Global Modelops Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
5.31 Billion
USD
4.03 Billion
2024
2032
| 2025 –2032 | |
| USD 5.31 Billion | |
| USD 4.03 Billion | |
|
|
|
|
제공(플랫폼, 서비스), 배포(클라우드 및 온프레미스), 모델(ML 모델, 그래프 기반 모델, 규칙 및 휴리스틱 모델, 언어 모델, 에이전트 기반 모델 등), 애플리케이션(고객 서비스 및 가상 비서, 로봇 및 자동화, 의료, 금융 서비스, 보안 및 감시, 게임 및 엔터테인먼트, 마케팅 및 영업, 인사, 법률 및 규정 준수 등), 수직(BFSI, 소매 및 전자 상거래 , 의료 및 생명 과학, IT 및 통신, 에너지 및 유틸리티, 제조, 운송 및 물류 등)별 글로벌 ModelOps 시장 세분화 - 산업 동향 및 2032년까지의 예측
글로벌 ModelOps 시장 규모와 성장률은 어떻습니까?
- 글로벌 ModelOps 시장 규모는 2024년에 53억 1천만 달러 로 평가되었으며 예측 기간 동안 37.90%의 CAGR 로 2032년까지 40억 3천만 달러에 도달할 것으로 예상됩니다 .
- ModelOps는 실시간으로 AI/ML 모델을 확장하고 거버넌스와 규정 준수를 보장해야 하는 필요성이 커짐에 따라 BFSI, 의료 및 제조와 같은 분야에서 수요가 증가하는 것을 목격했습니다.
- AI 모델의 복잡성이 증가하고 지속적인 모니터링, 재교육 및 버전 제어가 필요해지면서 전 세계 기업에서 ModelOps 솔루션 도입이 늘어나고 있습니다.
ModelOps 시장의 주요 결과는 무엇입니까?
- AI 배포가 대규모로 급증함에 따라 시장이 급속히 확장되고 있으며, 이로 인해 기업들은 운영 효율성과 모델 책임을 보장하는 플랫폼에 투자하게 되었습니다.
- ModelOps는 ML 모델에 대해 일관된 성능, 규정 준수 준비성 및 수명 주기 관리를 제공하므로 규제된 산업 전반의 미션 크리티컬 애플리케이션에 필수적입니다.
- 클라우드 기반 아키텍처와 MLOps 관행을 기업 전략에 지속적으로 통합함으로써 ModelOps는 AI 기반 의사 결정의 핵심 지원자로 자리매김하여 시장 모멘텀에 기여하고 있습니다.
- 북미 지역은 2024년 42.14%의 매출 점유율로 ModelOps 시장을 장악했으며, 이는 금융 서비스(BFSI), 의료, 소매업 분야에서 AI/ML이 널리 도입됨에 따라 촉진되었습니다. 북미 지역의 고급 분석 플랫폼 조기 도입과 MLOps 성숙도 향상에 대한 집중은 ModelOps 구현을 가속화하고 있습니다.
- 아시아 태평양 ModelOps 시장은 고객 서비스, 사기 탐지 및 스마트 시티 분야에서 AI 도입 증가에 힘입어 2025년부터 2032년까지 12.52%의 가장 빠른 CAGR로 성장할 것으로 예상됩니다.
- 플랫폼 부문은 2024년에 62.7%의 가장 큰 시장 수익 점유율로 ModelOps 시장을 장악했으며, 이는 AI/ML 모델의 종단 간 수명 주기를 관리하는 통합 도구에 대한 필요성이 증가했기 때문입니다.
보고서 범위 및 모델 운영 시장 세분화
|
속성 |
ModelOps 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
유럽
아시아 태평양
중동 및 아프리카
남아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 적용 범위, 주요 기업 등 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 가격 분석, 브랜드 점유율 분석, 소비자 설문 조사, 인구 통계 분석, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선택 기준, PESTLE 분석, Porter 분석 및 규제 프레임워크가 포함되어 있습니다. |
ModelOps 시장의 주요 추세는 무엇입니까?
자동화 및 지속적인 거버넌스를 통해 간소화된 AI 모델 수명 주기
- 글로벌 ModelOps 시장을 재편하는 주요 추세는 AI/ML 모델 배포, 모니터링 및 재교육을 자동화하여 운영 효율성과 AI 투자의 지속적인 가치를 보장하는 방향으로 전환하는 것입니다.
