Global Machine Learning Service Mlaas Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
9.82 Billion
USD
78.25 Billion
2024
2032
| 2025 –2032 | |
| USD 9.82 Billion | |
| USD 78.25 Billion | |
|
|
|
|
글로벌 머신 러닝 서비스(MLaaS) 시장 세분화: 구성요소(소프트웨어 도구 및 서비스), 애플리케이션(마케팅 및 광고, 사기 탐지 및 위험 분석, 예측 유지 관리, 증강 현실, 네트워크 분석 및 자동 트래픽 관리 등), 조직 규모(중소기업 및 대기업), 최종 사용자(교육, 은행 및 금융 서비스, 보험, 자동화 및 운송, 의료, 국방, 소매, 전자 상거래, 미디어 및 엔터테인먼트, 통신, 정부, 항공우주 등) - 산업 동향 및 2032년까지의 예측
서비스로서의 머신 러닝(MLaaS) 시장 규모
- 글로벌 머신 러닝 서비스(MLaaS) 시장 규모는 2024년에 98억 2천만 달러 로 평가되었으며 예측 기간 동안 29.6%의 CAGR 로 2032년까지 782억 5천만 달러에 도달할 것으로 예상됩니다 .
- 이러한 성장은 소규모 및 중규모 조직에서 서비스형 머신 러닝(MLaaS) 솔루션을 채택하는 경우가 늘어나고 데이터 과학 기술 발전에 대한 관심이 급증한 데 따른 것입니다.
서비스형 머신 러닝(MLaaS) 시장 분석
- 서비스형 머신러닝(MLaaS)은 클라우드 컴퓨팅 서비스의 하위 범주로 간주됩니다. 서비스형 머신러닝(MLaaS)은 더욱 효율적이고 효과적으로 운영을 수행할 수 있도록 다양한 머신러닝 도구와 구성 요소를 제공하는 서비스입니다.
- 사물인터넷(IoT) 기술에 대한 수요 증가가 시장 성장의 주요 동력으로 부상할 것입니다. 인공지능 기술의 발전은 시장 성장을 더욱 가속화할 것입니다.
- 북미는 서비스형 머신 러닝(MLaaS) 시장을 주도하고 있으며, 중소기업의 클라우드 기반 솔루션 채택이 증가함에 따라 예측 기간 동안에도 지배적인 추세를 이어갈 것으로 예상됩니다.
- 그러나 아시아 태평양 지역은 이 기간 동안 가장 높은 연평균 성장률을 기록할 것으로 예상됩니다. 이는 머신러닝 기술의 보급률 증가와 이 지역의 IT 부문의 지속 가능한 성장에 기인합니다.
- 소프트웨어 도구 부문은 고급 데이터 처리, 모델 구축 및 배포 도구에 대한 수요 증가로 2025년에 상당한 점유율을 기록하며 시장을 장악할 것으로 예상됩니다. 이러한 도구는 데이터 저장, 모델 검증, 의사결정 트리 지원, 클라우드 기반 플랫폼과의 통합 등의 기능을 제공하여 효율적인 머신러닝 워크플로를 지원합니다. 다양한 산업 분야에서 복잡한 프로세스를 자동화하는 데 있어 소프트웨어 도구의 역할은 소프트웨어 도구 도입 증가의 핵심 동력입니다.
보고서 범위 및 서비스로서의 머신 러닝(MLaaS) 시장 세분화
|
속성 |
서비스로서의 머신 러닝(MLaaS) 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 적용 범위, 주요 업체 등 시장 시나리오에 대한 통찰력 외에도 수입 수출 분석, 생산 능력 개요, 생산 소비 분석, 가격 추세 분석, 기후 변화 시나리오, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선택 기준, PESTLE 분석, Porter 분석 및 규제 프레임워크가 포함됩니다. |
서비스로서의 머신 러닝(MLaaS) 시장 동향
“산업 전반에 걸쳐 클라우드 기반 솔루션 도입 증가”
- 업계 전반에서 클라우드 컴퓨팅 플랫폼에 대한 선호도가 높아지고 있으며, 이는 확장성, 유연성, 비용 효율성을 제공하기 때문에 MLaaS 도입을 촉진하는 주요 요인입니다.
