Global Graphics Processing Units Gpu Database Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
603.75 Million
USD
2,444.29 Million
2025
2033
| 2026 –2033 | |
| USD 603.75 Million | |
| USD 2,444.29 Million | |
|
|
|
|
글로벌 그래픽 처리 장치(GPU) 데이터베이스 시장 세분화: 구성 요소(도구 및 서비스), 배포 방식(클라우드 및 온프레미스), 애플리케이션(거버넌스, 위험 및 규정 준수, 위협 인텔리전스, 고객 경험 관리, 사기 탐지 및 예방, 공급망 관리 및 기타), 최종 사용자(금융, 소매 및 전자상거래, 통신 및 IT, 운송 및 물류, 의료 및 제약, 정부 및 국방 및 기타) - 산업 동향 및 2033년까지의 전망
그래픽 처리 장치(GPU) 데이터베이스 시장 규모
- 전 세계 그래픽 처리 장치(GPU) 데이터베이스 시장 규모는 2025년 6억 375만 달러 였으며, 예측 기간 동안 연평균 성장률(CAGR) 19.10% 로 성장하여 2033년에는 24억 4429만 달러 에 이를 것으로 예상됩니다 .
- 시장 성장은 주로 인공지능, 머신러닝, 실시간 분석의 도입 증가에 힘입어 이루어지고 있으며, 이러한 기술들은 GPU 가속 데이터베이스를 통해 지원되는 고성능 데이터 처리 기능을 필요로 합니다.
- 또한 기업 전반에 걸쳐 정형 및 비정형 데이터의 양이 증가하고 있으며, 더 빠른 쿼리 실행과 낮은 지연 시간의 인사이트 도출에 대한 요구가 맞물려 GPU 데이터베이스 도입이 가속화되고 있어 전체 시장 성장을 크게 촉진하고 있습니다.
그래픽 처리 장치(GPU) 데이터베이스 시장 분석
- GPU(그래픽 처리 장치) 데이터베이스는 데이터 저장 및 분석을 위해 GPU의 병렬 처리 기능을 활용하도록 설계되었으며, 대규모의 연산 집약적인 워크로드를 효율적으로 처리할 수 있는 능력 덕분에 클라우드 및 온프레미스 환경을 아우르는 최신 데이터 아키텍처의 핵심 구성 요소로 자리 잡고 있습니다.
- 금융, 소매, 의료 및 IT 부문 전반에 걸쳐 실시간 의사 결정, 고급 분석 및 AI 기반 애플리케이션에 대한 중요성이 점점 커지고 있는 것이 GPU 데이터베이스 솔루션에 대한 지속적인 수요를 견인하는 주요 요인입니다.
- 북미는 고성능 컴퓨팅의 조기 도입, 하이퍼스케일 클라우드 제공업체의 강력한 입지, 그리고 인공지능(AI) 및 데이터 집약적 애플리케이션의 빠른 배포에 힘입어 2025년까지 34.57%의 점유율로 그래픽 처리 장치(GPU) 데이터베이스 시장을 주도할 것으로 예상됩니다.
- 아시아 태평양 지역은 급속한 디지털화, 클라우드 인프라 확장, 인공지능(AI) 기술 도입 증가로 인해 예측 기간 동안 그래픽 처리 장치(GPU) 데이터베이스 시장에서 가장 빠르게 성장하는 지역이 될 것으로 예상됩니다.
- GPU 가속 데이터베이스 엔진, 쿼리 최적화 도구, 분석 플랫폼이 대규모 병렬 데이터 처리에 핵심적인 역할을 수행함에 따라, 툴 부문은 2025년까지 59.14%의 시장 점유율로 시장을 주도할 것으로 예상됩니다. 기업들은 더 빠른 쿼리 실행, 실시간 분석, AI 및 ML 기반 워크로드 성능 향상을 위해 GPU 데이터베이스 툴에 대한 의존도를 높여가고 있습니다. 금융, 소매, 과학 연구 분야에서 데이터 집약적인 애플리케이션의 도입이 증가함에 따라 고급 GPU 데이터베이스 툴에 대한 수요는 더욱 증가하고 있습니다. 기존 데이터 아키텍처 및 분석 프레임워크와의 원활한 통합 기능은 기업의 광범위한 도입을 뒷받침합니다.
