Global Generative Ai In Healthcare Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
2.38 Billion
USD
22.81 Billion
2024
2032
| 2025 –2032 | |
| USD 2.38 Billion | |
| USD 22.81 Billion | |
|
|
|
|
글로벌 헬스케어 생성 AI 시장 세분화, 애플리케이션별(맞춤형 치료, 환자 지원, 환자 모니터링 및 예측 분석 , 의료 영상 분석 및 진단, 약물 발견 및 개발), 최종 사용자별(병원, 전문 클리닉, 외래 수술 센터 (ASC), 연구 및 학술 기관 등) - 2032년까지의 산업 동향 및 예측
헬스케어 시장 규모에서의 생성 AI
- 글로벌 헬스케어 생성 AI 시장 규모는 2024년에 23억 8천만 달러 로 평가되었으며, 예측 기간 동안 32.60%의 CAGR 로 2032년까지 228억 1천만 달러에 도달할 것으로 예상됩니다 .
- 시장 성장은 인공 지능과 머신 러닝의 채택 증가와 기술 발전, 특히 임상 의사 결정 지원, 약물 발견 및 의료 영상 분야에서의 증가로 인해 크게 촉진되었으며, 이는 의료 서비스 제공 및 행정 프로세스 모두에서 디지털화가 더욱 증가함을 의미합니다.
- 더욱이, 효율적이고 개인화된 데이터 기반 솔루션에 대한 의료 서비스 제공업체의 수요 증가는 생성적 AI를 현대 의료 시스템의 변혁적 동력으로 자리매김하고 있습니다. 이러한 요소들이 융합되면서 의료 솔루션 분야에서 생성적 AI의 활용이 가속화되고 있으며, 이는 업계 성장을 크게 촉진하고 있습니다.
헬스케어 시장 분석의 생성적 AI
- 의료 콘텐츠를 생성하고, 임상 의사 결정을 지원하고, 약물 발견을 가속화할 수 있는 AI 시스템을 의미하는 의료 분야의 생성 AI는 진단, 치료 계획 및 개인화된 의학 전반에 걸쳐 변혁의 원동력이 되고 있습니다.
- 생성형 AI 솔루션에 대한 수요 증가는 의료 데이터 양 증가, 디지털 건강 기술 도입 증가 , 임상 효율성 및 환자 결과 개선 필요성 으로 인해 촉진됩니다.
- 북미는 2024년 40.8%의 매출 점유율로 의료 시장에서 생성 AI를 주도했습니다. 이는 조기 AI 도입, 탄탄한 R&D 인프라, 공공 및 민간 부문의 막대한 투자, 그리고 선도적인 기술 기업과 의료 기관의 입지에 기인합니다. 특히 미국에서는 임상 워크플로, 영상의학, 유전체학 분야에서 생성 AI가 빠르게 확산되고 있습니다.
- 아시아 태평양 지역은 예측 기간 동안 의료 디지털화 확대, 정부 지원 정책, 의료 관광 확대, 특히 중국, 인도, 일본과 같은 국가에서 AI 연구에 대한 투자 증가로 인해 의료 시장에서 생성 AI가 가장 빠르게 성장하는 지역이 될 것으로 예상됩니다.
- 신약 발굴 및 개발 부문은 2024년 43.2%의 매출 점유율로 헬스케어 시장에서 생성 AI를 주도했습니다. 이는 생성 AI가 초기 단계 연구를 간소화하고, 새로운 화합물을 개발하며, 신약 개발 일정과 비용을 단축할 수 있는 능력에 힘입은 것입니다. 이 부문은 제약 R&D 및 AI 기반 분자 모델링 플랫폼에 대한 투자 증가로 수혜를 받고 있습니다.
