Global Deep Learning Cognitive Computing Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
41.97 Billion
USD
336.10 Billion
2025
2033
| 2026 –2033 | |
| USD 41.97 Billion | |
| USD 336.10 Billion | |
|
|
|
|
글로벌 딥러닝 인지 컴퓨팅 시장 세분화(구성 요소별(플랫폼 및 서비스), 비즈니스 기능별(인적 자원, 운영, 재무, 마케팅 및 영업, 기타), 배포 모드별(온프레미스, 클라우드, 하이브리드), 조직 규모별(중소기업 및 대기업), 애플리케이션별(자동화, 지능형 가상 비서 및 챗봇행동 분석 , 생체 인식, 기타), 최종 사용자별(은행, 금융 서비스 및 보험, 소매 및 전자상거래 , 여행 및 숙박, 정부, IT 및 통신, 의료 및 생명 과학, 제조, 미디어 및 엔터테인먼트, 기타)) - 산업 동향 및 2033년까지의 전망
글로벌 딥러닝 인지 컴퓨팅 시장 규모와 성장률은 어떻게 되나요?
- 전 세계 딥러닝 인지 컴퓨팅 시장 규모는 2025년 419억 7천만 달러 였으며, 예측 기간 동안 연평균 성장률(CAGR) 29.70% 로 성장하여 2033년에는 3,361억 달러 에 이를 것으로 예상됩니다 .
- 클라우드, 모바일, 분석 등 컴퓨팅 환경의 지속적인 발전은 딥러닝 기반 인지 컴퓨팅 시장의 성장에 직접적인 영향을 미치고 있습니다.
- 또한, 지능형 비즈니스 프로세스에 대한 수요 증가도 딥러닝 인지 컴퓨팅 시장의 성장을 촉진하고 있습니다.
딥러닝 인지 컴퓨팅 시장의 주요 시사점은 무엇인가요?
- 빠른 기술 발전과 소셜 미디어 플랫폼을 통한 고객 참여 증가는 시장 성장에 긍정적인 영향을 미치고 있습니다. 더 나아가, 첨단 인공지능 및 머신러닝 기술의 도입 증가와 디지털화의 확대는 딥러닝 인지 컴퓨팅 시장의 성장을 크게 견인하고 있습니다.
- 그러나 고객 의도를 파악하고 효율적으로 대응하는 능력의 부족은 딥러닝 기반 인지 컴퓨팅의 성장을 가로막는 주요 제약 요인으로 작용하고 있으며, 데이터 관리 및 규제는 딥러닝 기반 인지 컴퓨팅 시장의 성장을 저해할 가능성이 있습니다.
- 북미는 첨단 AI 기술의 조기 도입, 강력한 클라우드 인프라, 그리고 미국과 캐나다 전역에 걸친 기업의 AI 및 인지 분석 사업의 빠른 확장에 힘입어 2025년까지 딥러닝 인지 컴퓨팅 시장의 41.69%를 차지하며 시장을 주도할 것으로 예상됩니다.
- 아시아 태평양 지역은 중국, 일본, 인도, 한국 및 동남아시아 전반에 걸친 빠른 디지털 전환, 클라우드 도입 확대, 인공지능(AI) 투자 증가에 힘입어 2026년부터 2033년까지 연평균 8.25%의 가장 빠른 성장률을 기록할 것으로 예상됩니다.
- 플랫폼 부문은 딥러닝 프레임워크, 인지 분석 플랫폼, AI 오케스트레이션 도구 및 모델 개발 환경의 광범위한 도입에 힘입어 2025년까지 62.4%의 시장 점유율로 시장을 주도할 것으로 예상됩니다.
