Global Mlops Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
2.19 Billion
USD
34.21 Billion
2024
2032
| 2025 –2032 | |
| USD 2.19 Billion | |
| USD 34.21 Billion | |
|
|
|
|
글로벌 MLOps 시장 세분화, 구성 요소(플랫폼 및 서비스), 배포 모드(온프레미스, 클라우드 및 하이브리드), 조직 규모(대기업, 중소기업(SME)), 산업 분야(금융 서비스(BFSI), 제조, 정보 기술(IT) 및 통신, 소매 및 전자 상거래, 의료 및 기타) - 2032년까지의 산업 동향 및 예측
MLOps 시장 규모
- 글로벌 MLOps 시장 규모는 2024년에 21억 9천만 달러 로 평가되었으며 예측 기간 동안 41.00%의 CAGR 로 2032년까지 342억 1천만 달러에 도달할 것으로 예상됩니다 .
- 시장 성장은 산업 전반에 걸쳐 인공 지능(AI)과 머신 러닝(ML) 도입이 증가함에 따라 크게 촉진되었으며, 이로 인해 간소화된 모델 배포 및 수명 주기 관리에 대한 필요성이 생겨났습니다.
- 모델 학습, 모니터링, 재학습을 포함한 ML 워크플로 자동화에 대한 수요가 증가함에 따라 MLOps 플랫폼 및 도구 도입이 더욱 가속화되고 있습니다.
MLOps 시장 분석
- 조직이 안정성, 재현성 및 거버넌스를 보장하면서 대규모 ML 모델을 운영화하려고 하기 때문에 MLOps 시장은 급속한 성장을 목격하고 있습니다.
- 클라우드 기반 MLOps 솔루션은 확장성과 기존 DevOps 파이프라인과의 통합으로 인해 주목을 받고 있으며, 대기업과 중소기업 모두에게 매력적입니다.
- 북미는 2024년에 41%의 가장 큰 수익 점유율을 기록하며 MLOps 시장을 장악했습니다. 이는 기업 전반의 인공 지능 및 머신 러닝 도입이 활발하고 주요 기술 공급업체와 고급 클라우드 인프라가 존재하기 때문입니다.
- 아시아 태평양 지역은 AI 기술의 대규모 도입, 클라우드 플랫폼에 대한 투자 증가, IT 서비스 확장, 디지털 전환 및 혁신을 위한 글로벌 허브로서의 역할에 힘입어 글로벌 MLOps 시장에서 가장 높은 성장률을 보일 것으로 예상됩니다.
- 플랫폼 부문은 머신러닝 모델의 데이터 준비, 학습, 배포 및 모니터링을 간소화하는 통합 솔루션에 대한 수요 증가에 힘입어 2024년 시장 매출 점유율이 가장 높았습니다. 이러한 플랫폼은 확장성, 재현성 및 규정 준수를 보장하여 대규모 기업 도입에 선호되는 선택입니다.
보고서 범위 및 MLOps 시장 세분화
|
속성 |
MLOps 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
• 클라우드 기반 플랫폼과 MLOps 통합 |
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research 팀이 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 시장 부문, 지리적 범위, 시장 참여자, 시장 시나리오와 같은 시장 통찰력 외에도 심층적인 전문가 분석, 수입/수출 분석, 가격 분석, 생산 소비 분석, 유봉 분석이 포함되어 있습니다. |
MLOps 시장 동향
자동화되고 확장 가능한 머신 러닝 운영의 증가
• 머신러닝(ML)에서 자동화된 워크플로우로의 전환이 확대됨에 따라 실시간 모델 배포, 모니터링 및 거버넌스가 가능해지면서 MLOps 환경이 혁신되고 있습니다. 이러한 플랫폼의 확장성과 속도 덕분에 기업은 대규모 AI 운영을 가능하게 하여 혁신을 가속화하고 의사 결정을 개선할 수 있습니다.
• 대량의 ML 모델 관리 효율성에 대한 높은 수요는 클라우드 네이티브 MLOps 솔루션과 통합 DevOps 파이프라인의 도입을 가속화하고 있습니다. 이러한 플랫폼은 모델의 정확성과 관련성을 유지하기 위해 지속적인 재학습 및 배포가 필수적인 기업에 특히 효과적입니다.
• 오픈소스 MLOps 도구는 경제성과 접근성이 뛰어나 중소기업(SME)에게 매력적인 도구로 자리매김하고 있으며, AI 기반 혁신에 대한 참여를 확대하고 있습니다. 이를 통해 조직의 민첩성을 향상하는 동시에 AI 구현에 대한 기술적, 재정적 장벽을 낮추고 있습니다.
