North America Artificial Intelligence Ai In Drug Discovery Market
시장 규모 (USD 10억)
연평균 성장률 :
%
USD
1.65 Billion
USD
54.93 Billion
2024
2032
| 2025 –2032 | |
| USD 1.65 Billion | |
| USD 54.93 Billion | |
|
|
|
|
북미 인공지능(AI) 신약 개발 시장 세분화, 응용 분야별(신약 후보물질, 약물 최적화 및 용도 변경, 전임상 시험 및 승인, 약물 모니터링, 새로운 질병 관련 표적 및 경로 탐색, 질병 메커니즘 이해, 정보 수집 및 종합, 가설 수립 및 검증, 신규 약물 설계, 기존 약물의 약물 표적 탐색 등), 기술(머신러닝, 딥러닝, 자연어 처리 등), 약물 유형(소분자 및 대분자), 제공 분야(소프트웨어 및 서비스), 적응증(면역 종양학, 신경 퇴행성 질환, 심혈관 질환, 대사 질환 등), 최종 용도(임상시험수탁기관(CRO), 제약 및 생명공학 기업, 연구 센터 및 학술 기관 등) - 2032년까지의 산업 동향 및 전망
북미 약물 발견 시장 규모에서의 인공지능(AI)
- 북미 인공지능(AI) 약물 발견 시장 규모는 2024년에 16억 5천만 달러 로 평가되었으며, 예측 기간 동안 54.90%의 CAGR 로 2032년까지 549억 3천만 달러 에 도달할 것으로 예상됩니다 .
- 시장 성장은 약물 표적 식별, 화합물 스크리닝 및 임상 시험 설계를 가속화하고 시간과 R&D 비용을 크게 줄이기 위한 AI 기술의 통합 증가에 크게 힘입어 이루어지고 있습니다.
- 더욱이 정밀 의학 및 개인 맞춤형 치료법에 대한 수요 증가와 AI 공급업체와 제약 회사 간의 협력은 AI를 신약 개발 파이프라인 혁신의 핵심 동력으로 자리매김하고 있습니다. 이러한 융합 요인들이 지역 전체의 AI 도입을 촉진하고 있습니다.
북미 약물 발견 시장 분석에서의 인공지능(AI)
- 머신 러닝, 딥 러닝, 데이터 기반 모델링을 활용하는 약물 발견 분야의 AI는 타겟 식별, 히트 발견, 분자 최적화와 같은 초기 단계 약물 개발 프로세스의 효율성과 정확성을 개선하여 북미 전역의 제약 R&D 환경을 혁신하는 데 중요한 요소로 자리 잡고 있습니다.
- 약물 발견 분야에서 AI에 대한 수요가 급증하는 것은 주로 의료 R&D 투자 증가, 만성 및 희귀 질환의 유병률 증가, 기존 약물 개발 주기와 관련된 시간 및 비용 절감 필요성 증가에 의해 촉진됩니다.
- 미국은 2024년 48.7%의 가장 큰 매출 점유율로 북미 약물 발견 시장에서 인공지능(AI)을 주도했으며, 이는 첨단 의료 인프라, AI 기술의 조기 도입, 제약 회사와 AI 중심 기술 회사 간의 강력한 협업이 특징입니다.
- 캐나다는 예측 기간 동안 약물 발견 시장에서 인공지능(AI)에 대한 정부 지원 증가, 생명공학 분야의 성장, 캐나다 연구 기관과 제약 회사 간의 AI 약물 개발 협업 증가에 힘입어 북미에서 가장 빠르게 성장하는 국가가 될 것으로 예상됩니다.
- 소분자 부문은 모델링의 용이성, 스크리닝의 확장성, 표적 치료에서의 광범위한 사용으로 인해 2024년 64%의 시장 점유율로 북미 약물 발견 시장에서 인공지능(AI)을 주도했습니다.