- 조직에서는 MLOps, AIOps 및 DevOps와 통합된 ModelOps 플랫폼을 점점 더 많이 도입하고 있으며 이를 통해 데이터 과학자, IT 및 운영 팀 간의 원활한 조정이 가능해졌습니다.
- 예를 들어, IBM은 2024년 3월 Watsonx 플랫폼에서 새로운 AI 거버넌스 기능을 출시하여 글로벌 기업 전반에서 책임 있는 AI 운영과 규정 준수를 보장했습니다.
- 기업들은 또한 원격 측정 데이터를 사용하여 드리프트를 감지하고 자동화된 재교육 워크플로를 트리거하는 실시간 모델 성능 추적에 투자하고 있습니다.
- 이러한 진화는 의료, 금융, 소매, 제조와 같은 산업 전반에 걸쳐 확장 가능하고 신뢰할 수 있으며 지속적으로 학습하는 AI 시스템을 지원합니다.
- 이러한 추세는 기업 전체의 AI 확장에 중요한 지능형 자동화, 수명 주기 모니터링, 규정 준수 중심 모델 관리에 대한 수요가 증가하고 있음을 보여줍니다.
ModelOps 시장의 주요 성장 동인은 무엇인가?
- AI 기반 의사 결정의 증가와 파일럿 단계를 넘어 AI 모델을 운영화해야 할 필요성이 ModelOps 시장을 앞으로 이끌고 있습니다.
- 예를 들어, 2024년 5월 Google Cloud는 기업이 내장된 설명 및 추적 기능을 통해 대규모로 AI 모델을 배포, 모니터링 및 관리할 수 있도록 Model Garden 제품군을 개선했습니다.
- ModelOps 플랫폼은 기업이 모델 정확도를 보장하고 편견을 줄이며 BFSI, 의료, 공공 서비스와 같은 분야에서 중요한 진화하는 AI 규정을 준수하도록 지원합니다.
- 증가하는 기업 데이터 양과 증가하는 모델 복잡성으로 인해 조직에서는 자동화된 배포, 확장 및 거버넌스를 지원하는 플랫폼을 도입하고 있습니다.
- 또한 하이브리드 및 멀티 클라우드 환경의 등장으로 분산 인프라 전반에서 모델을 관리할 수 있는 유연한 ModelOps 도구가 필요합니다.
- 윤리적인 AI 관행, 비용 관리 및 AI 구현의 ROI 추적에 대한 추진으로 강력한 ModelOps 솔루션 도입이 더욱 촉진됩니다.
ModelOps 시장 성장을 저해하는 요인은 무엇입니까?
- ModelOps 시장의 주요 과제는 AI/ML 수명 주기 단계 전반에 걸쳐 도구 및 워크플로의 표준화가 부족하여 통합이 복잡해진다는 것입니다.
- 예를 들어, 2023년 2월 Forrester의 설문 조사에 따르면 기업의 60% 이상이 분산된 모델 운영 환경으로 인해 데이터 과학, IT 및 비즈니스 팀을 통합하는 데 어려움을 겪고 있는 것으로 나타났습니다.
- 또한, AI와 운영 지식을 모두 갖춘 숙련된 전문가의 부족과 가파른 학습 곡선은 ModelOps의 효과적인 구현을 방해합니다.
- 또한 많은 조직은 프로덕션 환경에서 모델 성능을 측정하는 데 어려움을 겪고 있으며 이로 인해 전체 규모 자동화에 대한 확신이 제한됩니다.
- 특히 중소기업의 경우 예산 제약으로 인해 포괄적인 ModelOps 플랫폼과 AI 거버넌스 도구에 투자하기 어렵습니다.
- 개방형 표준, 통합 플랫폼 및 로우코드/노코드 ModelOps 솔루션을 통해 이러한 문제를 해결하는 것은 광범위한 시장 잠재력을 끌어내는 데 필수적입니다.
ModelOps 시장은 어떻게 세분화되어 있나요?
시장은 제공, 배포, 모델, 애플리케이션 및 수직을 기준으로 세분화됩니다.