• 예를 들어, 2023년에 북미의 여러 금융 기관은 사기 탐지 모델을 모니터링하기 위해 자동화된 MLOps 파이프라인을 구현하여 오탐률을 줄이고 거래 보안을 개선하는 동시에 운영 비용을 절감했습니다.
• 자동화와 확장성이 MLOps 도입을 가속화하고 있지만, 그 효과는 지속적인 혁신, 강력한 데이터 거버넌스, 그리고 기존 엔터프라이즈 IT 시스템과의 통합에 달려 있습니다. 공급업체는 이러한 수요를 충족하기 위해 상호 운용성, 보안, 그리고 사용자 친화적인 솔루션에 집중해야 합니다.
MLOps 시장 동향
운전사
기업의 AI 도입 증가 및 모델 수명 주기 관리 수요 증가
• 산업 전반에 걸쳐 인공지능과 머신러닝이 빠르게 도입됨에 따라 기업들은 효율적인 모델 수명 주기 관리를 위해 MLOps에 투자하고 있습니다. 학습부터 배포까지 MLOps는 안정성, 재현성, 규정 준수를 보장하여 기업이 AI를 책임감 있게 확장하고 혁신을 빠르게 추진할 수 있도록 지원합니다.
• 기업들은 편향, 드리프트, 규제 미준수 등 관리되지 않는 ML 모델의 위험에 대해 점점 더 인식하고 있으며, 이는 견고한 MLOps 프레임워크의 필요성을 강조합니다. MLOps는 이러한 과제를 해결함으로써 기업이 모델 성능을 유지하고, 평판 위험으로부터 보호하며, AI 기반 의사 결정에 대한 신뢰를 확보할 수 있도록 지원합니다.
• AI 중심 투자, 클라우드 인프라 확장, 책임 있는 AI 규제 지침 등 공공 및 민간 부문의 이니셔티브는 MLOps 생태계를 강화하고 있습니다. 이러한 노력은 기업들이 모범 사례를 채택하도록 장려할 뿐만 아니라 윤리적이고 투명하며 안전한 AI 배포를 위한 글로벌 표준을 형성하고 있습니다.
• 예를 들어, 2022년 미국 정부는 AI 인프라 및 거버넌스에 대한 예산 증액을 발표했으며, 이는 의료, 국방, 금융 등 다양한 분야에서 엔터프라이즈급 MLOps 플랫폼에 대한 수요를 증가시켰습니다. 이 이니셔티브는 AI 혁신을 책임성 및 장기 경쟁력과 연계하는 더 광범위한 글로벌 추세를 반영합니다.
• 도입률이 증가하고 있지만, 지속적인 성장을 위해서는 표준화, 데이터 보안, 인력 교육 등의 문제를 해결하여 MLOps 솔루션의 책임감 있고 광범위한 사용을 보장하는 것이 중요합니다. 기업은 AI의 혁신적인 잠재력을 최대한 발휘하기 위해 신속한 구축과 책임감 있는 거버넌스 간의 균형을 맞춰야 합니다.
제지/도전
MLOps의 높은 구현 비용과 인재 부족
• 엔터프라이즈급 MLOps 플랫폼, 특히 고급 클라우드 인프라 및 모니터링 도구가 필요한 플랫폼을 구축하는 데 드는 높은 비용은 소기업과 신흥 시장에 여전히 걸림돌로 남아 있습니다. 이러한 비용은 소프트웨어뿐만 아니라 통합, 규정 준수 및 지속적인 유지 관리 비용까지 포함하는 경우가 많아 접근성을 제한합니다.
• 많은 지역에서 모델 배포, 모니터링, 규정 준수 프로세스를 포함한 복잡한 MLOps 파이프라인을 관리할 수 있는 숙련된 전문가가 부족한 실정입니다. 이러한 인재 부족은 AI 확장을 모색하는 기업에게 병목 현상을 초래하여 외부 컨설턴트나 자격이 부족한 직원에 의존하게 만듭니다.
• 많은 기업이 최신 MLOps 플랫폼과 호환되지 않는 레거시 IT 시스템을 여전히 운영하고 있기 때문에 통합 문제로 인해 시장 침투가 더욱 제한됩니다. 이러한 격차는 구현 일정 지연, 비용 증가, ROI 지연으로 이어져 소규모 기업들이 대규모 AI 도입을 꺼리게 만듭니다.