- 클라우드 기반 MLaaS는 막대한 인프라 투자가 필요 없으므로 모든 규모의 조직에 매력적인 옵션입니다.
- 이를 통해 보다 빠른 모델 배포와 실시간 분석이 가능해져 민첩한 의사 결정과 혁신이 지원됩니다.
예를 들어,
- Microsoft Azure Machine Learning은 2022년에 자사 플랫폼을 실시간 예측 모델링에 사용하는 기업 고객이 30% 증가했다고 보고했는데, 이는 강력한 클라우드 마이그레이션 추세를 반영합니다.
- 이는 클라우드 인프라가 디지털 혁신의 새로운 표준이 되면서 MLaaS로의 지속적인 전환을 나타냅니다.
서비스로서의 머신 러닝(MLaaS) 시장 동향
운전사
“고객 행동을 이해해야 할 필요성이 커지고 있습니다.”
- 기업들은 MLaaS 도구를 활용해 엄청난 양의 고객 데이터를 분석하여 개인화와 참여를 강화하고 있습니다.
- 머신 러닝을 통해 얻은 정확한 행동 통찰력은 기업이 마케팅 전략을 최적화하고 고객 유지율을 개선하는 데 도움이 됩니다.
- MLaaS 플랫폼은 세분화, 감정 분석, 이탈 예측을 위한 사전 구축된 모델을 제공하여 더 빠르게 통찰력을 얻을 수 있도록 합니다.
예를 들어,
- 2023년 Salesforce는 MLaaS 기반 분석을 고객 관계 관리(CRM) 플랫폼에 통합하여 회사가 캠페인 효율성을 최대 40%까지 높이는 데 도움을 주었습니다.
- 행동 기반 전략에 대한 수요 증가는 MLaaS 시장 성장에 크게 기여하고 있습니다.
기회
"사기 탐지 및 위험 분석 활용 증가"
- 금융 기관과 전자 상거래 플랫폼에서는 실시간 사기 탐지 및 신용 위험 분석을 위해 MLaaS를 사용하는 경우가 점점 늘어나고 있습니다.
- 머신 러닝 모델은 이상 징후를 식별하고 대규모로 의심스러운 패턴을 감지하여 재정적 위험을 줄이는 데 도움이 됩니다.
예를 들어,
- 신용 평가 분야의 선두주자인 FICO는 이제 은행을 대상으로 클라우드 기반 MLaaS를 제공하며, 예측 분석을 사용하여 사기 탐지율을 25% 이상 높였습니다.
- 특히 사이버 위협이 더욱 정교해짐에 따라 이러한 사용 사례는 계속해서 증가하고 있습니다.
제지/도전
“데이터 보안 및 개인 정보 보호에 대한 우려”
- 데이터 보안 및 개인정보 보호 문제는 여전히 심각한 과제로 남아 있으며, 특히 민감한 정보가 타사 클라우드 플랫폼에서 처리되는 경우 더욱 그렇습니다.
- 금융이나 의료와 같은 분야의 조직은 규정 준수 위험과 잠재적인 데이터 침해로 인해 MLaaS를 본격적으로 도입하는 데 주저하고 있습니다.
예를 들어,
- 2024년 9월, 클라우드 기반 분석 공급업체와 관련된 데이터 침해 사건으로 규제 기관의 감시가 시작되었고, 규제 대상 산업에서 MLaaS의 안정성에 대한 우려가 제기되었습니다.
- 견고한 데이터 보호 프레임워크와 규정 준수 보장이 구현되지 않으면 이러한 과제로 인해 시장 성장이 방해받을 수 있습니다.