보고서 범위 및 북미 약물 발견 시장 세분화의 인공 지능(AI)
|
속성 |
북미 약물 발견 분야의 인공지능(AI) 주요 시장 통찰력 |
|
다루는 세그먼트 |
|
|
포함 국가 |
북아메리카
|
|
주요 시장 참여자 |
|
|
시장 기회 |
|
|
부가가치 데이터 정보 세트 |
Data Bridge Market Research에서 큐레이팅한 시장 보고서에는 시장 가치, 성장률, 세분화, 지리적 적용 범위, 주요 기업 등 시장 시나리오에 대한 통찰력 외에도 심층적인 전문가 분석, 가격 분석, 브랜드 점유율 분석, 소비자 설문 조사, 인구 통계 분석, 공급망 분석, 가치 사슬 분석, 원자재/소모품 개요, 공급업체 선택 기준, PESTLE 분석, Porter 분석 및 규제 프레임워크가 포함되어 있습니다. |
북미 약물 발견 시장 동향에서의 인공지능(AI)
“맞춤형 의료를 위한 AI 기반 약물 발견 플랫폼”
- 북미 AI 신약 개발 시장에서 주요하고 빠르게 성장하는 추세는 개인 맞춤형 의료를 지원하는 AI 기반 플랫폼의 통합이 확대되고 있다는 점입니다. 이를 통해 제약 회사는 개인의 유전적 특성과 질병 특성에 따라 맞춤형 치료법을 개발할 수 있습니다. 이러한 추세는 약물의 발견, 개발 및 특정 환자 집단에 대한 맞춤형 치료법 개발 방식을 변화시키고 있습니다.
- 예를 들어, Insilico Medicine과 Recursion Pharmaceuticals 같은 회사들은 AI를 활용하여 유전적으로 정의된 하위 집단에 대한 약물 후보 물질을 발굴함으로써 약물 개발의 정확성과 효율성을 높이고 있습니다. 이러한 플랫폼은 AI를 사용하여 오믹스 데이터를 분석하고, 환자별 반응을 예측하며, 최적의 화합물 선택을 가속화합니다.
- 머신러닝과 딥러닝을 포함한 AI 기술은 방대한 데이터 세트를 분석하여 이전에는 감춰져 있던 유전자 돌연변이와 질병 경로 간의 연관성을 밝혀내는 데 활용되고 있습니다. 이러한 역량은 특히 개별 맞춤형 치료가 필수적인 종양학과 희귀 질환 분야에서 매우 중요합니다.
- 질병 기전 및 약물 상호작용 모델링에 AI를 활용하면 표적 치료법 개발에 기여하고 임상 시험의 시행착오 단계를 단축할 수 있습니다. 또한, 환자 EHR, 임상시험 데이터베이스, 유전체 데이터와 통합된 AI 플랫폼은 치료 계획의 개인화를 향상시킵니다.
- BioXcel Therapeutics와 Atomwise 같은 회사들은 가설 생성과 리드(lead) 식별을 자동화하여 신약 개발 비용과 기간을 단축하는 AI 솔루션을 개발하고 있습니다. 이러한 지능형 시스템은 기존의 광범위한 약물 개발 방식에서 고도로 개인화된 치료 전략으로의 전환을 촉진하고 있습니다.
- AI 기반 정밀 의학으로의 이러한 추세는 신약 개발 분야의 기대치를 변화시키고 있습니다. 그 결과, 북미 제약 및 바이오테크 기업들은 경쟁력을 유지하고 더욱 효과적이고 환자 중심적인 치료법을 제공하기 위해 AI 역량에 빠르게 투자하고 있습니다.
북미 약물 발견 시장 역학에서의 인공지능(AI)
운전사
“R&D 투자 증가 및 신속한 신약 개발 수요”
- 약물 발견 일정을 단축하고 관련 비용을 절감하려는 수요 증가와 더불어 의료 R&D에 대한 투자 증가는 북미 전역에서 약물 개발에 AI 도입을 촉진하는 주요 요인입니다.
- 예를 들어, 2024년 5월, Pfizer는 Tempus와 협력하여 AI 기반 분석을 실시간 임상 시험 최적화에 활용하기로 했다고 발표했으며, 이는 업계가 데이터 중심 약물 발견 전략으로 전환하고 있음을 강조합니다.
- AI 애플리케이션을 통해 연구자들은 방대한 화학 라이브러리를 스크리닝하고, 약물 유사성을 예측하고, 약물-표적 상호 작용을 실리코 방식으로 시뮬레이션하여 비용이 많이 들고 시간이 많이 소요되는 실험실 시험에 대한 의존도를 최소화할 수 있습니다.
- 특히 종양학 및 신경퇴행성 질환과 같은 분야에서 새로운 치료법에 대한 시급한 필요성으로 인해 제약 회사들은 AI를 활용하여 후보자 식별을 가속화하고 파이프라인 생산성을 향상시키고 있습니다.
- 또한 AI는 기존 승인된 화합물에 대한 새로운 적응증을 발굴하여 개발 위험을 줄이고, 약물 재창출(drug repurposing)을 개선합니다. 이러한 요소들은 R&D 투자수익률(ROI) 향상과 혁신 주기 단축에 기여하며, 북미 현대 제약 산업에 AI는 필수불가결한 요소로 자리 잡았습니다.