보고서 범위 및 헬스케어 시장 세분화의 생성 AI
|
속성 |
헬스케어의 생성 AI 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 적용 범위, 주요 기업 등 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 가격 분석, 브랜드 점유율 분석, 소비자 설문 조사, 인구 통계 분석, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선택 기준, PESTLE 분석, Porter 분석 및 규제 프레임워크가 포함되어 있습니다. |
헬스케어 시장 동향에서의 생성 AI
“ 생성적 AI 기반 의료 솔루션을 통한 편의성 향상 ”
- 글로벌 헬스케어 시장에서 생성적 AI가 빠르게 확산되고 있는 중요한 트렌드는 AI 기반 도구를 임상 및 운영 워크플로에 통합하여 의료 서비스 제공자의 효율성과 환자 참여를 향상시키는 것입니다. 이러한 도구는 실시간 의사 결정을 지원하고, 반복적인 문서 작성을 자동화하며, 치료 접근 방식을 개인화하여 의료진과 환자 모두의 편의성을 향상시킵니다.
- 예를 들어, Abridge와 Nuance DAX와 같은 생성형 AI 플랫폼은 환자와 의사 간의 대화를 자동으로 기록하고 요약하여 임상의가 행정 업무가 아닌 환자 치료에 더 많은 시간을 할애할 수 있도록 지원합니다. 이러한 사용 편의성과 자동화는 병원과 개인 진료소 전반에 걸쳐 기대치를 변화시키고 있습니다.
- 생성 AI 시스템은 의료 기록, 영상 결과, 유전체 데이터와 같은 방대한 비정형 데이터를 합성하여 개인 맞춤형 진단 및 치료 인사이트를 생성하는 데에도 활용되고 있습니다. 이러한 기능은 의료 전문가의 인지적 부담을 줄이는 동시에 치료 속도와 정확성을 향상시킵니다.
- 생성적 AI 도구를 전자 건강 기록(EHR) 시스템과 완벽하게 통합하면 환자 데이터, 치료 계획 및 임상 문서를 중앙에서 관리할 수 있습니다. 의사는 기존 워크플로 내에서 AI가 생성한 요약, 알림 및 권장 사항에 액세스할 수 있어 효율적인 진료 제공이 가능합니다.
- 더욱 지능적이고 직관적이며 개인화된 의료 시스템을 지향하는 이러한 추세는 사용자의 기대치를 근본적으로 변화시키고 있으며, 역동적인 실시간 AI 생성 솔루션에 대한 수요를 촉진하고 있습니다. 따라서 Microsoft, Google Health, Oracle과 같은 기업들은 임상 지원, 문서 자동화, 연구 가속화에 특화된 생성적 AI 플랫폼에 투자하고 있습니다.
- 병원, 진단 실험실, 생명 과학 회사 전반에서 원활한 통합, 실시간 통찰력, 향상된 의사 결정 지원을 제공하는 생성적 AI 의료 솔루션에 대한 수요가 빠르게 증가하고 있습니다. 이는 이 분야가 보다 가치 기반적이고 환자 중심적인 치료 모델로 이동하고 있기 때문입니다.
헬스케어 시장 역학에서의 생성 AI
운전사
"개인화된 의료 및 AI 기반 솔루션에 대한 수요 증가로 인한 수요 증가"
- 개인화된 치료, 더 빠른 진단, 향상된 환자 결과에 대한 필요성이 증가하고 의료 시스템에서 인공 지능이 통합되는 추세가 증가함에 따라 의료 분야에서 생성 AI에 대한 수요가 크게 증가하고 있습니다.
- 예를 들어, 2024년 4월 Google DeepMind는 환자 데이터에서 정확한 의료 반응을 생성하여 임상 의사 결정을 지원하는 MedPaLM 플랫폼의 발전을 발표했으며, 이는 임상 워크플로우를 혁신하는 생성 AI 기술의 역할 확대를 강조했습니다.
- 의료 서비스 제공자와 기관이 AI가 프로세스를 간소화하고 작업 부하를 줄이며 정밀성을 향상시킬 수 있는 잠재력을 더욱 인식하게 되면서 생성형 AI 도구는 개인화된 치료 계획, AI에서 생성된 진단 통찰력, 실시간 환자 모니터링과 같은 기능을 제공하여 현대 의료 생태계에서 매우 귀중한 가치를 지닙니다.