보고서 범위 및 그래픽 처리 장치(GPU) 데이터베이스 시장 세분화
|
속성 |
그래픽 처리 장치(GPU) 데이터베이스 주요 시장 분석 |
|
포함되는 부문 |
|
|
대상 국가 |
북아메리카
유럽
아시아태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보세트 |
데이터 브리지 마켓 리서치 팀이 작성한 시장 보고서는 시장 가치, 성장률, 시장 세분화, 지역 범위, 시장 참여자 및 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수출입 분석, 가격 분석, 생산 소비 분석 및 PESTLE 분석을 포함합니다. |
그래픽 처리 장치(GPU) 데이터베이스 시장 동향
실시간 분석을 위한 GPU 데이터베이스 도입 증가
- 그래픽 처리 장치(GPU) 데이터베이스 시장의 주요 트렌드는 실시간 분석을 위한 GPU 가속 데이터베이스의 도입이 증가하고 있다는 점입니다. 이는 데이터 집약적인 산업 전반에서 대규모 데이터를 낮은 지연 시간으로 처리해야 하는 필요성에 의해 주도되고 있습니다. 기업들은 특히 AI 기반 및 분석 워크로드에서 더 빠른 쿼리 실행과 병렬 데이터 처리를 지원하기 위해 GPU 데이터베이스로 전환하고 있습니다.
- 예를 들어, Kinetica와 SQream Technologies 같은 기업들은 통신, 금융 서비스 및 지리 공간 애플리케이션을 위한 실시간 분석을 가능하게 하는 GPU 기반 데이터베이스를 제공합니다. 이러한 플랫폼을 통해 기업은 스트리밍 데이터와 과거 데이터를 동시에 분석하여 의사 결정 속도와 운영 효율성을 향상시킬 수 있습니다.
- 인공지능 및 머신러닝 파이프라인에서 GPU 데이터베이스 사용이 증가함에 따라 이러한 추세가 더욱 강화되고 있습니다. GPU는 고성능 데이터베이스와 결합될 때 모델 학습 및 추론 시간을 크게 단축시켜 줍니다. 이러한 기능은 지속적으로 생성되는 데이터에서 즉각적인 인사이트를 얻어야 하는 애플리케이션에 필수적인 요소가 되고 있습니다.
- 클라우드 서비스 제공업체들은 확장 가능한 실시간 분석에 대한 기업의 수요를 충족하기 위해 GPU 데이터베이스 기술을 자사 플랫폼에 통합하고 있습니다. 이러한 통합으로 GPU 데이터베이스에 대한 접근성이 향상되고 있으며, 중대형 조직 전반에 걸쳐 도입이 가속화되고 있습니다.
- 소매, 금융, 의료와 같은 산업 분야에서는 실시간 개인화, 사기 탐지 및 예측 분석을 지원하기 위해 GPU 데이터베이스에 대한 의존도가 점점 높아지고 있습니다. 이러한 활용 사례는 현대 데이터 아키텍처의 핵심 구성 요소로서 GPU 데이터베이스의 역할이 확대되고 있음을 보여줍니다.
- 전반적으로 속도, 확장성 및 실시간 인사이트 생성에 대한 중요성이 커짐에 따라 GPU 데이터베이스는 차세대 분석 및 AI 기반 엔터프라이즈 시스템을 지원하는 핵심 기술로서의 입지를 강화하고 있습니다.
그래픽 처리 장치(GPU) 데이터베이스 시장 동향
운전사
인공지능 및 머신러닝 워크로드에 대한 수요 증가
- 인공지능 및 머신러닝 애플리케이션의 급속한 확장은 GPU 데이터베이스 시장의 주요 성장 동력입니다. 이러한 워크로드에는 높은 처리량과 병렬 데이터 처리 기능이 요구되기 때문입니다. GPU 데이터베이스는 복잡한 데이터 세트를 더 빠르게 처리할 수 있도록 지원하여 고급 분석 및 모델 개발을 가능하게 합니다.
