Global Healthcare Generative Ai Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
4.07 Billion
USD
27.39 Billion
2024
2032
| 2025 –2032 | |
| USD 4.07 Billion | |
| USD 27.39 Billion | |
|
|
|
|
글로벌 헬스케어 생성 AI 시장 세분화(하드웨어, 소프트웨어 및 서비스), 기술(머신러닝 및 자연어 처리), 애플리케이션(환자 데이터 및 위험 분석, 의료 영상 및 진단, 정밀 의학, 신약 개발, 라이프스타일 관리 및 원격 환자 모니터링, 가상 비서, 웨어러블, 입원 치료 및 병원 관리, 연구, 응급실 및 수술, 정신 건강, 의료 지원, 로봇 및 사이버 보안), 최종 사용자(병원, 의료비 지급자, 제약 및 생명공학 회사, 환자 등) - 산업 동향 및 2032년까지의 전망
헬스케어 생성 AI 시장 규모
- 글로벌 헬스케어 생성 AI 시장 규모는 2024년에 40억 7천만 달러 로 평가되었으며, 예측 기간 동안 26.90%의 CAGR 로 2032년까지 273억 9천만 달러 에 도달할 것으로 예상됩니다 .
- 시장 성장은 임상 진단, 약물 발견 및 개인 맞춤 의학에서 AI 기반 도구의 통합 증가로 인해 크게 촉진되었으며, 이는 의료 워크플로 전반에 걸쳐 효율성과 혁신을 향상시킵니다.
- 더욱이 지능형 자동화, 비용 효율적인 솔루션, 그리고 환자 치료 결과 개선에 대한 수요 증가는 생성적 AI를 의료 서비스 제공의 혁신적 동력으로 자리매김하고 있습니다. 이러한 융합 요인들은 도입을 가속화하여 산업 성장을 크게 촉진하고 있습니다.
헬스케어 생성 AI 시장 분석
- 의료 콘텐츠 생성, 임상적 결정 지원, 약물 개발 가속화를 위해 고급 알고리즘을 활용하는 의료 분야의 생성 AI는 임상 및 행정 설정 모두에서 정밀 의학과 운영 효율성을 실현하는 중요한 요소가 되고 있습니다.
- 의료 생성 AI에 대한 수요 증가는 주로 의료 데이터 양 증가, AI 기반 연구 및 진단에 대한 투자 증가, 비용과 임상의 업무 부담을 줄이는 동시에 환자 치료를 개선해야 할 필요성에 의해 촉진됩니다.
- 북미는 2024년 42.3%의 가장 큰 수익 점유율을 기록하며 의료 생성 AI 시장을 장악했습니다. 이는 강력한 디지털 인프라, 높은 R&D 지출, 특히 임상 의사 결정 지원 및 약물 발견 애플리케이션이 빠르게 배포되고 있는 미국에서 의료 시스템에 AI 지원 플랫폼의 조기 도입에 힘입은 것입니다.
- 아시아 태평양 지역은 정부 주도의 디지털 건강 이니셔티브, 증가하는 의료 IT 투자, 기술 회사와 의료 기관 간 협력 증가에 힘입어 예측 기간 동안 의료 생성 AI 시장에서 가장 빠르게 성장하는 지역이 될 것으로 예상됩니다.
- 소프트웨어 부문은 진단, 영상 및 환자 참여 애플리케이션에서 생성 모델과 AI 플랫폼에 대한 높은 수요에 힘입어 2024년 61.8%의 시장 점유율을 기록하며 헬스케어 생성 AI 시장을 장악했습니다.
보고서 범위 및 헬스케어 생성 AI 시장 세분화
|
속성 |
헬스케어 생성 AI 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 적용 범위, 주요 기업 등 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 가격 분석, 브랜드 점유율 분석, 소비자 설문 조사, 인구 통계 분석, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선택 기준, PESTLE 분석, Porter 분석 및 규제 프레임워크가 포함되어 있습니다. |
헬스케어 생성 AI 시장 동향
AI 기반 통찰력을 통한 임상 워크플로우 혁신
- 글로벌 헬스케어 생성 AI 시장에서 주요하고 빠르게 성장하는 트렌드 중 하나는 대규모 언어 모델(LLM) 및 멀티모달 AI와 같은 고급 AI 모델을 의료 서비스 시스템에 통합하는 것입니다. 이러한 통합은 문서 작성 자동화, 진단 향상, 실시간 데이터 기반 의사 결정을 가능하게 함으로써 임상 워크플로우에 혁신을 가져오고 있습니다.