보고서 범위 및 딥러닝 인지 컴퓨팅 시장 세분화
|
속성 |
딥러닝 인지 컴퓨팅 주요 시장 분석 |
|
포함되는 부문 |
|
|
대상 국가 |
북아메리카
유럽
아시아태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보세트 |
데이터 브리지 마켓 리서치에서 제공하는 시장 보고서는 시장 가치, 성장률, 시장 세분화, 지리적 범위 및 주요 업체와 같은 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 가격 분석, 브랜드 점유율 분석, 소비자 설문 조사, 인구 통계 분석, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선정 기준, PESTLE 분석, 포터 분석 및 규제 프레임워크를 포함합니다. |
딥러닝 인지 컴퓨팅 시장의 핵심 트렌드는 무엇인가요?
" 소형, 고성능, 엣지 컴퓨팅 기반 딥러닝 인지 컴퓨팅 시스템의 도입 증가 "
- 딥러닝 기반 인지 컴퓨팅 시장에서는 실시간 분석, 자율적 의사 결정 및 지능형 자동화를 지원하도록 설계된 소형, 고속, 엣지 컴퓨팅 플랫폼의 도입이 증가하고 있습니다.
- 벤더들은 더 빠른 추론, 적응형 학습, 그리고 기업 IT 및 클라우드 생태계와의 원활한 통합을 가능하게 하는 고밀도 AI 가속기, 멀티코어 프로세서, 소프트웨어 정의 인지 플랫폼을 출시하고 있습니다.
- 경량화, 확장성 및 PC 통합형 인지 시스템에 대한 선호도가 높아짐에 따라 IoT 네트워크, 스마트 제조, 의료 진단 및 금융 분석 전반에 걸쳐 도입이 확대되고 있습니다.
- 예를 들어 마이크로소프트, IBM, 구글, 아마존 웹 서비스와 같은 기업들은 고급 딥러닝 프레임워크, 엣지 AI 기능, 클라우드 기반 모델 최적화를 통해 인지 컴퓨팅 플랫폼을 강화해 왔습니다.
- 실시간 인사이트, 저지연 처리 및 지능형 의사 결정 지원에 대한 수요 증가로 고성능, 소형 인지 컴퓨팅 솔루션으로의 전환이 가속화되고 있습니다.
- 데이터 양이 증가하고 AI 워크로드가 더욱 복잡해짐에 따라 딥러닝 기반 인지 컴퓨팅은 자율 시스템, 예측 인텔리전스 및 차세대 엔터프라이즈 분석에 있어 매우 중요한 역할을 계속해서 수행할 것입니다.
딥러닝 인지 컴퓨팅 시장의 주요 성장 동력은 무엇인가요?
- 자동화, 예측 분석 및 지능형 운영을 지원하기 위한 정확하고 확장 가능하며 비용 효율적인 AI 기반 의사 결정 시스템에 대한 수요가 증가하고 있습니다.
- 예를 들어, 2025년에는 IBM, Google, SAS Institute Inc.와 같은 기업들이 모델 설명력 향상, 처리 효율성 증대, 산업별 AI 솔루션 등을 통해 딥러닝 인지 컴퓨팅 제품군을 확장할 것으로 예상됩니다.
- 의료, 금융, 소매, 자동차 및 스마트 인프라 전반에 걸쳐 AI 기반 애플리케이션이 빠르게 도입됨에 따라 미국, 유럽 및 아시아 태평양 지역에서 수요가 증가하고 있습니다.
- 심층 신경망, 자연어 처리, 강화 학습 및 인지 추론 알고리즘의 발전은 시스템의 정확성과 성능을 향상시키고 있습니다.
- 엣지 AI, AI 칩 및 하이브리드 클라우드 아키텍처의 도입이 증가함에 따라 저지연 기능을 갖춘 고속 인지 컴퓨팅 플랫폼에 대한 수요가 발생하고 있습니다.
- 인공지능 연구개발, 디지털 전환 및 지능형 자동화에 대한 지속적인 투자에 힘입어 딥러닝 인지 컴퓨팅 시장은 장기적으로 견고한 성장세를 보일 것으로 예상됩니다.
딥러닝 인지 컴퓨팅 시장의 성장을 저해하는 요인은 무엇일까요?
- 첨단 AI 인프라, 특수 하드웨어 가속기 및 프리미엄 인지 플랫폼과 관련된 높은 비용은 중소기업의 AI 도입을 제한하는 요인입니다.