서비스로서의 머신 러닝(MLaaS) 시장 범위
서비스형 머신 러닝(MLaaS) 시장은 구성 요소, 애플리케이션, 조직 규모, 최종 사용자를 기준으로 세분화됩니다.
|
분할 |
하위 세분화 |
|
구성 요소별 |
|
|
응용 프로그램별 |
|
|
조직 규모별 |
|
|
최종 사용자별 |
|
2025년에는 소프트웨어 도구가 구성 요소 부문에서 가장 큰 점유율을 차지하며 시장을 지배할 것으로 예상됩니다.
소프트웨어 도구 부문은 고급 데이터 처리, 모델 구축 및 배포 도구에 대한 수요 증가로 2025년에 상당한 점유율을 기록하며 시장을 장악할 것으로 예상됩니다. 이러한 도구는 데이터 저장, 모델 검증, 의사결정 트리 지원, 클라우드 기반 플랫폼과의 통합 등의 기능을 제공하여 효율적인 머신러닝 워크플로를 지원합니다. 다양한 산업 분야에서 복잡한 프로세스를 자동화하는 데 있어 소프트웨어 도구의 역할은 소프트웨어 도구 도입 증가의 핵심 동력입니다.
대기업 부문은 조직 규모 측면에서 시장을 선도할 것으로 예상됩니다.
대기업 부문은 높은 투자 역량, 대규모 데이터 생성, 그리고 AI 기반 기술의 조기 도입을 바탕으로 2025년까지 조직 규모 측면에서 시장을 선도할 것으로 예상됩니다. 이러한 기업들은 운영 최적화, 의사 결정 개선, 고객 참여 향상을 위해 MLaaS 솔루션을 점점 더 많이 도입하고 있으며, 이는 확장 가능한 머신러닝 플랫폼에 대한 수요를 촉진합니다.
서비스로서의 머신 러닝(MLaaS) 시장 지역 분석
“북미는 서비스형 머신러닝(MLaaS) 시장에서 가장 큰 점유율을 차지하고 있습니다.”
- 북미는 클라우드 기술의 광범위한 도입, 견고한 IT 인프라, Google, Microsoft, IBM, Amazon Web Services 등 주요 기술 기업의 강력한 입지에 힘입어 서비스형 머신 러닝(MLaaS) 시장을 장악하고 있습니다.
- 미국은 BFSI, 의료, 소매, 통신 등 다양한 분야에서 AI와 머신러닝 기술을 조기에 도입하여 가장 큰 시장 점유율을 차지했습니다.
- 연구 개발에 대한 높은 투자, 숙련된 전문가의 가용성, 유리한 규제 프레임워크는 이 지역의 시장 선도를 더욱 뒷받침합니다.
- 또한 북미 지역 기업들은 고객 분석을 강화하고, 사기 탐지 시스템을 개선하고, 자율 시스템과 예측 모델링의 혁신을 주도하기 위해 MLaaS를 점점 더 많이 사용하고 있으며, 이로 인해 시장 성장이 더욱 가속화되고 있습니다.
“아시아 태평양 지역은 서비스형 머신러닝(MLaaS) 시장에서 가장 높은 CAGR을 기록할 것으로 예상됩니다.”
- 아시아 태평양 지역은 예측 기간 동안 MLaaS 시장에서 가장 높은 성장률을 보일 것으로 예상되며, 이는 급속한 디지털화, IT 부문 확대, AI 및 머신 러닝 이니셔티브에 대한 정부 지원 증가에 힘입은 것입니다.
- 중국, 인도, 일본, 한국 등의 국가는 클라우드 인프라에 대한 투자가 늘어나고 지능형 비즈니스 분석에 대한 수요가 증가함에 따라 중요한 기여국으로 떠오르고 있습니다.