- 예를 들어, 마이크로소프트의 Nuance DAX(Dragon Ambient eXperience)는 생성 AI를 사용하여 의사와 환자 간의 상호작용을 자동으로 기록하여 의료 전문가의 행정적 부담을 크게 줄여줍니다. 마찬가지로, 구글 딥마인드의 Med-PaLM은 향상된 정확도와 맥락적 이해를 바탕으로 임상 질의응답을 지원하는 테스트를 진행하고 있습니다.
- 생성적 AI는 의료 시스템이 환자 병력, 영상, 검사 결과, 유전체 데이터와 같은 방대한 비정형 데이터를 분석하고 전례 없는 효율성으로 통찰력, 요약 또는 치료 제안을 생성할 수 있도록 지원합니다. AI 생성 도구는 개인 맞춤형 진료 권장 사항 및 연구 문서 생성에 점점 더 많이 사용되고 있습니다.
- 생성적 AI를 임상 플랫폼, 전자 건강 기록(EHR), 원격 진료 도구에 완벽하게 통합함으로써 의료 제공자는 단일 인터페이스에서 진단, 문서화 및 환자 소통을 관리할 수 있습니다. 이를 통해 효율적이고 통합적이며 지능적인 의료 환경이 조성됩니다.
- 지능형 자동화와 실시간 의사 결정 지원으로의 이러한 추세는 임상적 기대치와 행정 운영을 근본적으로 변화시키고 있습니다. 그 결과, NVIDIA, AWS, IBM과 같은 선도적인 기술 기업들은 의료 분야에 특화된 안전하고 확장 가능한 AI 모델을 개발하고 있으며, 스타트업들은 진단 및 치료 분야 전반에 걸쳐 혁신을 거듭하고 있습니다.
- 임상 효율성, 개인화된 치료, 의사의 소진 감소에 대한 수요가 증가함에 따라 병원, 제약 회사, 지불자 및 연구 기관에서 생성 AI 도입이 빠르게 가속화되고 있습니다.
헬스케어 생성 AI 시장 동향
운전사
진단, 약물 개발 및 가상 진료 분야에서 AI 통합 급증
- 첨단 의료 솔루션에 대한 수요 증가, 디지털 전환의 증가, 비용 최적화의 필요성 증가로 인해 의료 분야에서 생성적 AI 도입이 크게 늘어나고 있습니다.
- 예를 들어, 2024년 2월 NVIDIA와 Amgen은 약물 발견 프로세스를 가속화하고 더 빠른 시뮬레이션과 표적 식별을 가능하게 하는 생성 AI를 통합하기 위한 파트너십을 발표했으며, 이는 AI가 제약 R&D를 어떻게 재편하고 있는지 보여줍니다.
- 임상 의사 결정 지원, 환자 분류, 방사선학, 정신 건강 평가 및 문서 자동화에 생성 AI가 널리 적용되면서 운영 효율성과 환자 결과가 향상되고 있습니다.
- 원격 환자 참여를 위한 가상 진료 플랫폼과 AI 기반 챗봇에 대한 의존도가 높아짐에 따라 현대 의료에서 생성적 AI의 역할이 더욱 강화되었습니다. 또한, AI 기반 시스템은 의사와 의료 관리자를 지원하기 위해 예측 분석 및 실시간 위험 분석을 가능하게 합니다.
- 북미와 유럽과 같은 지역의 정부와 의료 기관도 유리한 규제와 공공-민간 협력의 지원을 받아 AI 혁신에 막대한 투자를 하고 있으며, 이로 인해 시장 성장이 더욱 가속화되고 있습니다.
제지/도전
윤리, 규제 및 데이터 개인 정보 보호 과제
- 성장하는 잠재력에도 불구하고 헬스케어 생성 AI 시장은 데이터 프라이버시, 알고리즘 투명성, 윤리적 사용과 관련된 상당한 과제에 직면해 있으며 이는 광범위한 채택을 방해할 수 있습니다.
