Global Deep Learning Neural Networks Dnns Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
52.30 Billion
USD
349.40 Billion
2024
2032
| 2025 –2032 | |
| USD 52.30 Billion | |
| USD 349.40 Billion | |
|
|
|
|
구성 요소(하드웨어, 소프트웨어 및 서비스), 애플리케이션(이미지 인식, 자연어 처리, 음성 인식 및 데이터 마이닝), 최종 사용자(은행, 금융 서비스 및 보험(BFSI), IT 및 통신, 의료, 소매, 자동차, 제조, 항공우주 및 방위, 보안 및 기타)별 글로벌 딥러닝 신경망(DNN) 시장 세분화 - 산업 동향 및 2032년까지의 예측
딥러닝 신경망(DNN) 시장 규모
- 글로벌 딥러닝 신경망(DNN) 시장 규모는 2024년에 523억 달러 로 평가되었으며 예측 기간 동안 31.2%의 CAGR 로 2032년까지 3,494억 달러 에 도달할 것으로 예상됩니다 .
- 시장 성장은 기술 혁신, 데이터 가용성 증가, 그리고 산업 응용 분야 확대에 크게 힘입어 이루어지고 있습니다. 인공지능(AI)이 의료, 자동차, 금융, 제조 등의 분야에 더욱 깊이 자리 잡으면서, DNN은 방대한 데이터 세트를 처리하고 복잡한 패턴을 추출하는 능력으로 주목받고 있습니다.
- 또한, 클라우드 컴퓨팅과 엣지 AI의 발전으로 DNN의 접근성과 확장성이 더욱 향상되고 있습니다. 전 세계 정부와 기업들은 AI 연구 개발(R&D)에 대한 투자를 확대하고 있으며, 이는 DNN 기반 솔루션 도입을 더욱 가속화하고 있습니다.
딥러닝 신경망(DNN) 시장 분석
- 글로벌 딥러닝 신경망(DNN) 시장은 AI 전용 하드웨어의 강력한 기술적 진보에 힘입어 더욱 빠르고 효율적인 모델 학습 및 배포가 가능해졌습니다.
- 자율주행 자동차와 서비스 로봇 등 자율 시스템의 급증과 NLP 및 이미지 인식 분야에서 딥 러닝의 역할 확대로 인해 여러 산업 분야에서 도입이 가속화되고 있습니다.
- 북미는 2024년에 39.01%의 가장 큰 수익 점유율을 기록하며 딥러닝 신경망(DNN) 시장을 장악했으며, 자율주행차와 스마트 로봇공학의 도입이 증가하는 것이 특징입니다.
- 아시아 태평양 지역은 자연어 처리(NLP)와 컴퓨터 비전 분야의 응용 확대로 인해 예측 기간 동안 딥 러닝 신경망(DNN) 시장에서 가장 빠르게 성장하는 지역이 될 것으로 예상됩니다.
- 소프트웨어 부문은 빅데이터의 급증과 데이터 복잡성 증가에 힘입어 2024년 45.2%의 시장 점유율로 딥러닝 신경망(DNN) 시장을 장악할 전망입니다.
보고서 범위 및 딥러닝 신경망(DNN) 시장 세분화
|
속성 |
딥러닝 신경망(DNN) 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 적용 범위, 주요 기업 등 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 가격 분석, 브랜드 점유율 분석, 소비자 설문 조사, 인구 통계 분석, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선택 기준, PESTLE 분석, Porter 분석 및 규제 프레임워크가 포함되어 있습니다. |
딥러닝 신경망(DNN) 시장 동향
“ 산업 전반에 걸쳐 애플리케이션 확장 ”
- 글로벌 딥러닝 신경망(DNN) 시장의 주요 트렌드는 의료, 자동차, 금융, 제조 등 다양한 분야에서 DNN 애플리케이션이 빠르게 확장되고 있다는 것입니다. 이러한 네트워크는 의료 진단, 사기 탐지, 자율주행, 예측 정비 분야에서 획기적인 발전을 가능하게 하고 있습니다.