- 중국은 정부 주도의 AI 개발 측면에서 이 지역 시장을 선도하고 있으며, 인도는 스타트업과 중소기업 사이에서 MLaaS 도입이 기하급수적으로 증가하고 있으며, 이를 운영 효율성과 고객 타겟팅에 활용하고 있습니다.
- 의료, 제조, 전자상거래, 핀테크 분야에서 머신러닝 활용이 증가하고, 데이터 양이 늘어나고 실시간 의사 결정에 대한 필요성이 커지면서 아시아 태평양 지역 전역에서 시장이 확대되고 있습니다.
서비스로서의 머신 러닝(MLaaS) 시장 점유율
시장 경쟁 구도는 경쟁사별 세부 정보를 제공합니다. 여기에는 회사 개요, 회사 재무 상태, 매출 창출, 시장 잠재력, 연구 개발 투자, 신규 시장 진출, 글로벌 입지, 생산 시설 및 설비, 생산 능력, 회사의 강점과 약점, 제품 출시, 제품 종류 및 범위, 응용 분야별 우위 등이 포함됩니다. 위에 제공된 데이터는 해당 회사의 시장 집중도와 관련된 데이터입니다.
시장에서 활동하는 주요 시장 리더는 다음과 같습니다.
- Google LLC(미국)
- IBM(미국)
- 마이크로소프트(미국)
- SAS Institute Inc.(미국)
- Amazon Web Services, Inc.(미국)
- BigML, Inc.(미국)
- FICO(미국)
- Hewlett Packard Enterprise Development LP(미국)
- AT&T 지적 재산(미국)
- Yottamine Analytics Inc.(미국)
- PurePredictive, Inc(미국)
- H2O.ai(미국)
- Tamr(미국)
- PREDICTRON LABS(미국)
- LogDNA(미국)
- DeepMind Technologies Limited(영국)
- Figure Eight Federal Inc.(미국)
- Amplero, Inc. (미국)
- 다크트레이스(영국)
글로벌 머신 러닝 서비스(MLaaS) 시장의 최신 동향
- 2025년 3월, Amazon Web Services(AWS)는 기반 모델을 최대 40% 더 빠르게 학습하도록 설계된 새로운 MLaaS 서비스인 Amazon SageMaker HyperPod를 출시했습니다. 이 서비스는 확장 및 자동화를 기본적으로 지원하는 최적화된 인프라 스택을 제공하여 기업이 AI 모델 개발을 가속화하는 동시에 운영 복잡성과 비용을 줄일 수 있도록 지원합니다.
- 2025년 2월, Google Cloud는 Vertex AI 플랫폼 확장을 발표하며 멀티모달 모델 학습 및 실시간 추론을 위한 고급 기능을 도입했습니다. 이 업그레이드는 API 간 상호운용성을 강화하고 하이브리드 및 멀티 클라우드 환경에서의 배포를 간소화하여 기업의 머신러닝 서비스 도입을 촉진하는 것을 목표로 합니다.
- 2025년 1월, Microsoft Azure는 OpenAI와 파트너십을 맺고 Azure ML을 통해 기업용 Copilot API를 출시했습니다. 이 API를 통해 기업은 최소한의 코딩으로 대화형 AI와 생성형 ML을 애플리케이션에 통합할 수 있으며, 금융, 소매, 고객 서비스 등 다양한 분야의 생산성과 사용자 경험을 크게 향상시킬 수 있습니다.
- 2024년 11월, IBM은 더욱 안전하고 확장 가능한 모델 학습을 위해 새롭게 브랜드를 변경하고 업그레이드된 AI 및 머신러닝 도구 모음인 Watsonx를 출시했습니다. Watsonx는 감사 기능 및 편향 탐지를 포함한 향상된 거버넌스 및 투명성 기능을 제공하여 의료 및 금융과 같은 규제 산업에서 중요한 규정 준수 및 윤리적 AI 배포 문제를 해결합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