- 예를 들어, 2024년에서 2025년 사이에 GPU, AI 프로세서 및 클라우드 컴퓨팅 리소스의 비용 상승으로 인해 딥러닝 인지 솔루션의 총 소유 비용이 증가했습니다.
- 대규모 딥러닝 모델의 배포, 학습 및 관리에 있어 복잡성이 증가함에 따라 숙련된 AI 전문가와 전문 교육에 대한 의존도가 높아지고 있습니다.
- 신흥 시장에서 인지 컴퓨팅 활용 사례, 투자 수익률 잠재력 및 통합 기능에 대한 인식이 부족하여 도입이 지연되고 있습니다.
- 기존 분석 플랫폼, 규칙 기반 자동화 시스템 및 오픈 소스 AI 프레임워크와의 경쟁으로 인해 가격 압박과 차별화 과제가 발생하고 있습니다.
- 이러한 장벽을 극복하기 위해 공급업체들은 비용 최적화 아키텍처, 설명 가능한 AI, 관리형 서비스 및 클라우드 네이티브 인지 플랫폼에 집중하여 딥러닝 인지 컴퓨팅의 글로벌 도입을 확대하고 있습니다.
딥러닝 인지 컴퓨팅 시장은 어떻게 세분화되나요?
시장은 구성 요소, 비즈니스 기능, 배포 모드, 조직 규모, 애플리케이션 및 최종 사용자를 기준으로 세분화됩니다 .
- 구성 요소별
구성 요소별로 딥러닝 인지 컴퓨팅 시장은 플랫폼과 서비스로 구분됩니다. 플랫폼 부문은 딥러닝 프레임워크, 인지 분석 플랫폼, AI 오케스트레이션 도구 및 모델 개발 환경의 광범위한 도입에 힘입어 2025년까지 62.4%의 시장 점유율을 차지하며 시장을 주도할 것으로 예상됩니다. 기업들은 클라우드 및 엣지 환경 전반에 걸쳐 인지 애플리케이션을 구축, 학습, 배포 및 관리하기 위해 플랫폼에 대한 의존도를 높여가고 있습니다. 이러한 플랫폼은 자연어 처리, 컴퓨터 비전, 예측 분석 및 자율적 의사 결정과 같은 기능을 지원하므로 디지털 전환 이니셔티브의 핵심 요소가 되고 있습니다.
서비스 부문은 컨설팅, 시스템 통합, 모델 맞춤화, 배포 지원 및 관리형 AI 서비스에 대한 수요 증가에 힘입어 2026년부터 2033년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 딥러닝 모델의 복잡성 증가, 숙련된 AI 전문가 부족, 지속적인 최적화 필요성으로 인해 기업들은 제3자 서비스 제공업체에 의존하게 되었습니다. 조직이 인지 솔루션을 확장함에 따라 서비스는 성능, 보안 및 규정 준수를 보장하는 데 중요한 역할을 할 것입니다.
- 비즈니스 기능별
비즈니스 기능에 따라 시장은 인사, 운영, 재무, 마케팅 및 영업, 기타 부문으로 세분화됩니다. 운영 부문은 2025년까지 34.6%의 시장 점유율로 시장을 주도할 것으로 예상되는데, 이는 기업들이 워크플로 최적화, 공급망 가시성 향상, 예측 유지보수 강화, 의사 결정 프로세스 자동화를 위해 딥러닝 기반 인지 컴퓨팅 기술을 점점 더 많이 도입하고 있기 때문입니다. 인지 시스템은 실시간 모니터링, 이상 징후 감지, 지능형 자원 배분을 가능하게 하여 다양한 산업 분야에서 운영 효율성을 크게 향상시킵니다.