- 예를 들어, 의료 분야에서 DNN은 영상 기반 진단, 예를 들어 방사선 검사에서 종양을 감지하는 데 점점 더 많이 사용되고 있습니다. Aidoc과 Zebra Medical Vision과 같은 회사들은 DNN을 활용하여 방사선 전문의가 더 빠르고 정확한 진단을 내릴 수 있도록 지원하고 있습니다.
- 자동차 분야에서는 북미와 유럽이 DNN 기반 첨단 운전자 보조 시스템(ADAS)과 자율주행차 도입을 선도하고 있습니다. 테슬라, 엔비디아, 웨이모는 딥러닝을 활용하여 도로에서의 의사 결정 및 실시간 이미지 인식을 개선하고 있습니다.
- 금융 업계 또한 이상 징후를 감지하고 시장 동향을 높은 정확도로 예측하기 위해 DNN을 도입하고 있습니다. JP모건 체이스와 골드만삭스는 DNN 기반 거래 및 위험 평가 시스템 구축에 집중하는 AI 팀에 막대한 투자를 하고 있습니다.
- 제조업에서 DNN은 시각적 검사, 결함 감지, 그리고 예측 장비 유지보수의 자동화를 통해 스마트 팩토리를 구현합니다. 지멘스와 GE와 같은 기업들은 다운타임을 줄이고 운영 효율성을 높이기 위해 이러한 지능형 시스템을 선도하고 있습니다.
- 아시아 태평양 지역은 중국, 한국, 인도 등 국가의 강력한 AI 전략으로 인해 가장 빠르게 성장하는 지역으로 부상하고 있습니다. 정부 지원 사업과 AI 연구 개발에 대한 막대한 자금 지원은 DNN 도입을 대규모로 촉진하고 있습니다.
딥러닝 신경망(DNN) 시장 동향
운전사
“빅데이터의 확산과 컴퓨팅 파워의 증가”
- IoT 기기, 소셜 미디어, 기업 시스템 등의 소스에서 생성되는 데이터가 기하급수적으로 증가함에 따라 이미지 인식, 자연어 처리, 예측 분석과 같은 작업에 딥 러닝 신경망을 도입하는 추세가 가속화되고 있습니다.
- 예를 들어, NVIDIA는 2025년 3월에 Blackwell GPU 아키텍처를 공개하여 딥 러닝 훈련 및 추론 워크로드에 대해 4배 이상의 성능 향상을 제공하여 의료, 자동차 및 금융 서비스 분야에서 실시간 애플리케이션을 구현할 수 있게 했습니다.
- AWS와 Google Cloud를 포함한 클라우드 서비스 제공업체는 최적화된 DNN 프레임워크를 관리형 서비스로 제공하는 경우가 늘어나고 있으며, 이를 통해 배포와 확장이 간소화됩니다.
- IDC에 따르면, 2025년 1분기를 기준으로 전 세계 기업의 70% 이상이 DNN 기반 솔루션을 하나 이상의 비즈니스 기능에 통합했으며, 이는 강력한 시장 모멘텀을 보여줍니다.
제지/도전
“ 모델 학습의 높은 리소스 소모 및 복잡성 ”
- 딥 러닝 신경망을 훈련하려면 상당한 컴퓨팅 리소스, 특수 하드웨어(예: GPU, TPU) 및 에너지 소비가 필요한 경우가 많으며, 이는 비용이 많이 들 수 있습니다.
- 예를 들어, OpenAI의 GPT-4에는 수백 개의 미국 가구가 연간 사용하는 것과 동일한 수천 페타플롭/초의 컴퓨팅과 에너지가 필요합니다.
- 게다가 하이퍼파라미터 조정, 과적합 처리, 모델 해석성 확보의 복잡성은 특히 금융과 의료와 같은 규제 분야에서 개발자에게 지속적인 과제로 남아 있습니다.