• 예를 들어, 2023년 아시아 태평양 지역의 여러 제조업체는 숙련된 인력 부족과 클라우드 마이그레이션 및 플랫폼 통합 관련 높은 비용으로 인해 MLOps 도입에 어려움을 겪고 있다고 보고했습니다. 이러한 어려움은 선진국과 개발도상국 시장 간의 MLOps 도입 속도가 불균형함을 보여줍니다.
• MLOps 기술은 계속 발전하고 있지만, 비용, 통합 및 인력 문제를 해결하는 것은 여전히 필수적입니다. 공급업체와 기업은 격차를 해소하고 복잡성을 줄이며 글로벌 MLOps 시장의 잠재력을 최대한 활용하기 위해 로우코드 솔루션, 교육 프로그램 및 하이브리드 배포 모델을 우선시해야 합니다.
MLOps 시장 범위
시장은 구성 요소, 배포 모드, 조직 규모, 산업 분야를 기준으로 세분화됩니다.
- 구성 요소별
MLOps 시장은 구성 요소를 기준으로 플랫폼과 서비스로 구분됩니다. 플랫폼 부문은 머신러닝 모델의 데이터 준비, 학습, 배포 및 모니터링을 간소화하는 통합 솔루션에 대한 수요 증가에 힘입어 2024년 시장 매출 점유율이 가장 높았습니다. 이러한 플랫폼은 확장성, 재현성 및 규정 준수를 보장하여 대규모 기업 도입 시 선호되는 선택입니다.
서비스 부문은 컨설팅, 통합 및 관리형 서비스에 대한 의존도 증가에 힘입어 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 기업들은 기술 부족을 극복하고 복잡한 구축 과제를 해결하기 위해 서비스 제공업체에 점점 더 의존하고 있으며, 이를 통해 비용 및 운영 효율성을 최적화하는 동시에 AI 도입을 가속화할 수 있습니다.
- 배포 모드별
MLOps 시장은 배포 방식을 기준으로 온프레미스, 클라우드, 하이브리드로 구분됩니다. 클라우드 부문은 2024년에 가장 큰 시장 점유율을 기록했는데, 이는 확장 가능한 클라우드 인프라 도입 증가에 힘입은 것으로, 기업은 이를 통해 초기 비용을 최소화하면서 머신러닝 모델을 더 빠르게 학습하고 배포할 수 있습니다. 클라우드 기반 MLOps 솔루션은 최신 데이터 파이프라인과 완벽하게 통합되어 유연성과 접근성을 제공합니다.
하이브리드 부문은 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상되며, 이는 클라우드 확장성과 온프레미스 인프라 보안 간의 균형을 추구하는 기업들의 주도로 이루어집니다. 하이브리드 MLOps 모델은 민감한 데이터 처리가 중요하면서도 클라우드 혁신의 이점을 누릴 수 있는 은행, 국방, 의료 등 규제가 엄격한 산업에서 점점 더 많이 채택되고 있습니다.
- 조직 규모별
MLOps 시장은 조직 규모에 따라 대기업과 중소기업(SME)으로 구분됩니다. 대기업은 엔터프라이즈급 AI 솔루션을 조기에 도입하고 고급 MLOps 플랫폼에 투자할 자원을 보유하고 있어 2024년 매출 점유율이 가장 높았습니다. 이러한 조직은 여러 부서에 걸쳐 AI 이니셔티브를 확장하여 생산성과 혁신을 향상시킬 수 있는 이점을 누리고 있습니다.
중소기업(SME) 부문은 클라우드 기반 MLOps 솔루션과 로우코드 플랫폼의 경제성 향상에 힘입어 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 중소기업은 높은 인프라 비용 부담 없이 의사 결정 개선, 운영 효율화, 경쟁 우위 확보를 위해 MLOps를 도입하고 있으며, 이를 통해 전 세계적으로 AI 도입이 더욱 대중화되고 있습니다.
- 산업별 수직별
MLOps 시장은 산업별로 금융 서비스(BFSI), 제조, 정보 기술(IT) 및 통신, 소매 및 전자상거래, 의료 등으로 세분화됩니다. BFSI 부문은 사기 탐지, 위험 평가, 규정 준수 모니터링을 위한 AI 활용 증가에 힘입어 2024년 시장을 주도했습니다. 견고한 모델 거버넌스와 실시간 모니터링에 대한 필요성은 이 부문의 MLOps 수요를 더욱 강화합니다.