- 예를 들어, HIPAA(미국) 및 GDPR(EU)과 같은 규정 준수에 대한 우려, 특히 환자 데이터 사용 및 AI 의사 결정과 관련된 우려는 여전히 큰 장벽으로 남아 있습니다. 의료 서비스 제공업체들은 명확한 임상적 검증이나 감독 없이 AI 시스템을 구축하는 데 신중한 태도를 보이고 있습니다.
- 편향된 AI 출력, 모델 결정에 대한 설명 부족, 잠재적인 잘못된 진단에 대한 우려로 인해 안전한 구현을 보장하기 위해 보다 강력한 지침과 인간 참여 프레임워크에 대한 요구가 높아졌습니다.
- 또한, 정교한 생성 AI 모델을 개발하고 훈련하는 데 드는 높은 비용과 의료 전문가들의 제한된 기술 전문성이 결합되어 중소 규모 조직과 개발도상국에서의 도입을 제한할 수 있습니다.
- 강화된 규제 프레임워크, 안전한 AI 인프라, 인력 교육에 대한 투자, 투명한 AI 관행을 통해 이러한 과제를 극복하는 것은 헬스케어 생성 AI 솔루션에 대한 장기적인 성장과 신뢰를 보장하는 데 매우 중요합니다.
헬스케어 생성 AI 시장 범위
시장은 제공 품목, 기술, 애플리케이션, 최종 사용자를 기준으로 세분화됩니다.
- 제공함으로써
의료 생성 AI 시장은 제공 분야를 기준으로 하드웨어, 소프트웨어, 서비스로 구분됩니다. 소프트웨어 부문은 2024년 61.8%의 매출 점유율로 시장을 장악했으며, 임상 의사 결정 지원, 의료 문서화, 진단, 신약 개발 등의 애플리케이션에 AI 모델과 플랫폼 도입이 증가함에 따라 성장세를 보였습니다. 의료 서비스 제공업체와 제약 회사는 확장성, 유연성, 그리고 다양한 방식으로 복잡한 데이터를 신속하게 처리할 수 있는 AI 소프트웨어 솔루션에 대한 투자를 확대하고 있습니다.
서비스 부문은 AI 통합 지원, 맞춤화, 컨설팅, 그리고 AI 시스템의 지속적인 교육에 대한 수요 증가로 2025년부터 2031년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 특히 자체 AI 전문 지식이 부족한 병원과 연구 기관을 중심으로 관리형 서비스에 대한 수요 증가가 이 부문의 성장을 견인하고 있습니다.
- 기술로
기술 기반으로 헬스케어 생성 AI 시장은 머신러닝과 자연어 처리(NLP)로 구분됩니다. 머신러닝 부문은 예측 분석, 진단 및 치료 계획 분야에서의 광범위한 활용을 바탕으로 2024년 시장 매출 점유율 57.8%로 가장 높은 점유율을 기록했습니다. 머신러닝 알고리즘은 방대한 헬스케어 데이터세트에서 정확한 패턴 인식을 가능하게 하여 진단 정확도와 임상 결과를 크게 향상시킵니다.
자연어 처리 부문은 의료 전사, 전자건강기록(EHR) 문서화, AI 챗봇 도입 증가에 힘입어 2031년까지 눈에 띄는 성장세를 보일 것으로 예상됩니다. 자연어 처리는 비정형 텍스트 데이터에서 의미 있는 인사이트를 추출하여 관리 업무를 자동화하고 실시간으로 임상 의사 결정을 지원하는 데 도움을 줍니다.
- 응용 프로그램별
헬스케어 생성 AI 시장은 응용 분야별로 환자 데이터 및 위험 분석, 의료 영상 및 진단, 정밀 의학, 신약 개발, 생활 습관 관리 및 원격 환자 모니터링, 가상 비서, 웨어러블 기기, 입원 환자 관리 및 병원 관리, 연구, 응급실 및 수술, 정신 건강, 의료 지원, 로봇 및 사이버 보안으로 세분화됩니다. 의료 영상 및 진단 분야는 2024년 22.6%의 시장 점유율로 시장을 장악했으며, 이는 방사선 및 병리 영상 해석 향상, 이상 징후 식별, 인적 오류 감소를 위한 AI 활용 증가에 기인합니다. 생성 모델은 영상 재구성, 분할 및 조기 감지 기능을 향상시켜 더 나은 임상적 의사결정을 지원합니다.