마케팅 및 영업 부문은 AI 기반 고객 분석, 개인화된 추천, 감성 분석, 수요 예측 등의 활용 증가에 힘입어 2026년부터 2033년까지 가장 빠른 연평균 성장률을 기록할 것으로 예상됩니다. 기업들은 인지 컴퓨팅을 활용하여 고객 참여를 강화하고, 전환율을 개선하며, 더욱 심층적인 행동 통찰력을 얻고 있습니다. 고객 데이터의 가용성 증가와 자연어 이해 및 예측 분석 기술의 발전은 디지털 마케팅 및 영업 기능 전반에 걸쳐 이러한 기술의 도입을 가속화하고 있습니다.
- 배포 모드별
배포 방식에 따라 딥러닝 인지 컴퓨팅 시장은 온프레미스, 클라우드, 하이브리드로 구분됩니다. 클라우드 부문은 확장성, 비용 효율성, 빠른 배포, 고급 AI 인프라에 대한 손쉬운 접근성에 힘입어 2025년까지 48.9%의 시장 점유율을 차지하며 시장을 주도할 것으로 예상됩니다. 클라우드 기반 인지 플랫폼을 통해 기업은 대규모 데이터 세트를 처리하고, 딥러닝 모델을 더 빠르게 학습시키며, 막대한 초기 투자 없이 AI 기능을 통합할 수 있습니다.
하이브리드 배포 부문은 데이터 보안과 컴퓨팅 유연성 간의 균형을 추구하는 기업들의 요구에 따라 2026년부터 2033년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 하이브리드 모델을 통해 민감한 워크로드는 온프레미스에 유지하면서 클라우드 리소스를 활용하여 모델 학습 및 분석을 수행할 수 있습니다. 규제 요건 강화, 데이터 개인정보 보호 문제, 그리고 저지연 처리 요구에 따라 규제 산업 전반에 걸쳐 하이브리드 인지 컴퓨팅 아키텍처의 도입이 가속화되고 있습니다.
- 조직 규모별
조직 규모를 기준으로 시장은 중소기업(SME)과 대기업으로 구분됩니다. 대기업 부문은 탄탄한 재정 능력, 대규모 데이터 가용성, 그리고 첨단 인지 기술의 조기 도입에 힘입어 2025년까지 66.2%의 시장 점유율을 차지하며 지배적인 위치를 유지할 것으로 예상됩니다. 대기업들은 전사적 자동화, 위험 관리, 고객 분석, 전략적 의사 결정 지원 등을 위해 딥러닝 기반 인지 컴퓨팅 기술을 도입하고 있습니다.
중소기업 부문은 클라우드 기반의 구독형, 비용 효율적인 인지 컴퓨팅 솔루션의 보급 확대에 힘입어 2026년부터 2033년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 중소기업들은 막대한 인프라 투자 없이도 생산성 향상, 반복적인 업무 자동화, 경쟁력 확보를 위해 AI 플랫폼을 활용하고 있습니다. 디지털화의 가속화, 정부의 AI 도입 지원, AI 도구 접근성 개선 등이 중소기업의 인지 컴퓨팅 도입을 촉진하고 있습니다.
- 신청을 통해
적용 분야를 기준으로 시장은 자동화, 지능형 가상 비서 및 챗봇, 행동 분석, 생체 인식 및 기타로 세분화됩니다. 자동화 부문은 기업들이 비즈니스 프로세스, 의사 결정 및 운영 워크플로 자동화를 위해 인지 컴퓨팅을 점점 더 많이 도입함에 따라 2025년까지 37.8%의 시장 점유율로 시장을 주도할 것으로 예상됩니다. 딥러닝 기반 자동화는 효율성을 높이고, 인적 오류를 줄이며, 모든 산업 분야에서 실시간 대응을 가능하게 합니다.
지능형 가상 비서 및 챗봇 부문은 AI 기반 고객 지원, 대화형 상거래 및 직원 지원 도구에 대한 수요 증가에 힘입어 2026년부터 2033년까지 가장 빠른 연평균 성장률을 기록할 것으로 예상됩니다. 자연어 처리, 문맥 이해 및 음성 인식 기술의 발전은 챗봇의 정확도와 도입률을 크게 향상시키고 있습니다. 고객 경험이 핵심적인 차별화 요소가 됨에 따라 인지형 가상 비서의 도입이 가속화될 것입니다.