- 제공함으로써
ModelOps 시장은 제공 방식을 기준으로 플랫폼과 서비스로 구분됩니다. 플랫폼 부문은 2024년 62.7%의 시장 점유율로 ModelOps 시장을 장악했으며, 이는 AI/ML 모델의 엔드투엔드 라이프사이클을 관리하는 통합 도구에 대한 수요 증가에 기인합니다. 이러한 플랫폼은 특히 데이터 중심 기업에서 다양한 비즈니스 운영 전반에 걸쳐 모델의 신속한 배포, 모니터링 및 거버넌스를 지원합니다. 운영을 중앙 집중화하고 규정 준수를 보장하는 능력은 AI 기반 산업에서 플랫폼 부문에 대한 중요한 투자 가치를 제공합니다.
서비스 부문은 기업 내부 AI 전문성이 부족한 기업을 지원하기 위한 컨설팅, 통합 및 관리 서비스에 대한 수요가 증가함에 따라 2025년부터 2032년까지 눈에 띄는 CAGR을 보일 것으로 예상됩니다.
- 배치별
ModelOps 시장은 구축 방식을 기준으로 클라우드와 온프레미스로 구분됩니다. 클라우드 부문은 2024년 69.3%의 매출 점유율로 가장 큰 비중을 차지했으며, 이는 기업 전반에서 확장 가능하고 유연한 인프라 솔루션 도입이 증가함에 따라 더욱 강화되었습니다. 클라우드 기반 ModelOps는 원활한 통합, 비용 효율성, 그리고 원격 접근성을 제공하여 특히 중소기업과 기술 스타트업에서 선호되는 선택입니다.
BFSI와 정부와 같은 분야에서는 데이터 주권, 보안, 규정 준수가 최우선 순위이므로 온프레미스 배포가 여전히 관련성이 높습니다.
- 모델별
ModelOps 시장은 모델을 기준으로 ML 모델, 그래프 기반 모델, 규칙 및 휴리스틱 모델, 언어 모델, 에이전트 기반 모델 등으로 세분화됩니다. ML 모델 부문은 자동화, 예측 분석, 실시간 의사 결정 등 다양한 산업 분야에서 널리 사용됨에 따라 2024년 47.8%의 시장 점유율로 시장을 장악했습니다. ML 모델은 대부분의 AI 워크플로우의 기반이 되므로, ModelOps 플랫폼이 제공하도록 설계된 효율적인 관리와 지속적인 최적화가 필요합니다.
그래프 기반 모델 부문은 사기 탐지, 추천 시스템, 지식 그래프의 채택 증가에 힘입어 가장 빠른 성장을 경험할 것으로 예상됩니다.
- 응용 프로그램별
애플리케이션 기준으로 시장은 고객 서비스 및 가상 비서, 로봇 및 자동화, 의료, 금융 서비스, 보안 및 감시, 게임 및 엔터테인먼트, 마케팅 및 영업, 인사, 법률 및 규정 준수 등으로 세분화됩니다. 고객 서비스 및 가상 비서 부문은 2024년 24.6%의 시장 점유율을 기록하며 가장 큰 시장 점유율을 차지했으며, 이는 은행, 소매, 통신 분야에서 AI 챗봇 및 자동화된 지원 도구의 사용이 증가함에 따라 더욱 가속화되었습니다. 이러한 애플리케이션은 지속적인 모델 업데이트, 실시간 성능 추적, 버전 제어를 필요로 하며, 이는 ModelOps를 통해 제공되는 핵심 기능입니다.
AI 기반 진단 도구, 환자 모니터링 시스템, 개인화된 치료 솔루션에 대한 수요에 힘입어 헬스케어 부문이 가장 빠르게 성장할 것으로 예상됩니다.
- 수직별
ModelOps 시장은 업종별로 BFSI(금융 서비스 제공자), 소매 및 전자상거래, 의료 및 생명 과학, IT 및 통신, 에너지 및 유틸리티, 제조, 운송 및 물류 등으로 세분화됩니다. BFSI 부문은 2024년 21.9%의 매출 점유율로 가장 큰 비중을 차지했으며, 이는 은행과 금융 기관들이 사기 탐지, 신용 평가 모델, 위험 평가 도구 관리를 위해 ModelOps를 도입하는 사례가 증가함에 따라 더욱 두드러집니다. 이 분야의 엄격한 규제 준수는 견고한 모델 거버넌스의 필요성을 더욱 부각시키고 있습니다.
소매 및 전자상거래 부문은 실시간 개인화, 동적 가격 책정, AI 모델을 활용한 수요 예측에 대한 필요성에 따라 강력한 성장을 기록할 것으로 예상됩니다.