신약 개발 분야는 제약 및 바이오테크 기업의 R&D 증가에 힘입어 2025년부터 2031년까지 가장 빠른 성장을 경험할 것으로 예상됩니다. 생성적 AI는 분자 구조의 신속한 시뮬레이션 및 생성을 가능하게 하여 신약 개발 수명 주기의 시간과 비용을 절감하고 정밀 의학 이니셔티브를 지원합니다.
- 최종 사용자별
최종 사용자 기준으로 의료 생성 AI 시장은 병원, 의료비 지급자, 제약 및 생명공학 기업, 환자 등으로 세분화됩니다. 병원 부문은 2024년 매출 점유율 45.4%로 가장 큰 비중을 차지했으며, 이는 진단, 임상 의사 결정 지원, 워크플로 자동화 및 행정 관리 분야에서 AI 도구 도입이 증가함에 따라 촉진되었습니다. 병원은 임상의의 업무 부담을 줄이고 환자 치료 결과를 개선하는 데 즉각적인 이점을 제공하기 때문에 생성 AI 도입에 앞장서고 있습니다.
제약 및 생명공학 기업 부문은 AI 기반 신약 개발 프로그램, 바이오마커 식별, 그리고 예측 모델링의 급증에 힘입어 예측 기간 동안 가장 빠른 속도로 성장할 것으로 예상됩니다. 생성 AI는 임상 시험의 효율성을 높이고 제품 개발을 가속화하기 위해 연구 파이프라인에 점점 더 많이 통합되고 있습니다.
헬스케어 생성 AI 시장 지역 분석
- 북미는 2024년 42.3%의 가장 큰 수익 점유율을 기록하며 의료 생성 AI 시장을 장악했습니다. 이는 강력한 디지털 인프라, 높은 R&D 지출, 특히 임상 의사 결정 지원 및 약물 발견 애플리케이션이 빠르게 배포되고 있는 미국에서 의료 시스템에 AI 지원 플랫폼의 조기 도입에 힘입은 것입니다.
- 이 지역의 의료 서비스 제공자는 임상 의사 결정 지원, 진단 및 워크플로 자동화를 위한 고급 AI 솔루션을 우선시하며, 대규모 의료 데이터 세트의 가용성과 생성 AI를 전자 건강 기록 및 가상 케어 플랫폼에 통합하는 이점을 누리고 있습니다.
- 이러한 광범위한 구현은 높은 의료 지출, 강력한 R&D 생태계, 기술 회사와 의료 기관 간의 전략적 협업에 의해 더욱 뒷받침되며, 이를 통해 북미는 의료 환경 전반에 걸쳐 생성적 AI 도입 분야에서 글로벌 리더로 자리매김하게 되었습니다.
미국 헬스케어 생성 AI 시장 통찰력
미국 의료 생성 AI 시장은 2024년 북미에서 79.5%의 매출 점유율을 기록하며 가장 큰 매출 점유율을 기록했습니다. 이는 병원, 임상 연구 센터, 제약 회사 전반의 급속한 디지털 혁신에 힘입은 것입니다. 미국의 탄탄한 AI 인프라, 광범위한 전자 건강 기록(EHR) 활용, 그리고 디지털 헬스 혁신에 대한 강력한 규제 지원이 성장을 촉진하고 있습니다. AI 기반 진단, 임상 의사결정 지원, 신약 개발 플랫폼에 대한 투자 증가와 더불어 의료 서비스 제공업체와 기술 기업 간의 전략적 협력은 임상 및 행정 환경 모두에서 생성 AI의 도입과 통합을 가속화하고 있습니다.
유럽 헬스케어 생성 AI 시장 통찰력
유럽 의료 생성 AI 시장은 예측 기간 동안 상당한 CAGR(연평균 성장률)로 성장할 것으로 예상되며, 이는 AI 기반 의료 솔루션에 대한 수요 증가, 첨단 연구 생태계, 그리고 데이터 보안과 환자 안전을 중시하는 엄격한 규제 체계에 힘입은 것입니다. 정밀 의학, 환자 참여, 행정 자동화 분야에서 생성 AI 활용이 병원과 연구 기관에서 점차 확대되고 있습니다. 생명 과학 분야의 AI 혁신을 지원하는 EU의 이니셔티브와 민관 협력 확대는 서유럽과 중부유럽 모두에서 시장 확장을 더욱 가속화하고 있습니다.