- 최종 사용자에 의해
최종 사용자를 기준으로 딥러닝 인지 컴퓨팅 시장은 금융, 소매 및 전자상거래, 여행 및 숙박, 정부, IT 및 통신, 의료 및 생명 과학, 제조, 미디어 및 엔터테인먼트, 기타 부문으로 세분화됩니다. 금융 부문은 사기 탐지, 위험 평가, 고객 분석, 알고리즘 거래 및 규정 준수 관리에 인지 컴퓨팅이 광범위하게 사용됨에 따라 2025년까지 29.5%의 시장 점유율로 시장을 주도할 것으로 예상됩니다.
의료 및 생명과학 부문은 의료 영상, 임상 의사 결정 지원, 신약 개발 및 개인 맞춤형 의학 분야에서 인공지능(AI) 도입이 증가함에 따라 2026년부터 2033년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 의료 데이터 양의 증가, 예측 진단에 대한 관심 증대, 딥러닝 모델의 발전은 의료 생태계 전반에 걸쳐 인지 컴퓨팅의 도입을 가속화하고 있습니다.
딥러닝 인지 컴퓨팅 시장에서 가장 큰 점유율을 차지하는 지역은 어디입니까?
- 북미는 첨단 AI 기술의 조기 도입, 강력한 클라우드 인프라, 그리고 미국과 캐나다 전역에 걸친 기업의 AI 및 인지 분석 이니셔티브의 빠른 확장에 힘입어 2025년까지 딥러닝 인지 컴퓨팅 시장의 41.69%를 차지하며 시장을 주도할 것으로 예상됩니다. 금융, 의료, 소매, 제조 및 정부 부문 전반에 걸친 딥러닝 플랫폼의 높은 도입률은 시장 성장을 지속적으로 견인하고 있습니다.
- 주요 지역 기업들은 고급 딥러닝 모델, 자연어 처리, 컴퓨터 비전 및 실시간 의사결정 인텔리전스를 통해 인지 컴퓨팅 플랫폼을 지속적으로 강화하여 북미의 기술적 리더십을 공고히 하고 있습니다.
- 글로벌 AI 공급업체들의 강력한 입지, 숙련된 AI 전문가들의 높은 집중도, 탄탄한 스타트업 생태계, 그리고 AI 연구 개발 및 디지털 전환에 대한 지속적인 투자는 이 지역의 지배력을 더욱 강화합니다.
미국 딥러닝 인지 컴퓨팅 시장 분석
미국은 북미 지역에서 인지 컴퓨팅의 대규모 도입(기업, 클라우드 서비스 제공업체, 정부 기관 등)에 힘입어 가장 큰 시장 점유율을 차지하고 있습니다. 금융, 의료, 소매, IT 및 통신, 방위 산업 분야에서 AI 기반 자동화, 예측 분석, 사기 탐지, 지능형 가상 비서에 대한 강력한 수요가 시장 성장을 견인하고 있습니다. 주요 기술 기업, 하이퍼스케일 클라우드 제공업체, 첨단 연구 기관의 존재는 딥러닝 모델 및 인지 플랫폼 혁신을 가속화합니다. 생성형 AI, 엣지 AI, 하이브리드 클라우드 아키텍처의 도입 증가는 장기적인 시장 성장을 더욱 강화할 것으로 예상됩니다.
캐나다 딥러닝 인지 컴퓨팅 시장 분석
캐나다는 인공지능(AI) 연구 허브의 확장, 정부의 지원 정책, 그리고 의료, 공공 서비스, 금융 기관 전반에 걸친 인지 컴퓨팅 도입 증가에 힘입어 지역 성장에 크게 기여하고 있습니다. 대학, 스타트업, 기업들은 데이터 기반 의사 결정, 행동 분석, 지능형 자동화를 위해 딥러닝 플랫폼을 점점 더 많이 활용하고 있습니다. 숙련된 AI 인재의 확보, 학계와 산업계 간의 긴밀한 협력, 그리고 클라우드 기반 AI 인프라에 대한 투자 증가는 캐나다 전역에서 꾸준한 시장 확대를 뒷받침하고 있습니다.