제지/도전
“데이터 개인정보 보호 문제와 규제 복잡성”
- 혁신적인 잠재력에도 불구하고, 신약 개발 분야에서 AI를 도입하는 데는 데이터 프라이버시 및 규제 준수에 대한 우려를 포함한 상당한 난관에 직면해 있습니다. AI 시스템은 민감한 건강 및 유전체 데이터에 크게 의존하기 때문에 데이터 보안을 확보하고 규제 기준을 충족하는 것이 가장 중요한 과제입니다.
- 의료 데이터 유출 사건과 AI 의사결정 투명성에 대한 감시 강화로 인해 생명 과학 분야에서 AI 응용 프로그램의 윤리적 및 법적 영향에 대한 이해 관계자들의 우려가 커지고 있습니다.
- 예를 들어, AI 알고리즘에서 환자 유전 데이터를 사용하려면 데이터 액세스 및 공유에 대한 엄격한 통제를 부과하는 HIPAA 및 GDPR과 같은 프레임워크를 준수해야 하며 이로 인해 AI 배포 속도가 느려지는 경우가 많습니다.
- 더욱이, 약물 개발 과정에서 AI 검증에 대한 표준화된 지침이 부족하여 규제 승인 절차가 복잡해지고 있습니다. FDA와 같은 기관들이 디지털 도구에 대한 적응형 경로를 개발하고 있지만, 많은 AI 모델은 여전히 임상적 관련성과 재현성을 입증하는 데 어려움을 겪고 있습니다.
- 강력한 데이터 거버넌스, 설명 가능한 AI 프레임워크 및 업계 전반의 규제 조정을 통해 이러한 장벽을 해결하는 것은 AI 기반 약물 발견 솔루션에 대한 지속적인 채택과 신뢰를 보장하는 데 매우 중요합니다.
북미 약물 발견 시장 범위에 있어서 인공지능(AI)
시장은 응용 분야, 기술, 약물 유형, 제공, 적응증 및 최종 용도를 기준으로 세분화됩니다.
- 신청에 따라
북미 신약 개발 인공지능(AI) 시장은 응용 분야별로 신약 후보 물질, 약물 최적화 및 용도 변경, 전임상 시험 및 승인, 약물 모니터링, 새로운 질병 관련 표적 및 경로 탐색, 질병 메커니즘 이해, 정보 수집 및 종합, 가설 수립 및 검증, 신규 약물 설계, 기존 약물의 약물 표적 탐색 등으로 세분화됩니다. 신약 후보 물질 분야는 2024년 26.3%의 시장 점유율로 시장을 장악했으며, 이는 치료 잠재력이 있는 신규 화합물을 생성하는 예측 알고리즘을 통해 초기 단계의 신약 개발 과정을 간소화하는 능력에 힘입은 것입니다.
신규 약물 설계 분야는 새로운 분자 구조를 설계할 수 있는 생성적 AI 모델의 발전에 힘입어 2025년부터 2032년까지 20.8%의 가장 빠른 성장률을 기록할 것으로 예상됩니다. 이러한 응용 분야는 특정 생물학적 및 화학적 기준을 충족하는 약물 후보 물질의 신속한 개발을 가능하게 하여 개인 맞춤형 및 표적 치료의 혁신을 촉진합니다.
- 기술로
기술 측면에서 북미 신약 개발 인공지능(AI) 시장은 머신러닝, 딥러닝, 자연어 처리(NLP) 등으로 세분화됩니다. 머신러닝 부문은 예측 모델링, 화합물-표적 상호작용 매핑, 리드 식별 프로세스 최적화 등에서 광범위하게 활용되면서 2024년 시장 매출 점유율 38.7%로 가장 높은 비중을 차지했습니다. 머신러닝 알고리즘은 현대 신약 개발에 사용되는 대부분의 AI 플랫폼의 기반을 형성합니다.
딥러닝 분야는 복잡한 생물학적 패턴을 인식하고 고차원 데이터 세트를 분석하는 데 있어 탁월한 성능을 바탕으로 2025년부터 2032년까지 21.4%의 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 딥러닝은 영상 분석, 오믹스 데이터 해석, 질병 기전 모델링 등에서 점점 더 많이 활용되고 있으며, 바이오테크 및 제약 R&D 분야에서도 빠르게 도입되고 있습니다.
- 약물 유형별
북미 인공지능(AI) 기반 신약 개발 시장은 약물 유형을 기준으로 소분자 약물과 대분자 약물로 구분됩니다. 소분자 약물은 합성 용이성, 확장성, 그리고 AI 기반 가상 스크리닝 적합성 덕분에 2024년 시장 매출 점유율 64%로 시장을 장악했습니다. 소분자 약물은 세포 침투 및 세포 내 표적 조절 능력으로 널리 사용되며, AI 기반 최적화 및 신약 개발에 이상적인 후보 물질입니다.