- 예를 들어, NVIDIA는 RAPIDS와 같은 플랫폼 및 클라우드 제공업체와의 파트너십을 통해 GPU 데이터베이스 도입을 촉진하여 AI 워크로드에 필요한 데이터 처리 속도를 향상시켰습니다. 이러한 솔루션을 통해 기업은 데이터 준비, 분석 및 머신러닝 작업을 더욱 효율적으로 수행할 수 있습니다.
- 금융, 소매, 의료 등 다양한 분야에서 인공지능(AI)의 도입이 증가함에 따라 실시간 추론 및 대규모 모델 학습을 지원할 수 있는 데이터베이스에 대한 수요가 증가하고 있습니다. GPU 데이터베이스는 처리 시간을 크게 단축하여 이러한 요구 사항을 충족합니다.
- 기업들은 추천 엔진, 이미지 및 비디오 분석, 자연어 처리 애플리케이션을 지원하기 위해 GPU 데이터베이스를 도입하고 있습니다. 이러한 워크로드는 연산 집약적인 특성 때문에 GPU 가속의 이점을 누릴 수 있습니다.
- 인공지능(AI)이 핵심 비즈니스 운영에 점점 더 많이 통합됨에 따라 이러한 추세는 더욱 강화되고 있습니다. 조직들이 AI 이니셔티브를 확장함에 따라 GPU 가속 데이터베이스 솔루션에 대한 의존도는 더욱 높아질 것으로 예상됩니다.
절제/도전
높은 비용과 복잡한 구축 환경
- GPU 데이터베이스 시장에서 높은 비용과 복잡한 구축 환경은 여전히 주요 과제로 남아 있습니다. 기업들은 특수 GPU 하드웨어와 지원 인프라에 투자해야 하기 때문입니다. 이러한 요구 사항으로 인해 초기 자본 지출이 증가하고 비용에 민감한 기업들의 GPU 도입이 제한됩니다.
- 예를 들어, OmniSci나 SQream Technologies와 같은 공급업체의 엔터프라이즈급 GPU 데이터베이스 솔루션을 구축하려면 구성, 최적화 및 유지 관리를 위해 숙련된 전문가가 필요한 경우가 많습니다. 이러한 전문 지식의 필요성은 운영 복잡성과 비용을 증가시킵니다.
- GPU 데이터베이스는 기대하는 성능 향상을 얻기 위해 신중한 워크로드 최적화가 필요하며, 이는 사내 기술 역량이 부족한 조직에게는 어려운 과제가 될 수 있습니다. 부적절한 구성은 GPU 리소스 활용률 저하로 이어질 수 있습니다.
- 기존 데이터 생태계 및 레거시 시스템과의 통합은 배포를 더욱 복잡하게 만들어 구현 기간을 늘립니다. 이는 투자 수익을 빠르게 얻고자 하는 조직의 도입 속도를 늦출 수 있습니다.
- GPU 데이터베이스 기술이 제공하는 성능상의 이점에도 불구하고, 이러한 비용 및 복잡성 장벽은 특히 중소기업 사이에서 시장 성장을 지속적으로 저해하고 있습니다.
그래픽 처리 장치(GPU) 데이터베이스 시장 범위
시장은 구성 요소, 배포 방식, 애플리케이션 및 최종 사용자를 기준으로 세분화됩니다.
- 구성 요소별
구성 요소 기준으로 그래픽 처리 장치(GPU) 데이터베이스 시장은 도구와 서비스로 구분됩니다. 도구 부문은 2025년까지 59.14%의 가장 큰 매출 점유율을 차지하며 시장을 주도할 것으로 예상되며, 이는 대규모 병렬 데이터 처리에 있어 GPU 가속 데이터베이스 엔진, 쿼리 최적화 도구 및 분석 플랫폼의 핵심적인 역할에 힘입은 결과입니다. 기업들은 더 빠른 쿼리 실행, 실시간 분석, AI 및 머신러닝 기반 워크로드의 성능 향상을 위해 GPU 데이터베이스 도구에 대한 의존도를 높여가고 있습니다. 금융, 소매 및 과학 연구 분야에서 데이터 집약적인 애플리케이션의 도입이 증가함에 따라 고급 GPU 데이터베이스 도구에 대한 수요도 더욱 증가하고 있습니다. 기존 데이터 아키텍처 및 분석 프레임워크와의 원활한 통합 기능은 기업의 광범위한 도입을 뒷받침합니다.