의료 분야는 의료 영상, 진단 및 개인 맞춤형 치료에 AI 도입이 증가함에 따라 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. MLOps 솔루션은 모델 정확도, 규정 준수 및 환자 데이터 보안을 보장하여 의료 분야의 AI 애플리케이션 확장에 필수적입니다. 제조 및 소매업과 같은 다른 산업에서도 운영 효율성, 공급망 관리 및 고객 경험을 개선하기 위해 MLOps를 빠르게 통합하고 있습니다.
MLOps 시장 지역 분석
• 북미는 2024년에 41%의 가장 큰 매출 점유율을 기록하며 MLOps 시장을 장악했습니다. 이는 기업 전반에서 인공 지능과 머신 러닝을 적극적으로 도입하고 주요 기술 공급업체와 고급 클라우드 인프라를 갖추고 있기 때문입니다.
• 이 지역의 기업은 MLOps 플랫폼의 안정성, 확장성 및 규정 준수 기능을 중요하게 생각하며, 이를 통해 안전하고 효율적인 AI 모델 수명 주기 관리를 보장합니다.
• 이러한 리더십은 AI 혁신에 대한 높은 투자, 유리한 정부 정책, 금융, 의료, IT와 같은 산업의 강력한 수요에 의해 더욱 뒷받침되며, 북미는 MLOps 도입을 위한 선도적 허브로서 확고히 자리매김했습니다.
미국 MLOps 시장 통찰력
미국 MLOps 시장은 2024년 북미 지역에서 가장 큰 매출 점유율을 차지했으며, 이는 급속한 디지털 혁신, 클라우드 기반 AI 솔루션 구축 증가, 그리고 기업의 자동화 수요 증가에 힘입은 것입니다. 기업들은 AI 워크플로우를 간소화하고, 운영 위험을 줄이며, 끊임없이 변화하는 데이터 규정을 준수하기 위해 MLOps를 점점 더 많이 활용하고 있습니다. 또한, AWS, Microsoft Azure, Google Cloud와 같은 첨단 클라우드 생태계와 MLOps의 통합은 금융 서비스 제공업체(BFSI), 소매, 의료 등 다양한 산업 분야에서 지속적인 성장을 견인하고 있습니다.
유럽 MLOps 시장 통찰력
유럽 MLOps 시장은 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상되며, 이는 GDPR과 같은 엄격한 데이터 보호 규정과 안전하고 설명 가능한 AI 모델에 대한 수요 증가에 기인합니다. 금융 서비스, 제조, 정부 부문에서 AI 도입이 증가함에 따라 확장 가능한 MLOps 플랫폼에 대한 수요가 증가하고 있습니다. 유럽 기업들은 또한 책임 있는 AI 구축, 지속 가능성, 그리고 윤리적인 AI 관행을 강조하며 공공 및 민간 부문 모두에서 MLOps의 광범위한 도입을 장려하고 있습니다.
영국 MLOps 시장 통찰력
영국 MLOps 시장은 AI 연구, 핀테크 혁신, 그리고 디지털 중심 비즈니스 전략에 대한 활발한 투자에 힘입어 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 규제 준수, 모델 투명성, 그리고 안전한 데이터 관리에 대한 관심이 커지면서 엔터프라이즈급 MLOps 솔루션에 대한 수요가 증가하고 있습니다. 또한, 영국의 IT 서비스 부문의 성장과 하이브리드 클라우드 인프라의 광범위한 도입은 시장 성장을 더욱 가속화하고 있습니다.
독일 MLOps 시장 통찰력
독일 MLOps 시장은 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상되는데, 이는 독일이 인더스트리 4.0, 스마트 제조, 자동화에 중점을 두고 있기 때문입니다. 독일 기업들은 운영 효율성, 예측 분석, 공급망 최적화를 강화하기 위해 AI 파이프라인에 MLOps를 점점 더 많이 통합하고 있습니다. 지속가능성, 규정 준수, 데이터 보안에 대한 집중 또한 특히 산업, 자동차, 의료 분야 전반에서 MLOps 솔루션에 대한 수요를 견인하고 있습니다.
아시아 태평양 MLOps 시장 통찰력
아시아 태평양 MLOps 시장은 급속한 디지털화, 클라우드 도입 증가, 그리고 중국, 일본, 인도 등지의 AI 투자 확대에 힘입어 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 이 지역 기업들은 대규모 데이터 기반 애플리케이션 관리, AI 배포 간소화, 확장성 향상을 위해 MLOps 도입을 확대하고 있습니다. 아시아 태평양 지역이 AI 기술의 소비자이자 생산자로 부상함에 따라, MLOps 플랫폼의 경제성과 접근성은 중소기업과 대기업 모두의 MLOps 도입을 가속화할 것으로 예상됩니다.