- 또한 디지털 건강 기록, 원격 진료 플랫폼, AI 기반 의료 영상 도구의 채택이 확대됨에 따라 생성 AI가 의료 디지털 혁신의 핵심 구성 요소가 되어 여러 시스템과 전문 분야에 걸쳐 원활한 통합을 제공하고 있습니다.
- AI 기반 신약 개발의 편의성, 환자 위험 평가를 위한 예측 분석, 그리고 임상의를 위한 의사 결정 지원은 병원, 연구 기관, 그리고 전문 클리닉 전반에 걸쳐 AI 도입을 촉진하는 핵심 요소입니다. 생성 AI 헬스케어 플랫폼의 접근성과 사용자 친화성이 향상됨에 따라 의료진과 기관의 도입도 확대되고 있습니다.
제지/도전
“ 데이터 프라이버시, 편향 및 높은 구현 비용에 대한 우려 ”
- 데이터 프라이버시, 환자 데이터의 윤리적 사용, 그리고 잠재적인 알고리즘 편향에 대한 우려는 의료 분야에서 생성적 AI의 광범위한 도입에 심각한 난관을 야기합니다. 이러한 시스템은 방대한 데이터 세트와 복잡한 신경망에 의존하기 때문에, 의도치 않게 기존 편향을 강화하거나 HIPAA 및 GDPR과 같은 의료 규정 준수 문제를 야기할 수 있습니다.
- 예를 들어, AI가 생성한 의료 권장 사항에서 인종적 또는 성적 편견을 강조하는 연구는 이러한 기술이 임상에 배치될 준비가 되었는지에 대한 논쟁을 불러일으켰으며, 이로 인해 공급자들 사이에 주저함이 생겼습니다.
- 이러한 우려를 해결하려면 공정성, 정확성, 그리고 책임성을 보장하기 위한 투명한 알고리즘, 규제 프레임워크, 그리고 강력한 데이터 거버넌스 모델이 필요합니다. IBM Watson Health와 Microsoft Azure Health와 같은 기업들은 이해관계자 간의 신뢰를 구축하기 위해 윤리적인 AI 개발과 규제 준수를 강조합니다.
- 또한, 특히 진단이나 약물 개발을 위한 딥 러닝 모델을 포함하는 고급 생성 AI 시스템을 구현하는 데 드는 높은 초기 비용은 신흥 시장의 중소 규모 의료 시설에 장벽이 될 수 있습니다.
- 클라우드 기반 및 구독형 AI 모델이 재정적 부담을 어느 정도 줄여주고 있지만, 도입 과정에서 인식되는 복잡성과 비용 때문에 의료 서비스 제공자는 여전히 이러한 솔루션을 완전히 도입하지 못하고 있습니다.
- 향상된 데이터 투명성, 공정한 모델 교육, 비용 효율적인 배포 전략 및 향상된 사이버 보안 프로토콜을 통해 이러한 과제를 극복하는 것은 의료 시장에서 생성적 AI의 지속적인 성장을 보장하는 데 매우 중요합니다.
헬스케어 시장 범위의 생성 AI
헬스케어 분야의 생성 AI 시장은 응용 분야와 최종 사용자를 기준으로 세분화됩니다.
- 응용 프로그램별
헬스케어 시장의 생성적 AI는 적용 분야별로 개인 맞춤형 치료, 환자 지원, 환자 모니터링 및 예측 분석, 의료 영상 분석 및 진단, 그리고 신약 발굴 및 개발로 구분됩니다. 신약 발굴 및 개발 부문은 2024년 43.2%의 매출 점유율로 시장을 장악했으며, 이는 생성적 AI가 초기 단계 연구를 간소화하고, 새로운 화합물을 개발하며, 신약 개발 일정과 비용을 단축할 수 있는 능력에 힘입은 것입니다. 이 부문은 제약 R&D 및 AI 기반 분자 모델링 플랫폼에 대한 투자 증가로 수혜를 입을 것입니다.