ModelOps 시장에서 가장 큰 점유율을 차지하는 지역은 어디인가요?
- 북미 지역은 2024년 42.14%의 매출 점유율로 ModelOps 시장을 장악했으며, 이는 금융 서비스(BFSI), 의료, 소매업 분야에서 AI/ML이 널리 도입됨에 따라 촉진되었습니다. 북미 지역의 고급 분석 플랫폼 조기 도입과 MLOps 성숙도 향상에 대한 집중은 ModelOps 구현을 가속화하고 있습니다.
- 책임 있는 AI와 규정 준수에 대한 투자 증가와 더불어 AI 혁신가들의 강력한 존재감은 모델 거버넌스와 수명 주기 관리 분야에서 시장 리더십을 강화하는 데 기여합니다.
- 또한 주요 ModelOps 솔루션 공급업체의 존재와 클라우드 기반 AI 인프라에 대한 수요 증가로 인해 북미는 ModelOps 도입 분야에서 글로벌 리더로서의 입지를 더욱 강화하고 있습니다.
미국 ModelOps 시장 통찰력
미국 ModelOps 시장은 2024년 북미에서 가장 큰 매출 점유율을 차지했으며, 이는 대규모 기업 디지털화, 설명 가능한 AI에 대한 규제 강화, 그리고 은행, 보험, 의료 분야의 빠른 모델 확산에 힘입은 것입니다. 기술 대기업과 스타트업 간의 전략적 제휴, 그리고 안전하고 확장 가능한 AI 모델 구축에 대한 투자는 강력한 ModelOps 프레임워크에 대한 수요를 가속화하고 있습니다.
유럽 ModelOps 시장 통찰력
유럽 ModelOps 시장은 윤리적 AI 및 GDPR 준수 모델 거버넌스에 대한 수요 증가에 힘입어 예측 기간 동안 꾸준히 성장할 것으로 예상됩니다. 유럽 금융 기관과 공공 부문 기관들은 책임감 있는 AI 운영을 위해 ModelOps 도입을 확대하고 있습니다. 또한, 모델 감사 가능성과 데이터 개인정보 보호에 대한 강조는 제조, 법률 및 정부 부문 전반의 시장 도입을 촉진하고 있습니다.
영국 ModelOps 시장 통찰력
영국 ModelOps 시장은 핀테크, 헬스케어, 법률 기술 분야의 AI 투자 증가에 힘입어 유망한 연평균 성장률(CAGR)로 성장할 것으로 예상됩니다. 투명성, 공정성, 모델 모니터링에 대한 관심이 높아지고 정부 지원 AI 프레임워크가 도입됨에 따라 기업들은 확장 가능하고 자동화된 ModelOps 플랫폼으로 전환하고 있습니다. 영국의 탄탄한 AI 연구 커뮤니티는 모델 수명 주기 관리 혁신에 더욱 기여하고 있습니다.
독일 ModelOps 시장 통찰력
독일 ModelOps 시장은 제조, 자동차 및 산업 자동화 분야에서 AI 통합이 확대됨에 따라 빠르게 성장하고 있습니다. 독일은 정밀성, 엔지니어링 우수성, 데이터 품질을 중시하여 고도로 관리되는 AI 모델의 구축을 지원합니다. 인더스트리 4.0 이니셔티브와 스마트 팩토리의 발전은 엔드 투 엔드 ModelOps 솔루션에 대한 수요를 더욱 증가시키고 있습니다.
ModelOps 시장에서 가장 빠르게 성장하는 지역은 어디인가요?
아시아 태평양 ModelOps 시장은 고객 서비스, 사기 탐지, 스마트 시티 분야에서 AI 도입 증가에 힘입어 2025년부터 2032년까지 연평균 성장률 12.52%로 가장 빠른 성장을 보일 것으로 예상됩니다. 중국, 인도, 아세안 국가의 정부 주도 디지털 혁신 프로그램과 확장 가능한 AI 구축에 대한 요구가 시장 성장을 촉진하고 있습니다. 클라우드 서비스 확대와 현지 AI 인력 확보 또한 ModelOps 솔루션에 대한 접근성을 높이고 있습니다.