아시아 태평양 딥러닝 인지 컴퓨팅 시장
아시아 태평양 지역은 2026년부터 2033년까지 연평균 8.25%의 가장 빠른 성장률을 기록할 것으로 예상됩니다. 이는 중국, 일본, 인도, 한국, 동남아시아를 포함한 지역에서 빠르게 진행되는 디지털 전환, 클라우드 도입 확대, 인공지능(AI) 투자 증가에 힘입은 결과입니다. 제조, 소매, 금융, 의료, 정부 부문 등 다양한 분야의 기업들이 자동화, 고객 인텔리전스, 예측 분석을 위해 딥러닝 기반 인지 컴퓨팅 기술을 도입하고 있습니다. 스마트 시티, AI 기반 애플리케이션, 디지털 인프라의 성장은 확장 가능한 인지 컴퓨팅 플랫폼에 대한 지역적 수요를 지속적으로 가속화하고 있습니다.
중국 딥러닝 인지 컴퓨팅 시장 분석
중국은 정부의 강력한 AI 개발 지원, 대규모 클라우드 인프라 확장, 그리고 기업의 인지 기술 도입 가속화에 힘입어 아시아 태평양 지역에서 가장 큰 AI 기술 공급국으로 자리매김하고 있습니다. 스마트 제조, 금융 분석, 보안 감시, 전자상거래 개인화 등 다양한 분야에서 딥러닝 활용이 증가하면서 첨단 인지 컴퓨팅 솔루션에 대한 수요가 증가하고 있습니다. 국내 AI 기술 제공업체의 존재와 풍부한 빅데이터는 시장 침투력을 더욱 강화하고 있습니다.
일본 딥러닝 인지 컴퓨팅 시장 분석
일본은 제조 자동화, 로봇 공학, 의료 분석 및 스마트 인프라 전반에 걸친 인지 컴퓨팅 도입에 힘입어 꾸준한 성장을 보이고 있습니다. 정밀성, 신뢰성 및 지능형 시스템에 대한 높은 관심은 고품질 딥러닝 플랫폼에 대한 수요를 뒷받침하고 있습니다. AI 기반 산업 혁신 및 디지털 현대화에 대한 투자 증가는 장기적인 시장 확대를 더욱 강화할 것으로 예상됩니다.
인도 딥러닝 인지 컴퓨팅 시장 분석
인도는 스타트업 생태계 확장, 클라우드 도입 증가, 정부 주도의 디지털 정책 추진에 힘입어 고성장 시장으로 부상하고 있습니다. 금융, IT 서비스, 헬스케어, 전자정부 등 다양한 분야에서 인지 컴퓨팅 기술이 도입되면서 시장 성장이 가속화되고 있습니다. 기업들이 자동화, 분석, AI 기반 고객 참여에 더욱 집중함에 따라 전국적인 도입 속도가 빨라지고 있습니다.
한국 딥러닝 인지 컴퓨팅 시장 분석
한국은 통신, 스마트 제조, 가전제품, 헬스케어 등 다양한 분야에서 AI를 적극적으로 도입하고 있어 시장 성장에 크게 기여하고 있습니다. AI 플랫폼의 빠른 발전, 탄탄한 디지털 인프라, 그리고 혁신에 대한 집중적인 투자가 딥러닝 기반 인지 컴퓨팅 솔루션에 대한 수요를 견인하고 있습니다. AI 연구 및 기업 디지털화에 대한 지속적인 투자는 시장의 꾸준한 성장을 뒷받침하고 있습니다.
딥러닝 인지 컴퓨팅 시장의 주요 기업은 어디인가요?
딥러닝 인지 컴퓨팅 산업은 주로 다음과 같은 기존 기업들이 주도하고 있습니다.