서비스 부문은 GPU 데이터베이스 환경에 특화된 배포, 통합 및 관리 서비스에 대한 수요 증가에 힘입어 2026년부터 2033년까지 가장 빠른 성장률을 보일 것으로 예상됩니다. GPU 데이터베이스를 도입하는 기업들은 워크로드 최적화, 마이그레이션 및 성능 튜닝을 위한 전문적인 기술력을 필요로 하는 경우가 많습니다. 서비스 제공업체는 배포 복잡성을 줄이고 가치 실현 시간을 단축하는 데 핵심적인 역할을 합니다. 하이브리드 및 멀티 클라우드 전략으로의 전환이 가속화됨에 따라 전문적인 관리형 서비스에 대한 필요성이 더욱 커지고 있습니다.
- 배포를 통해
배포 방식에 따라 GPU 데이터베이스 시장은 클라우드와 온프레미스로 구분됩니다. 클라우드 기반 GPU 인프라가 제공하는 확장성, 유연성 및 비용 효율성에 힘입어 클라우드 부문이 2025년까지 시장 점유율 1위를 차지할 것으로 예상됩니다. 클라우드 배포를 통해 기업은 막대한 초기 하드웨어 투자 없이 고성능 GPU 데이터베이스에 접근할 수 있습니다. 또한 변동하는 데이터 워크로드와 실시간 분석 사용 사례에 맞춰 탄력적인 확장이 가능합니다. 주요 클라우드 서비스 제공업체에서 GPU 인스턴스를 쉽게 이용할 수 있게 되면서 모든 규모의 기업에서 GPU 도입 장벽이 크게 낮아졌습니다.
온프레미스 부문은 데이터 보안, 지연 시간 및 규정 준수 요구 사항 증가에 힘입어 예측 기간 동안 가장 빠른 속도로 성장할 것으로 예상됩니다. 금융, 정부 및 의료와 같은 산업에서는 민감한 데이터에 대한 완벽한 통제권을 유지하기 위해 온프레미스 GPU 데이터베이스를 선호합니다. 또한 온프레미스 배포를 통해 조직은 일관되고 높은 처리량의 워크로드를 위해 GPU 리소스를 최적화할 수 있습니다. 미션 크리티컬 애플리케이션에서 예측 가능한 성능에 대한 필요성이 이 부문의 지속적인 성장을 뒷받침합니다.
- 신청을 통해
GPU 데이터베이스 시장은 적용 분야를 기준으로 거버넌스, 위험 관리 및 규정 준수, 위협 인텔리전스, 고객 경험 관리, 사기 탐지 및 예방, 공급망 관리, 기타 분야로 세분화됩니다. 사기 탐지 및 예방은 대용량 거래 데이터의 실시간 분석 필요성에 힘입어 2025년 가장 큰 성장 동력이 될 것으로 예상됩니다. GPU 데이터베이스는 사기 행위 식별에 필수적인 빠른 패턴 인식 및 이상 탐지를 가능하게 합니다. 디지털 결제 및 온라인 뱅킹의 증가 추세는 이 분야의 수요를 더욱 가속화하고 있습니다. 고속 분석 및 저지연 처리 덕분에 GPU 데이터베이스는 사기 방지 시스템에 최적의 선택지가 되고 있습니다.
고객 경험 관리는 실시간 고객 데이터 분석의 활용 증가에 힘입어 2026년부터 2033년까지 가장 빠르게 성장하는 애플리케이션 분야가 될 것으로 예상됩니다. 기업들은 GPU 데이터베이스를 활용하여 대량의 행동 및 상호작용 데이터를 처리하고 개인화된 경험을 제공합니다. 옴니채널 참여 전략의 확산은 빠른 데이터 처리 및 분석에 대한 필요성을 증대시키고 있습니다. GPU 가속 데이터베이스는 기업이 즉각적인 인사이트를 얻도록 지원하여 고객 만족도와 유지율을 향상시킵니다.