- 이러한 장벽은 고성능 컴퓨팅 인프라와 심층적인 AI 인재 풀에 대한 접근성이 부족한 중소기업의 경우 특히 두드러집니다.
딥러닝 신경망(DNN) 시장 범위
시장은 구성 요소, 응용 프로그램, 최종 사용자를 기준으로 세분화됩니다.
- 구성 요소별
딥러닝 신경망(DNN) 시장은 구성 요소를 기준으로 하드웨어, 소프트웨어, 서비스로 구분됩니다. 소프트웨어 부문은 AI 전용 하드웨어의 강력한 기술 발전에 힘입어 2024년 시장 매출 점유율 48.2%로 가장 큰 비중을 차지할 것이며, 이를 통해 더욱 빠르고 효율적인 모델 학습 및 배포가 가능해질 것입니다.
소프트웨어 부문은 자율주행 자동차와 서비스 로봇 등 자율 시스템의 급증과 NLP 및 이미지 인식 분야에서 딥 러닝의 역할 확대에 힘입어 2025년부터 2032년까지 21.7%의 가장 빠른 성장률을 기록할 것으로 예상됩니다. 이로 인해 여러 부문에서 도입이 확대되고 있습니다.
- 응용 프로그램으로
딥러닝 신경망(DNN) 시장은 응용 분야별로 이미지 인식, 자연어 처리, 음성 인식, 데이터 마이닝으로 구분됩니다. 이미지 인식 분야는 빅데이터의 기하급수적인 성장에 힘입어 2024년 시장 매출 점유율 1위를 차지했습니다. 특히 DNN이 진단 및 치료 개인 맞춤화에 혁신을 가져오는 의료 분야에서 이미지 인식 모델에 풍부한 정보를 제공합니다.
자연어 처리 분야 는 2025년부터 2032년까지 가장 빠른 CAGR을 보일 것으로 예상되며, 이는 양자 컴퓨팅과 신경형 칩과 같은 첨단 기술과 딥 러닝의 융합으로 인해 성능 한계를 재정의하고 새로운 상업적, 과학적 경계를 열 것으로 기대됩니다.
- 최종 사용자에 의해
최종 사용자 기준으로 딥러닝 신경망(DNN) 시장은 은행, 금융 서비스 및 보험(BFSI), IT 및 통신, 의료, 소매, 자동차, 제조, 항공우주 및 방위, 보안 등으로 세분화됩니다. 은행 부문 은 2024년 시장 매출 점유율이 가장 높았는데, 이는 GPU 및 TPU와 같은 특수 AI 칩 개발과 같은 하드웨어 혁신이 딥러닝 프로세스의 효율성을 향상시키고 있기 때문입니다.
헬스 케어 분야 는 2025년부터 2032년까지 가장 빠른 CAGR을 기록할 것으로 예상되며, IoT 기기, 소셜 미디어, 기업 시스템 등의 소스에서 생성되는 데이터가 기하급수적으로 증가함에 따라 이미지 인식, 자연어 처리, 예측 분석과 같은 작업에 딥 러닝 신경망이 도입되고 있습니다.
딥러닝 신경망(DNN) 시장 지역 분석
- 북미는 기술 혁신, 데이터 가용성 증가, 그리고 산업 응용 분야 확대에 힘입어 2024년 딥러닝 신경망(DNN) 시장에서 39.01%의 가장 큰 매출 점유율을 기록하며 시장을 장악할 것입니다. 의료, 자동차, 금융, 제조 등 다양한 분야에 인공지능(AI)이 도입됨에 따라, DNN은 방대한 데이터 세트를 처리하고 복잡한 패턴을 추출하는 능력으로 주목받고 있습니다.
