECENT DEVELOPMENT

 

16.4 AMAZON WEB SERVICES, INC.

 

16.4.1 COMPANY SNAPSHOT

16.4.2 REVENUE ANALYSIS

16.4.3 PRODUCT PORTFOLIO

16.4.4 RECENT DEVELOPMENT

 

16.5 ORACLE

 

16.5.1 COMPANY SNAPSHOT

16.5.2 REVENUE ANALYSIS

16.5.3 PRODUCT PORTFOLIO

16.5.4 RECENT DEVELOPMENT

 

16.6 AVAAMO

 

16.6.1 COMPANY SNAPSHOT

16.6.2 REVENUE ANALYSIS

16.6.3 PRODUCT PORTFOLIO

16.6.4 RECENT DEVELOPMENT

16.7 SAP

 

16.7.1 COMPANY SNAPSHOT

16.7.2 REVENUE ANALYSIS

16.7.3 PRODUCT PORTFOLIO

16.7.4 RECENT DEVELOPMENT

 

16.8 CAPE ANALYTICS

 

16.8.1 COMPANY SNAPSHOT

16.8.2 REVENUE ANALYSIS

16.8.3 PRODUCT PORTFOLIO

16.8.4 RECENT DEVELOPMENT

 

16.9 WIPRO

 

16.9.1 COMPANY SNAPSHOT

16.9.2 REVENUE ANALYSIS

16.9.3 PRODUCT PORTFOLIO

16.9.4 RECENT DEVELOPMENT

 

16.10 SHIFT TECHNOLOGY

 

16.10.1 COMPANY SNAPSHOT

16.10.2 REVENUE ANALYSIS

16.10.3 PRODUCT PORTFOLIO

16.10.4 RECENT DEVELOPMENT

 

16.11 QUANTEMPLATE

 

16.11.1 COMPANY SNAPSHOT

16.11.2 REVENUE ANALYSIS

16.11.3 PRODUCT PORTFOLIO

16.11.4 RECENT DEVELOPMENT

 

16.12 ZURICH

 

16.12.1 COMPANY SNAPSHOT

16.12.2 REVENUE ANALYSIS

16.12.3 PRODUCT PORTFOLIO

16.12.4 RECENT DEVELOPMENT

 

16.13 LEMONADE, INC.

 

16.13.1 COMPANY SNAPSHOT

16.13.2 REVENUE ANALYSIS

16.13.3 PRODUCT PORTFOLIO

16.13.4 RECENT DEVELOPMENT

 

16.14 SLICE INSURANCE TECHNOLOGIES INC

 

16.14.1 COMPANY SNAPSHOT

16.14.2 REVENUE ANALYSIS

16.14.3 PRODUCT PORTFOLIO

16.14.4 RECENT DEVELOPMENT

 

16.15 INSURIFY, INC.

 

16.15.1 COMPANY SNAPSHOT

16.15.2 REVENUE ANALYSIS

16.15.3 PRODUCT PORTFOLIO

16.15.4 RECENT DEVELOPMENT

 

16.16 INSURMI

 

16.16.1 COMPANY SNAPSHOT

16.16.2 REVENUE ANALYSIS

16.16.3 PRODUCT PORTFOLIO

16.16.4 RECENT DEVELOPMENT

 

16.17 PLANCK RESOLUTION LTD.

 

16.17.1 COMPANY SNAPSHOT

16.17.2 REVENUE ANALYSIS

16.17.3 PRODUCT PORTFOLIO

16.17.4 RECENT DEVELOPMENT

 

16.18 TRACTABLE LTD.

 

16.18.1 COMPANY SNAPSHOT

16.18.2 REVENUE ANALYSIS

16.18.3 PRODUCT PORTFOLIO

16.18.4 RECENT DEVELOPMENT

 

16.19 GOOGLE

 

16.19.1 COMPANY SNAPSHOT

16.19.2 REVENUE ANALYSIS

16.19.3 PRODUCT PORTFOLIO

16.19.4 RECENT DEVELOPMENT

 

16.20 INFOSYS LIMITED

 

16.20.1 COMPANY SNAPSHOT

16.20.2 REVENUE ANALYSIS

16.20.3 PRODUCT PORTFOLIO

16.20.4 RECENT DEVELOPMENT

 

16.21 FLYREEL, INC. ( A PART OF LEXISNEXIS® RISK SOLUTIONS)

 

16.21.1 COMPANY SNAPSHOT

16.21.2 REVENUE ANALYSIS

16.21.3 PRODUCT PORTFOLIO

16.21.4 RECENT DEVELOPMENT

 

16.22 ANADEA, INC

 

16.22.1 COMPANY SNAPSHOT

16.22.2 REVENUE ANALYSIS

16.22.3 PRODUCT PORTFOLIO

16.22.4 RECENT DEVELOPMENT

 

16.23 WORKFUSION, INC.

 

16.23.1 COMPANY SNAPSHOT

16.23.2 REVENUE ANALYSIS

16.23.3 PRODUCT PORTFOLIO

16.23.4 RECENT DEVELOPMENT

 

NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST

 

17. CONCLUSION

 

18. QUESTIONNAIRE

 

19. RELATED REPORTS

 

20. ABOUT DATA BRIDGE MARKET RESEARCH

자세한 정보 보기 Right Arrow

연구 방법론

데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.

DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.

사용자 정의 가능

Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

자주 묻는 질문

시장은 보험 시장 내 글로벌 인공지능(AI) 세분화, 구성 요소(하드웨어, 소프트웨어 및 서비스), 기술(머신러닝 및 딥러닝, 자연어 처리(NLP), 머신 비전 및 로봇 자동화), 배포 모델(온프레미스 및 클라우드), 기업 규모(대기업 및 중소기업), 애플리케이션(클레임 관리, 위험 관리 및 규정 준수, 챗봇 및 기타), 부문(생명 보험, 건강 보험, 타이틀 보험, 자동차 보험 및 기타) - 2032년까지의 산업 동향 및 예측 기준으로 세분화됩니다.
보험 시장의 시장 규모는 2024년에 6.44 USD Billion USD로 평가되었습니다.
보험 시장는 2025년부터 2032년까지 연평균 성장률(CAGR) 33.06%로 성장할 것으로 예상됩니다.
시장 내 주요 기업으로는 Microsoft , Infosys Limited , Tractable Ltd , InsurifyInc. , Slice Insurance Technologies Inc. Google , Oracle , Amazon Web Services Inc. , IBM , Avaamo , Cape Analytics , Wipro , Acko General Insurance , Shift Technology , Quantemplate , Zurich , Lemonade Insurance AgencyLLC 가 포함됩니다.
Testimonial