의료 영상 분석 및 진단 분야는 영상의학, 병리학, 피부과 분야에서 AI 도구 도입이 증가함에 따라 2025년부터 2032년까지 24.8%의 가장 빠른 연평균 성장률을 기록할 것으로 예상됩니다. 이 분야의 생성 AI 애플리케이션은 진단 정확도를 높이고, 영상 해석을 자동화하며, 더욱 신속한 임상 의사 결정을 가능하게 합니다.
- 최종 사용자별
최종 사용자 기준으로 의료 시장의 생성적 AI는 병원, 전문 클리닉, 외래 수술 센터(ASC), 연구 및 학술 기관 등으로 세분화됩니다. 병원 부문은 2024년 39.6%의 시장 매출 점유율을 기록하며 가장 큰 비중을 차지했는데, 이는 높은 환자 수, 견고한 의료 인프라, 그리고 임상 효율성과 진료 제공을 향상시키기 위한 AI 기반 솔루션에 대한 투자 확대 덕분입니다. 병원들은 진단, 문서화 및 개인 맞춤형 의료 워크플로에 생성적 AI를 통합하고 있습니다.
연구 및 학술 기관 부문은 생물의학 분야에서 AI 연구 확대, 공공 및 민간 기관의 자금 지원, 질병 모델링 및 임상 시험 최적화를 위한 AI 알고리즘 개발에 힘입어 2025년부터 2032년까지 가장 높은 연평균 성장률(CAGR) 23.5%를 기록할 것으로 예상됩니다.
헬스케어 시장의 생성적 AI 지역 분석
- 북미는 2024년 디지털 건강 인프라에 대한 강력한 투자에 힘입어 40.8%의 가장 큰 매출 점유율을 기록하며 의료 분야의 생성 AI 시장을 장악했습니다.
- 조기 AI 도입 및 지원 규제 프레임워크
- 이 지역은 임상 워크플로, 진단 및 개인화된 의료 이니셔티브에 생성 AI를 통합함으로써 2025년부터 2032년까지 21.3%의 CAGR로 성장할 것으로 예상됩니다.
미국 헬스케어 시장 통찰력의 생성 AI
미국의 헬스케어 생성 AI 시장은 2024년 북미 시장 점유율 61%를 차지하며 전 세계 매출의 33.0%를 차지했습니다. 이러한 선도적 지위는 전자 건강 기록(EHR), 예측 분석 플랫폼, AI 지원 진단 분야에서 AI가 광범위하게 도입됨에 따라 가능해졌습니다. 미국 시장은 헬스케어 디지털화의 확대와 AI 기술 기업 및 헬스케어 제공업체의 높은 집중도로 인해 예측 기간 동안 연평균 성장률 21.8%로 성장할 것으로 예상됩니다.
유럽 헬스케어 시장 통찰력의 생성적 AI
유럽의 의료 생성 AI 시장은 엄격한 의료 데이터 규제, 자동화에 대한 관심 증가, 그리고 진단 및 영상 분야에서 AI 도입 증가에 힘입어 2024년 세계 시장 점유율 28.6%로 두 번째로 높은 수준을 기록했습니다. 독일, 영국, 프랑스와 같은 국가에서는 AI 연구 투자 증가와 병원 현대화 프로그램 덕분에 이 지역 시장이 크게 성장할 것으로 예상됩니다.
영국 헬스케어 시장 통찰력의 생성적 AI
영국의 의료 분야 생성 AI 시장은 예측 기간 동안 주목할 만한 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 이는 NHS(국민보건서비스) 지원 AI 이니셔티브, 의료 기술 스타트업에 대한 투자, 그리고 자동화를 통한 의료 부담 감소에 대한 강조에 힘입은 것입니다. AI 기반 임상 의사 결정 및 원격 의료 관리 도구에 대한 수요 증가로 인해 시장이 성장할 것으로 예상됩니다.