- 이로 인해 수많은 성장 동력과 기회가 생겨났습니다. 그중에서도 가장 중요한 것은 개인 맞춤형 서비스, 향상된 자동화, 그리고 예측 분석에 대한 수요 증가입니다. 또한, 클라우드 컴퓨팅과 엣지 AI의 발전으로 DNN의 접근성과 확장성이 더욱 향상되고 있습니다.
- 전 세계 정부와 기업들은 AI R&D 투자를 확대하고 있으며, 이는 DNN 기반 솔루션 도입을 더욱 가속화하고 있습니다. 또 다른 중요한 동인은 DNN 학습에 필요한 실시간 데이터를 제공하는 스마트 기기와 IoT 센서의 확산입니다.
미국 딥러닝 신경망(DNN) 시장 통찰력
미국 딥러닝 신경망(DNN) 시장은 2024년 북미에서 81%의 매출 점유율을 기록하며 가장 큰 매출 점유율을 기록했습니다. 이는 정부 및 기관의 AI 연구, 특히 국방, 의료, 교육 분야에 대한 자금 지원에 힘입은 것입니다. 딥러닝은 다양한 산업 분야에서 점점 더 많이 적용되고 있으며, 의료 분야에서는 예측 분석 및 조기 질병 진단에 활용되고 있습니다. 자동차 산업은 자율주행차 개발을 위해 DNN을 활용하고 있으며, 소매업 분야에서는 이미지 인식 및 고객 행동 분석에 DNN을 활용하고 있습니다.
유럽 딥러닝 신경망(DNN) 시장 통찰력
유럽 딥러닝 신경망(DNN) 시장은 예측 기간 동안 상당한 CAGR로 성장할 것으로 예상되며, 이는 주로 GPU 및 TPU와 같은 특수 AI 칩 개발과 같은 하드웨어 혁신이 딥러닝 프로세스의 효율성을 향상시키고 있기 때문입니다. 또한, 서비스형 딥러닝(DLaaS) 플랫폼의 등장으로 인프라에 대한 상당한 초기 투자 필요성이 줄어들면서 기업들이 이러한 기술에 더 쉽게 접근할 수 있게 되었습니다.
영국 딥러닝 신경망(DNN) 시장 통찰력
영국 딥러닝 신경망(DNN) 시장은 예측 기간 동안 주목할 만한 연평균 성장률(CAGR)로 성장할 것으로 예상됩니다. 이는 AI 전용 하드웨어의 탄탄한 기술 발전에 힘입어 더욱 빠르고 효율적인 모델 학습 및 배포가 가능해졌기 때문입니다. 자율주행차 및 서비스 로봇과 같은 자율 시스템의 급증과 자연어 처리(NLP) 및 이미지 인식 분야에서 딥러닝의 역할 확대는 다양한 산업 분야에서 딥러닝 도입을 가속화하고 있습니다. 빅데이터의 기하급수적인 성장은 이러한 모델에 풍부한 인사이트를 제공하며, 특히 DNN이 진단 및 치료 개인 맞춤화에 혁신을 가져오는 의료 분야에서 더욱 그렇습니다.
독일 딥러닝 신경망(DNN) 시장 통찰력
독일 딥러닝 신경망(DNN) 시장은 예측 기간 동안 상당한 CAGR로 성장할 것으로 예상되며, 이는 엣지 AI 애플리케이션의 풍부한 기회에 힘입은 것으로, DNN을 스마트 기기에 통합하면 저지연으로 실시간 인사이트를 얻을 수 있습니다. 또한, 딥러닝과 양자 컴퓨팅, 뉴로모픽 칩과 같은 최첨단 기술의 융합은 성능 한계를 재정의하고 새로운 상업적, 과학적 지평을 열 것으로 기대됩니다.
아시아 태평양 딥러닝 신경망(DNN) 시장 통찰력
아시아 태평양 딥러닝 신경망(DNN) 시장은 2025년부터 2032년까지의 예측 기간 동안 24%의 가장 빠른 CAGR로 성장할 것으로 예상되며, 이는 GPU/TPU 하드웨어와 양자 컴퓨팅의 급속한 발전으로 더욱 효율적이고 빠른 DNN 처리가 가능해짐에 따라 가능해질 것입니다.