- 마이크로소프트(미국)
- IBM(미국)
- SAS 연구소(미국)
- 아마존 웹 서비스(Amazon Web Services, Inc., 미국)
- 인지척도(미국)
- 누멘타(미국)
- 엔테라 솔루션(미국)
- Expert System SpA (이탈리아)
- 구글 유한회사(미국)
- Virtusa Corp(미국)
- 시스코 시스템즈(미국)
- 타타 컨설턴시 서비스 리미티드(인도)
- 아쿠이티 그룹(영국)
- 인포시스 리미티드(인도)
- 버스트아이큐(미국)
- 레드 스키오스(인도)
- e-Zest 솔루션(인도)
- 밴티지 랩스(미국)
- 인지 소프트웨어 그룹(미국)
- SparkCognition (미국)
최근 글로벌 딥러닝 인지 컴퓨팅 시장의 주요 동향은 무엇인가요?
- 2024년 5월, IBM과 SAP는 기업의 디지털 전환 가속화를 지원하기 위해 생성형 AI 기능과 산업별 클라우드 솔루션에 중점을 둔 협력 확대 계획을 발표했습니다. 이번 파트너십은 IBM의 하이브리드 클라우드 및 고급 AI 기술 강점을 활용하여 SAP의 비즈니스 프로세스 전반에 AI를 접목하고, 다양한 산업 분야에서 더욱 스마트한 의사 결정과 운영 효율성을 구현함으로써 기업 전반의 인지 컴퓨팅 솔루션 도입을 강화하는 것을 목표로 합니다.
- 2024년 5월, 인도에 본사를 둔 IT 서비스 기업 위프로(Wipro)는 마이크로소프트와 협력하여 금융 서비스 부문을 위한 생성형 AI 기반 인지 비서 제품군을 출시했습니다. 마이크로소프트 Azure OpenAI와 Document Intelligence를 기반으로 구축된 이 솔루션은 시장 정보를 강화하고, 고객 온보딩 속도를 높이며, 대출 실행 프로세스를 간소화하는 동시에 수작업을 줄여 BFSI(은행, 금융 서비스 및 보험) 운영의 생산성과 사용자 경험을 향상시킵니다.
- 2024년 2월, 마이크로소프트는 프랑스의 인공지능 기업인 미스트랄 AI와 협력하여 향후 몇 년간 AI 혁신을 가속화하기로 했습니다. 이 협력을 통해 마이크로소프트는 Azure의 고급 인프라를 활용하여 미스트랄 라지(Mistral Large)를 포함한 미스트랄의 대규모 언어 모델을 개발 및 배포하고, Azure의 서비스형 모델(Models as a Service)을 통해 제공함으로써 전 세계적으로 고급 생성형 AI 기능에 대한 접근성을 확대합니다.
- 2023년 5월, IBM은 AI 집약적 워크로드를 지원하기 위한 GPU 서비스형 인프라 구축 계획을 발표하는 한편, 클라우드 탄소 배출량을 측정하고 관리하는 AI 기반 대시보드도 출시했습니다. 또한, IBM은 고객의 AI 도입을 지원하고 확장 가능하고 지속 가능하며 기업 환경에 최적화된 AI를 구현하기 위해 WatsonX 및 생성형 AI에 중점을 둔 새로운 IBM 컨설팅 사업부를 신설했습니다.
- 2023년 3월, 타타 컨설턴시 서비스(TCS)는 마이크로소프트 애저 프라이빗 모바일 엣지 컴퓨팅 플랫폼용으로 구축된 5G 지원 솔루션인 TCS 인지형 플랜트 운영 어드바이저(TCS Cognitive Plant Operations Adviser)를 공개했습니다. 이 솔루션은 인공지능(AI)과 머신러닝을 활용하여 생산 지능, 민첩성 및 복원력을 향상시키고 더욱 스마트하고 적응력 있는 산업 운영을 지원함으로써 제조, 석유 및 가스, 소비재, 제약 등의 산업 분야를 지원합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