- 최종 사용자에 의해
최종 사용자를 기준으로 GPU 데이터베이스 시장은 금융·보험(BFSI), 소매 및 전자상거래, 통신 및 IT, 운송 및 물류, 의료 및 제약, 정부 및 국방, 기타 부문으로 세분화됩니다. BFSI 부문은 위험 평가, 사기 탐지 및 규정 준수를 위한 고속 데이터 분석에 대한 의존도가 높아 2025년까지 시장을 주도할 것으로 예상됩니다. 금융 기관은 방대한 양의 정형 및 비정형 데이터를 처리하므로 GPU 데이터베이스는 성능 최적화에 필수적입니다. 실시간 의사 결정 및 고급 분석에 대한 요구가 이 부문의 높은 도입률을 뒷받침하고 있습니다.
소매 및 전자상거래 부문은 데이터 기반 개인화 및 수요 예측의 활용 증가에 힘입어 예측 기간 동안 가장 빠른 성장률을 기록할 것으로 예상됩니다. GPU 데이터베이스를 통해 소매업체는 고객 행동, 가격 추세 및 재고 데이터를 실시간으로 분석할 수 있습니다. 온라인 쇼핑 플랫폼과 디지털 마케팅의 급속한 확장은 이러한 수요를 더욱 촉진하고 있습니다. 고성능 분석 기능은 소매업체가 운영 효율성을 높이고 고객 참여를 강화하는 데 도움이 됩니다.
그래픽 처리 장치(GPU) 데이터베이스 시장 지역 분석
- 북미는 고성능 컴퓨팅의 조기 도입, 하이퍼스케일 클라우드 제공업체의 강력한 입지, 인공지능(AI) 및 데이터 집약적 애플리케이션의 빠른 배포에 힘입어 2025년까지 34.57%의 매출 점유율로 GPU(그래픽 처리 장치) 데이터베이스 시장을 주도할 것으로 예상됩니다.
- 이 지역의 기업들은 실시간 분석, 머신 러닝 워크로드, 대규모 데이터 세트 전반에 걸친 쿼리 성능 향상을 위해 그래픽 처리 장치(GPU) 데이터베이스를 우선시하고 있습니다.
- 이러한 지배력은 첨단 디지털 인프라, 기업의 높은 IT 투자, 그리고 클라우드 및 하이브리드 아키텍처의 광범위한 사용에 의해 더욱 강화되어, 그래픽 처리 장치(GPU) 데이터베이스를 금융, 기술 및 정부 부문 전반에 걸쳐 핵심 구성 요소로 자리매김하게 했습니다.
미국 그래픽 처리 장치(GPU) 데이터베이스 시장 분석
미국의 그래픽 처리 장치(GPU) 데이터베이스 시장은 인공지능, 빅데이터 분석 및 클라우드 컴퓨팅에 대한 강력한 투자에 힘입어 2025년 북미 지역에서 가장 큰 매출 점유율을 차지할 것으로 예상됩니다. 기업들은 실시간 사기 탐지, 추천 엔진 및 고빈도 분석을 지원하기 위해 GPU 데이터베이스를 점점 더 많이 도입하고 있습니다. 주요 클라우드 서비스 제공업체와 GPU 기술 공급업체의 존재는 이러한 도입을 가속화하고 있습니다. 또한, 금융, 소매 및 IT 부문 전반에 걸쳐 확장 가능하고 지연 시간이 짧은 데이터 처리에 대한 수요가 증가함에 따라 시장 성장이 지속되고 있습니다.
유럽 그래픽 처리 장치(GPU) 데이터베이스 시장 분석
유럽의 GPU(그래픽 처리 장치) 데이터베이스 시장은 고급 분석 도입 증가와 데이터 거버넌스 및 규정 준수에 대한 관심 증대에 힘입어 예측 기간 동안 꾸준한 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 유럽 전역의 기업들은 대용량의 정형 및 비정형 데이터를 효율적으로 처리하기 위해 GPU 데이터베이스를 활용하고 있습니다. 산업 전반에 걸친 디지털 전환 이니셔티브의 확산 또한 시장 성장을 뒷받침하고 있습니다. 고성능 데이터 처리 솔루션을 찾는 연구 기관과 기업들 사이에서도 GPU 도입이 가속화되고 있습니다.