독일 헬스케어 시장 통찰력의 생성적 AI
독일의 의료 분야 생성 AI 시장은 예측 기간 동안 상당한 CAGR(연평균 성장률)로 성장할 것으로 예상됩니다. 이는 독일의 탄탄한 R&D 인프라, 디지털 헬스케어 전략, 그리고 병리학, 영상의학, 그리고 병원 행정 분야에서 AI 활용 증가에 힘입은 것입니다. 윤리적인 AI 통합 정책과 공공 병원 및 학술 기관에서의 AI 도입 증가에 힘입어 시장이 성장할 것으로 예상됩니다.
아시아 태평양 지역 헬스케어 시장 통찰력의 생성적 AI
아시아 태평양 지역의 의료 분야 AI 생성 시장은 2025년부터 2032년까지 24.0%의 가장 빠른 CAGR로 성장할 것으로 예상되며, 2024년에는 18.3%의 글로벌 시장 점유율을 기록했습니다. 이 지역의 성장은 중국, 일본, 인도의 의료 디지털화 증가, 의료 관광 증가, 그리고 의료 분야 AI에 대한 정부 자금 지원 확대에 기인합니다.
일본 헬스케어 시장 통찰력의 생성적 AI
일본의 의료 생성 AI 시장은 2024년 전 세계 매출 점유율의 약 5.2%를 차지했으며, 노인 케어, 정밀 의학, 통합 스마트 병원 솔루션 분야의 AI 수요 증가에 힘입어 성장했습니다. 병원들이 의료 영상, 자동 문서 작성, 원격 환자 모니터링 등에 AI를 도입함에 따라 이 시장은 연평균 23.7% 성장할 것으로 예상됩니다.
중국 헬스케어 시장 통찰력의 생성적 AI
중국 헬스케어 생성 AI 시장은 2024년 전 세계 매출의 8.9%를 차지하며 아시아 태평양 시장을 선도했습니다. 이는 막대한 헬스케어 수요, 빠른 AI 도입, 그리고 국내 생성 AI 플랫폼의 강력한 혁신에 힘입은 것입니다. 이 시장은 적극적인 디지털 헬스케어 인프라 개발, AI 정책 추진, 그리고 임상 연구 및 제약 분야에서의 활용 증가에 힘입어 2032년까지 연평균 25.4% 성장할 것으로 예상됩니다.
헬스케어 시장 점유율에서의 생성 AI
헬스케어 산업의 생성적 AI는 주로 다음을 포함한 기존 기업들이 주도하고 있습니다.
- 에픽 시스템즈 코퍼레이션(미국)
- DiagnaMed Holdings Corp. (미국)
- 신테그라(미국)
- 메라티브(미국)
- Google LLC(미국)
- 오라클(미국)
- 마이크로소프트(미국)
- 엔비디아 코퍼레이션(미국)
- 인실리코 메디슨(미국)
- Abridge AI, Inc. (미국)
- ELEKS(에스토니아)
- 지속적 시스템(인도)
글로벌 헬스케어 시장에서의 생성 AI의 최신 동향
- 2023년 12월, 머크는 신약 개발을 위한 선구적인 소프트웨어 서비스(SaaS)인 에이디슨(Aiddison)을 출시했습니다. 이 플랫폼은 신시아(Synthia) 역합성 소프트웨어 애플리케이션 프로그래밍 인터페이스(API) 통합을 통해 가상 설계 및 제조 기능을 통합했습니다. 이번 출시는 기존 공정 대비 최대 70%의 공정 속도를 향상시켜 신약 개발 속도를 높이는 것을 목표로 했습니다.
- 2023년 8월, Cognizant는 Google Cloud와의 협력을 확대하여 생성적 AI를 활용하여 관리 프로세스를 개선하고 비용 최적화 및 사용자 경험 향상을 목표로 했습니다. 이 협력 파트너십은 의료 솔루션 강화, 비즈니스 효율성 향상, 그리고 사용자 경험 향상을 목표로 했습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