일본 ModelOps 시장 통찰력
일본 ModelOps 시장은 로봇 공학, 스마트 제조, 금융 서비스 분야에서 강력한 성장세를 보이고 있습니다. 자동화와 AI 윤리를 중시하는 일본은 설명 가능하고 신뢰할 수 있으며 지속적으로 모니터링되는 모델에 대한 수요를 창출하고 있습니다. ModelOps는 자율 시스템 및 정밀 기반 AI 애플리케이션을 향한 일본의 여정에서 중요한 도구로 자리 잡고 있습니다.
중국 ModelOps 시장 통찰력
중국 ModelOps 시장은 2024년 아시아 태평양 지역에서 가장 큰 매출 점유율을 기록했으며, 이는 빠른 디지털화, 강력한 AI 정책 지원, 그리고 전자상거래, 금융, 정부 부문에서의 광범위한 도입에 힘입어 더욱 강화되었습니다. 국내 기술 선도 기업들은 생산 모델 확장을 위해 AI 라이프사이클 도구에 적극적으로 투자하고 있습니다. 중국이 AI 주권 및 규제 프레임워크에 집중함에 따라 여러 부문에서 ModelOps 도입이 더욱 확대되고 있습니다.
ModelOps 시장의 최고 기업은 어디인가요?
ModelOps 산업은 주로 다음을 포함한 잘 확립된 회사들이 주도하고 있습니다.
- IBM(미국)
- 구글(미국)
- 오라클(미국)
- SAS 연구소(미국)
- AWS(미국)
- 테라데이터(미국)
- 팔란티르(미국)
- 베리톤(미국)
- 알타이르(미국)
- c3.ai(미국)
- TIBCO(미국)
- 데이터브릭스(미국)
- 기그소(미국)
- 베르타(미국)
- 모델옵(미국)
- 혜성 ML(미국)
- 슈퍼와이즈(이스라엘)
- 분명히 AI(미국)
- 미니탭(미국)
- 셀던(영국)
- 이노마인즈(미국)
- 데이터트론(미국)
- 도미노 데이터 랩(미국)
- 아서(미국)
- 가중치 및 편향(미국)
- 제논스택(미국)
- Cnvrg.io(이스라엘)
- 데이터키친(미국)
- 하이스텐 AI(미국)
- 스파클링 로직(미국)
- 리웨이허츠(미국)
글로벌 ModelOps 시장의 최근 동향은 무엇입니까?
- 2024년 7월, 클라우드 분석 플랫폼 분야의 선도적인 공급업체인 테라데이터(Teradata)는 저명한 개방형 AI 플랫폼 공급업체인 데이터로봇(DataRobot, Inc.)과 협력하여 데이터로봇의 AI 플랫폼을 테라데이터의 클리어스케이프 애널리틱스(ClearScape Analytics) 및 밴티지클라우드(VantageCloud)와 통합했습니다. 이 통합은 기업이 안전하고 효율적인 AI 모델을 개발하고 확장할 수 있도록 유연성과 역량을 강화하도록 설계되었습니다. 이 파트너십은 산업 전반의 AI 기반 의사 결정 및 운영 효율성을 가속화할 것으로 예상됩니다.
- 2024년 5월, 마이크로소프트는 Azure AI에 OpenAI의 최신 멀티모달 모델인 GPT-4o를 출시했습니다. GPT-4o는 고급 생성 및 대화형 AI를 위한 텍스트, 이미지, 오디오 기능을 통합했습니다. 이 새로운 모델은 Azure OpenAI 서비스를 통해 미리보기로 제공되며, 텍스트 및 이미지 입력을 모두 지원합니다. 이번 출시를 통해 마이크로소프트의 AI 솔루션이 더욱 강화되고 개발자와 기업이 최첨단 생성 AI를 더욱 쉽게 활용할 수 있게 되었습니다.
- 2024년 5월, Google Cloud는 기업이 생성적 AI 프로토타입을 프로덕션급 솔루션으로 전환할 수 있도록 지원하는 Generative AI Ops 서비스를 출시했습니다. Google Cloud Consulting과 파트너 생태계를 통해 제공되는 이 서비스는 보안, 모델 튜닝, 피드백 통합, 성능 최적화와 같은 중요한 측면을 지원합니다. 이 이니셔티브는 기업이 AI 혁신을 책임감 있고 효과적으로 확장할 수 있도록 지원하려는 Google Cloud의 노력을 강조합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