영국 그래픽 처리 장치(GPU) 데이터베이스 시장 분석
영국 GPU(그래픽 처리 장치) 데이터베이스 시장은 금융, 소매 및 미디어 부문에서 데이터 기반 의사 결정 활용이 증가함에 따라 상당한 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 기업들은 실시간 분석을 강화하고 고객 경험 관리를 개선하기 위해 GPU 데이터베이스를 도입하고 있습니다. 클라우드 도입 확대와 인공지능(AI) 혁신에 대한 관심 증가는 시장 성장에 더욱 기여하고 있습니다. 디지털 경제의 확장은 고속 데이터베이스 솔루션에 대한 지속적인 수요를 창출하고 있습니다.
독일 그래픽 처리 장치(GPU) 데이터베이스 시장 분석
독일의 GPU(그래픽 처리 장치) 데이터베이스 시장은 제조, 자동차 및 산업 분석 애플리케이션의 강력한 수요에 힘입어 예측 기간 동안 상당한 연평균 성장률(CAGR)을 기록하며 성장할 것으로 예상됩니다. 독일 기업들은 예측 유지보수, 공급망 최적화 및 산업용 AI 워크로드를 지원하기 위해 GPU 데이터베이스를 점점 더 많이 도입하고 있습니다. 기술 혁신과 데이터 보안에 대한 독일의 집중적인 노력은 클라우드 및 온프레미스 환경 모두에서 GPU 도입을 촉진하고 있습니다. GPU 데이터베이스는 인더스트리 4.0 이니셔티브에 필수적인 요소로 자리매김하고 있습니다.
아시아 태평양 지역 그래픽 처리 장치(GPU) 데이터베이스 시장 분석
아시아 태평양 지역의 GPU(그래픽 처리 장치) 데이터베이스 시장은 급속한 디지털화, 클라우드 인프라 확장, 인공지능(AI) 기술 도입 증가에 힘입어 2026년부터 2033년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 이 지역 기업들은 대규모 데이터 처리를 지원하기 위해 고급 분석 기술에 막대한 투자를 하고 있습니다. 정부 주도의 디지털 혁신 정책과 성장하는 스타트업 생태계는 이러한 기술 도입을 더욱 가속화하고 있습니다. 확장성과 비용 효율적인 성능에 대한 이 지역의 높은 관심 또한 시장의 빠른 성장을 뒷받침하고 있습니다.
일본 그래픽 처리 장치(GPU) 데이터베이스 시장 분석
일본의 그래픽 처리 장치(GPU) 데이터베이스 시장은 기업 전반에 걸쳐 인공지능(AI), 고급 분석 및 고성능 컴퓨팅이 적극적으로 도입됨에 따라 성장세를 보이고 있습니다. 기업들은 제조, 의료 및 금융 서비스 분야에서 실시간 분석을 지원하기 위해 GPU 데이터베이스를 활용하고 있습니다. 자동화 및 정밀 운영을 중시하는 일본의 문화는 GPU 가속 데이터베이스의 기능과 잘 부합합니다. 클라우드 플랫폼과의 통합 증가 또한 시장 성장을 뒷받침하고 있습니다.
중국 그래픽 처리 장치(GPU) 데이터베이스 시장 분석
중국의 GPU(그래픽 처리 장치) 데이터베이스 시장은 대규모 디지털 전환 사업과 클라우드 및 AI 인프라의 빠른 확장에 힘입어 2025년 아시아 태평양 지역에서 가장 큰 매출 점유율을 기록할 것으로 예상됩니다. 중국 기업들은 전자상거래, 핀테크, 스마트 시티 애플리케이션에서 생성되는 방대한 데이터 양을 관리하기 위해 GPU 데이터베이스를 점점 더 많이 도입하고 있습니다. 탄탄한 국내 기술 생태계와 정부의 AI 개발 지원은 시장 성장을 더욱 촉진하고 있습니다. 고속 및 확장 가능한 데이터 처리 솔루션에 대한 수요는 주요 성장 동력으로 작용할 것입니다.