영국 헬스케어 생성 AI 시장 통찰력
영국 의료 생성 AI 시장은 예측 기간 동안 주목할 만한 연평균 성장률(CAGR)로 성장할 것으로 예상되며, 이는 AI 혁신을 통해 국민건강보험(NHS)을 현대화하고 환자 치료를 개선하려는 지속적인 노력에 힘입은 것입니다. 영국의 적극적인 규제 정책, 적극적인 재정 지원 프로그램, 그리고 진단 및 임상 문서화 분야에서 AI 도입 증가가 성장의 핵심 요인입니다. 또한, 의료 서비스 제공업체와 기술 스타트업 전반에서 의료 기록 전사, 환자 분류, 정신 건강 지원 도구에 생성 AI를 활용하는 추세가 가속화되고 있습니다.
독일 헬스케어 생성 AI 시장 통찰력
독일의 의료 생성 AI 시장은 예측 기간 동안 상당한 연평균 성장률(CAGR)로 성장할 것으로 예상되며, 이는 독일의 탄탄한 의료 기술 기반, 데이터 보안 강화, 그리고 선진 연구 인프라에 힘입은 것입니다. 독일은 병원 관리, 진단 자동화, 그리고 제약 연구를 위한 AI 기반 솔루션에 막대한 투자를 하고 있습니다. 디지털 헬스케어 혁신과 규제 준수에 중점을 둔 독일의 정책 방향과 맞물려, 대학 병원과 민간 의료 서비스 제공업체 전반에 걸쳐 생성 AI와 의료 IT 플랫폼의 통합이 도입되고 있습니다.
아시아 태평양 헬스케어 생성 AI 시장 통찰력
아시아 태평양 지역의 헬스케어 생성 AI 시장은 2025년부터 2032년까지 예측 기간 동안 연평균 성장률 26.7%로 가장 빠르게 성장할 것으로 예상됩니다. 이는 헬스케어 디지털화 확대, AI 도입을 장려하는 정부 정책, 그리고 중국, 인도, 일본 등 각국의 기술 기반 의료 인프라 확충에 힘입은 것입니다. 아시아 태평양 지역의 인구 증가, 질병 부담 증가, 그리고 R&D 투자 증가는 의료 서비스 제공자들이 진단, 신약 개발, 환자 모니터링에 AI를 통합하도록 장려하고 있습니다. 또한, 신흥 스타트업과 지역 기술 대기업들은 지역 헬스케어 과제에 맞춘 생성 AI 도구를 적극적으로 개발하고 있습니다.
일본 헬스케어 생성 AI 시장 통찰력
일본 의료 생성 AI 시장은 로봇 공학, AI, 그리고 정밀 의료에 대한 일본의 깊은 관심으로 인해 성장세를 보이고 있습니다. 병원과 연구 기관 전반에서 생성 AI 도입이 가속화되고 있으며, 특히 의료 영상, 노인 의료, 행정 자동화 등의 분야에서 활발하게 진행되고 있습니다. 일본의 높은 고령화율은 진단, 문서화, 그리고 원격 환자 진료를 간소화하는 AI 지원 도구에 대한 수요를 증가시키고 있습니다. 의료 혁신을 강화하기 위한 정부 주도의 이니셔티브 또한 시장 성장을 뒷받침하고 있습니다.
인도 헬스케어 생성 AI 시장 통찰력
인도의 헬스케어 생성 AI 시장은 디지털 헬스케어 플랫폼의 급속한 확장, 원격 의료 이용 증가, 그리고 AI 기반 헬스케어 스타트업의 성장에 힘입어 2024년 아시아 태평양 지역에서 가장 큰 매출 점유율을 기록했습니다. 저렴하고 확장 가능한 헬스케어 솔루션에 대한 수요가 증가함에 따라, 생성 AI는 진단, 환자 분류, 임상 문서화 등의 분야에 적용되고 있습니다. 인도의 스마트 헬스케어 인프라 구축을 위한 지속적인 노력과 정부의 AI 연구 지원, 그리고 풍부한 기술 전문 인력은 병원과 제약 업계 전반의 도입을 더욱 가속화하고 있습니다.