일본 딥러닝 신경망(DNN) 시장 통찰력
일본 딥러닝 신경망(DNN) 시장은 첨단 기술 문화, 급속한 도시화, 그리고 편의성에 대한 수요로 인해 성장세를 보이고 있습니다. 일본 시장은 보안에 상당한 중점을 두고 있으며, 스마트 잠금장치 도입은 딥러닝 알고리즘에 크게 의존하는 자율 주행 시스템(자율주행차, 드론, 로봇 등)의 확장에 의해 주도되고 있습니다.
중국 딥러닝 신경망(DNN) 시장 통찰력
중국 딥러닝 신경망(DNN) 시장은 2024년 아시아 태평양 지역에서 가장 큰 시장 수익 점유율을 차지했으며, 윤리적이고 설명 가능한 AI가 주요 관심사가 되면서 해석 가능한 신경망 모델 개발 기회도 새로운 성장 채널을 창출하고 있습니다.
딥러닝 신경망(DNN) 시장 점유율
딥러닝 신경망(DNN) 시장은 주로 다음을 포함한 기존 기업들이 주도하고 있습니다.
- 알류다 리서치, LLC
- IBM
- 마이크론 테크놀로지스 주식회사
- 신경 기술 유한회사
- 주식회사 뉴로디멘션
- 뉴럴웨어
- 엔비디아 주식회사
- 스카이마인드 주식회사
- 삼성
- 퀄컴 테크놀로지스 주식회사
- 인텔 코퍼레이션
- 아마존 웹 서비스 주식회사
- 마이크로소프트
- GMDH 유한회사
- 센서리 주식회사
- 워드 시스템 그룹 주식회사
- 주식회사 자일링스
- 스타마인드
글로벌 딥러닝 신경망(DNN) 시장의 최신 동향
- 2025년 4월, 구글 딥마인드는 AI 연구의 선두주자로서 언어 및 시각 작업에 중점을 둔 Gemma와 PaliGemma 2와 같은 고급 모델을 개발했습니다. Ithaca와 같은 혁신 기술은 고대 문서 복원에 기여하며 딥러닝 애플리케이션의 다재다능함을 보여줍니다.
- 2024년 3월, IBM은 AI 분야의 오랜 역사를 바탕으로 머신러닝을 비즈니스 프로세스에 통합하여 고객 서비스 챗봇과 같은 솔루션을 제공하는 왓슨 플랫폼을 출시했습니다. IBM의 AI 연구에 대한 헌신은 다양한 산업에 지속적으로 영향을 미치고 있습니다.
- 2025년 3월, 인텔은 너바나(Nervana)와 모비디우스(Movidius) 인수를 통해 AI 역량을 확장하여 딥 러닝 소프트웨어를 개선하고 저전력 기기에 AI 애플리케이션을 적용했습니다. 빙(Bing)의 AI 가속화를 위한 마이크로소프트와의 협력과 같은 사례는 인텔의 시장 영향력을 여실히 보여줍니다.
- 2025년 2월, 마이크로소프트는 코타나(Cortana) 어시스턴트부터 Azure 머신러닝 서비스까지 자사 제품 전반에 AI를 통합합니다. AI 스타트업과 도구에 대한 마이크로소프트의 투자는 딥러닝 기술 발전에 대한 탄탄한 접근 방식을 보여줍니다.
- 2025년 1월, 고급 AI 모델 개발로 유명한 OpenAI는 인류에게 도움이 되는 AI 개발에 집중하고 있습니다. 오픈소스 접근 방식과 마이크로소프트, 아마존과 같은 기업과의 협력은 AI 커뮤니티에서 OpenAI의 영향력을 여실히 보여줍니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