그래픽 처리 장치(GPU) 데이터베이스 시장 점유율
그래픽 처리 장치(GPU) 데이터베이스 산업은 주로 다음과 같은 잘 알려진 기업들이 주도하고 있습니다.
- 옴니스사이(OmniSci, Inc.) (미국)
- 스퀘어림 테크놀로지스(이스라엘)
- 키네티카 DB 주식회사(미국)
- 네오4제이(Neo4j, Inc., 미국)
- 엔비디아 주식회사(미국)
- 브리틀리트(영국)
- 제독스 주식회사(독일)
- 블레이즈그래프(미국)
- BlazingSQL, Inc. (미국)
- 질리즈(미국)
- 헤테로DB(일본)
- H2O.ai. (미국)
- 패스트데이터(미국)
- 퍼지 로직스(Fuzzy Logix, Inc., 미국)
- 그래픽 디자인(미국)
- 아나콘다 주식회사(미국)
글로벌 그래픽 처리 장치(GPU) 데이터베이스 시장의 최신 동향
- 2024년 3월, NVIDIA는 Google Cloud와 파트너십을 맺고 Google Cloud Platform에서 GPU 가속 데이터베이스 및 분석 기능을 제공하여 대규모 데이터 처리 및 AI 기반 워크로드의 성능을 크게 향상시켰습니다. 이 협력을 통해 기업은 더 낮은 지연 시간과 더 높은 처리량으로 복잡한 분석 및 실시간 데이터 쿼리를 실행할 수 있습니다. 또한, 이 통합은 개발자 생산성을 높이고 고급 AI 모델 학습 및 추론을 지원합니다. 결과적으로, 이 파트너십은 기업의 AI 지원 데이터 플랫폼 도입을 가속화함으로써 GPU 데이터베이스 생태계에서 양사의 입지를 강화합니다.
- 2024년 2월, NVIDIA는 기업 고객을 위한 GPU 가속 데이터베이스 및 AI 분석 확장을 위해 Oracle Cloud Infrastructure와의 협력을 확대했습니다. 이 파트너십을 통해 기업은 NVIDIA GPU를 Oracle의 데이터베이스 및 클라우드 서비스와 함께 활용하여 고성능 분석 및 AI 워크로드를 처리할 수 있습니다. 이러한 발전은 데이터 집약적인 애플리케이션의 확장성과 비용 효율성을 향상시키고, Oracle의 클라우드 경쟁력을 강화하는 동시에 NVIDIA가 기업 데이터베이스 구축 전반에 걸쳐 영향력을 확대하는 데 기여합니다.
- 2023년 11월, NVIDIA는 Amazon Web Services(AWS)와의 협력을 강화하여 AWS 클라우드 인프라를 통해 GPU 가속 데이터 분석 및 데이터베이스 워크로드에 대한 접근성을 확대했습니다. 이러한 개발을 통해 기업은 대규모 데이터 세트를 효율적으로 처리하는 동시에 AI 및 머신 러닝 애플리케이션을 대규모로 지원할 수 있게 되었습니다. 고급 GPU 인스턴스의 가용성은 실시간 분석 및 데이터 집약적인 작업의 성능을 향상시킵니다. 또한 클라우드를 통해 고성능 컴퓨팅에 대한 접근성을 높여 GPU 데이터베이스의 시장 도입을 더욱 가속화합니다.
- 2023년 3월, NVIDIA는 Microsoft Azure와 파트너십을 체결하여 Azure 생태계 내에 GPU 가속 데이터베이스 및 분석 기능을 통합함으로써 복잡하고 대규모 데이터 워크로드의 처리 속도를 향상시켰습니다. NVIDIA AI 엔터프라이즈 소프트웨어와 Azure 머신 러닝을 결합한 이번 협력은 AI 개발, 배포 및 관리 기능을 강화합니다. 이러한 통합은 다양한 산업 분야에서 실시간 분석 및 고급 AI 활용 사례를 지원합니다. 이번 파트너십을 통해 양사는 GPU 기반 클라우드 데이터베이스 솔루션 분야에서 선도적인 위치를 더욱 공고히 하게 되었습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