헬스케어 생성 AI 시장 점유율
헬스케어 생성 AI 산업은 주로 다음을 포함한 기존 기업들이 주도하고 있습니다.
- Koninklijke Philips NV(네덜란드)
- 마이크로소프트(미국)
- Siemens Healthineers AG(독일)
- 인텔 코퍼레이션(미국)
- 엔비디아 코퍼레이션(미국)
- Google Inc.(미국)
- GE 헬스케어(미국)
- 메드트로닉(아일랜드)
- 마이크론 테크놀로지(미국)
- Amazon.com Inc(미국)
- 오라클(미국)
- 존슨앤존슨 및 그 계열사(미국)
- 메라티브(미국)
- 제너럴 비전 주식회사(미국)
- 클라우드메드엑스(미국)
- 온코라 메디컬(미국)
- 엔리틱(미국)
- 루닛 주식회사(한국)
- Qure.ai(인도)
- 스트라이커(미국)
- 바이오비트(이스라엘)
글로벌 헬스케어 생성 AI 시장의 최근 동향은 무엇인가?
- 2024년 4월, 구글 딥마인드는 의료 분야에 특화된 Med-PaLM 2 모델의 발전을 발표했습니다. 다양한 의료 데이터 세트를 기반으로 학습된 Med-PaLM 2는 미국 의사 면허 시험 문제에 높은 정확도로 답변하는 능력을 입증했습니다. 이러한 발전은 생성적 AI를 의료 분야에 책임감 있게 통합하고, 임상 의사 결정 지원을 강화하며, 언어 이해 및 생성 기능을 통해 의사에게 더욱 정확한 진단 도구를 제공하려는 구글의 노력을 보여줍니다.
- 2024년 3월, 마이크로소프트와 에픽 시스템즈는 생성 AI를 전자 건강 기록(EHR)에 통합하기 위한 전략적 협력을 확대했습니다. 에픽 소프트웨어에 마이크로소프트의 Azure OpenAI 서비스를 내장함으로써, 이 이니셔티브는 환자 기록 요약 및 의료 문서 작성과 같은 관리 업무를 간소화하는 것을 목표로 합니다. 이러한 발전은 임상의의 번아웃을 줄이고 의료 워크플로우 효율성을 개선하는 데 있어 생성 AI의 중요성이 점점 커지고 있음을 보여줍니다.
- 2024년 2월, 엔비디아는 글로벌 바이오 제약 회사인 암젠(Amgen)과 파트너십을 맺고 생성적 AI를 활용하여 신약 개발을 가속화했습니다. 엔비디아의 BioNeMo 플랫폼을 활용한 이 파트너십은 단백질 구조와 상호작용을 시뮬레이션하여 신약 후보 물질을 더욱 빠르게 발굴하는 데 중점을 두고 있습니다. 이번 협업은 생성적 AI가 제약 R&D 시간과 비용을 크게 절감하고 기존 신약 개발 파이프라인을 재정립하는 데 어떻게 활용되고 있는지를 보여줍니다.
- 2024년 1월, IBM Watson Health는 Merge Imaging Suite에 새로운 생성 AI 기능을 출시하여 영상의학과 전문의의 이미지 주석 자동 추가 및 진단 정확도 향상을 지원했습니다. 이러한 발전은 의료 전문가가 영상 데이터를 더 빠르게 처리하고 해석할 수 있도록 지원하여 임상 영상 및 진단 분야에 생성 AI를 적용하는 IBM의 리더십을 더욱 강화합니다.
- 2024년 1월, AWS HealthLake는 Bedrock과의 통합을 통해 생성 AI 서비스를 확장했습니다. 이를 통해 의료 서비스 제공자는 맞춤형 LLM을 통해 요약, 환자 지침 및 임상 문서를 생성할 수 있게 되었습니다. 이러한 발전은 의료 분야에서 확장 가능하고 HIPAA를 준수하는 생성 AI 솔루션을 지원하여 임상 환경 전반에서 환자 소통과 운영 효율성을 개선하려는 Amazon Web Services의 지속적인 노력을 반영합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