일본 MLOps 시장 통찰력
일본 MLOps 시장은 자동화, 로봇 공학, 그리고 첨단 기술 혁신에 대한 일본의 집중으로 2025년부터 2032년까지 가장 빠른 성장률을 기록할 것으로 예상됩니다. 일본 기업들은 제조, 소매, 의료 분야의 애플리케이션에 MLOps를 활용하고 있으며, 효율성, 정확성, 그리고 보안에 중점을 두고 있습니다. IoT 및 스마트 인프라 프로젝트와 MLOps의 통합 또한 MLOps 도입을 가속화하고 있습니다. 더욱이, 일본의 고령화되는 노동력으로 인해 기업들은 AI 기반 자동화를 도입하고 있으며, 이는 MLOps 플랫폼에 대한 수요를 더욱 증가시키고 있습니다.
중국 MLOps 시장 통찰력
중국 MLOps 시장은 2024년 아시아 태평양 지역에서 가장 큰 시장 매출 점유율을 차지했으며, 이는 정부의 AI 투자 확대, 클라우드 인프라 확장, 그리고 전자상거래, 금융, 제조 등 산업 전반에 걸친 빠른 도입에 힘입은 것입니다. 중국은 AI 혁신의 글로벌 리더로 부상하고 있으며, MLOps는 머신러닝 애플리케이션의 확장 및 배포를 위한 핵심 기반 역할을 합니다. 스마트 시티의 부상과 강력한 국내 기술 공급업체의 등장은 MLOps 도입을 더욱 가속화하여 중국을 글로벌 시장의 중추적인 플레이어로 만들고 있습니다.
MLOps 시장 점유율
MLOps 산업은 주로 다음을 포함한 잘 정립된 회사들이 주도하고 있습니다.
- 데이터브릭스(미국)
- 도미노 데이터 랩(미국)
- Kubeflow(Google 제공)(미국)
- Amazon SageMaker(미국)
- Paperspace Gradient(미국)
- Fiddler AI(미국)
- MLflow(Databricks 제공)(미국)
- 발로하이(핀란드)
- 후피동물(미국)
- ZenML(독일)
글로벌 MLOps 시장의 최신 동향
- 2025년 3월, Hewlett Packard Enterprise(HPE)는 NVIDIA와 협력하여 NVIDIA AI 데이터 플랫폼과 통합된 HPE 프라이빗 클라우드 AI를 포함하여 NVIDIA AI 컴퓨팅 포트폴리오의 새로운 엔터프라이즈 AI 솔루션을 출시했습니다. NVIDIA의 Blackwell 아키텍처를 기반으로 하는 이 솔루션은 향상된 성능, 보안 및 관측 가능성 도구를 제공하는 동시에 신속한 AI 개발 및 배포를 지원합니다. 이 이니셔티브는 기업의 생성적 AI 및 에이전트적 AI 도입을 가속화하고, 가치 창출 시간을 단축하며, 혁신을 촉진하여 AI 및 MLOps 분야에서 양사의 경쟁력을 강화할 것입니다.
- 2024년 7월, Microsoft는 Azure용 MLOps v2 아키텍처 프레임워크를 출시했습니다. 이 프레임워크는 기존 ML, 컴퓨터 비전, 자연어 처리 워크로드 전반에 걸쳐 머신러닝 운영을 간소화하도록 설계된 엔드투엔드 솔루션입니다. 이 프레임워크는 업계 모범 사례를 통합하여 데이터 관리, 모델 개발, 배포 및 모니터링을 위한 모듈식 구성 요소를 제공합니다. 반복 가능하고 안전하며 프로덕션에 즉시 사용 가능한 AI 워크플로를 보장함으로써, 기업은 향상된 확장성과 효율성을 바탕으로 AI 이니셔티브를 가속화하고 글로벌 MLOps 시장에서 Azure의 입지를 강화할 수 있습니다.
- 2021년 5월, Google Cloud는 ML 모델 구축, 학습 및 배포를 위한 여러 서비스를 통합하는 관리형 머신러닝 플랫폼인 Vertex AI를 출시했습니다. 이 플랫폼은 AI 수명 주기를 간소화하고, 운영 복잡성을 줄이며, 모델 개발을 가속화하도록 설계되었습니다. Vertex AI는 기업이 더 쉽고 빠르며 확장 가능한 AI 도입을 할 수 있도록 지원함으로써 엔터프라이즈 AI 및 MLOps 시장에서 Google의 입지를 강화하는 데 중요한 역할을 해왔습니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