대형 분자 분야는 2025년부터 2032년까지 가장 빠른 CAGR을 보일 것으로 예상되며, 특히 종양학 및 면역학과 같은 치료 분야에서 AI가 높은 특이성과 효능을 갖춘 복잡한 생물학 제제 및 단일클론 항체를 설계하는 데 활용되고 있습니다.
- 제공함으로써
북미 신약 개발 인공지능(AI) 시장은 제공 분야를 기준으로 소프트웨어와 서비스로 구분됩니다. 소프트웨어 부문은 2024년 59.4%의 시장 점유율을 기록하며 가장 큰 시장 점유율을 차지했는데, 이는 데이터 통합, 분자 예측 및 워크플로 자동화를 지원하는 AI 기반 플랫폼에 대한 수요 증가에 힘입은 것입니다. 이러한 플랫폼은 R&D 일정을 단축하고 신약 개발 비용을 절감하는 데 중요한 역할을 합니다.
서비스 부문은 제약 회사들이 AI 기반 발견 및 분석 업무를 전문 업체에 아웃소싱하는 경우가 늘어나면서 2025년부터 2032년까지 가장 빠른 연평균 성장률(CAGR)을 기록할 것으로 예상됩니다. 이러한 추세는 자체 컴퓨팅 역량이 부족한 중소 바이오테크 기업에서 특히 두드러집니다.
- 표시에 의해
북미 인공지능(AI) 신약 개발 시장은 적응증별로 면역 종양학, 신경 퇴행성 질환, 심혈관 질환, 대사 질환 등으로 세분화됩니다. 면역 종양학 분야는 표적 항암 치료제 수요 증가와 AI의 면역 반응 모델링 및 면역관문억제제 개발 최적화 역량에 힘입어 2024년 31.8%의 시장 점유율을 기록하며 시장을 장악했습니다.
신경퇴행성 질환 분야는 알츠하이머병과 파킨슨병과 같은 질환의 유병률 증가에 힘입어 2025년부터 2032년까지 22.6%라는 가장 빠른 성장률을 기록할 것으로 예상됩니다. AI는 복잡한 신경 경로를 이해하고, 바이오마커를 식별하며, 환자 맞춤형 치료 반응을 예측하는 데 중요한 역할을 하고 있습니다.
- 최종 사용 기준
북미 신약 개발 인공지능(AI) 시장은 최종 용도를 기준으로 임상시험수탁기관(CRO), 제약 및 생명공학 기업, 연구센터 및 학술기관 등으로 세분화됩니다. 제약 및 생명공학 기업 부문은 2024년 47.1%의 시장 점유율로 시장을 장악했으며, 이는 R&D 생산성 향상, 표적 식별 개선, 임상 시험 실패 감소를 위한 AI 기술 도입 증가에 힘입은 것입니다. 이러한 기업들은 신약 개발에서 경쟁 우위를 확보하기 위해 자체 AI 도구와 협업 플랫폼에 막대한 투자를 하고 있습니다.
임상시험수탁기관(CRO) 부문은 AI 기반 신약 발굴 서비스 아웃소싱 추세 증가에 힘입어 2025년부터 2032년까지 21.3%의 가장 빠른 성장률을 기록할 것으로 예상됩니다. CRO들은 제약 고객에게 비용 효율적이고 확장 가능한 신약 발굴 솔루션을 제공하기 위해 AI를 자사 서비스에 점점 더 많이 통합하고 있습니다.
북미 약물 발견 시장의 인공지능(AI) 지역 분석
- 미국은 2024년 48.7%의 가장 큰 매출 점유율로 북미 약물 발견 시장에서 인공지능(AI)을 주도했으며, 이는 첨단 의료 인프라, AI 기술의 조기 도입, 제약 회사와 AI 중심 기술 회사 간의 강력한 협업이 특징입니다.
- 미국 기업들은 AI를 활용하여 약물 발견 프로세스를 가속화하고, 화합물 스크리닝을 최적화하고, 개인화된 치료법을 개발하고 있으며, 광범위한 임상 및 게놈 데이터 세트와 협력 연구 환경에 대한 액세스를 통해 이점을 얻고 있습니다.
- 이러한 지배력은 유리한 규제 이니셔티브, 상당한 벤처 캐피털 자금, AI 및 생물 의학 인재의 대규모 풀에 의해 더욱 뒷받침되며 북미 지역 전체에서 AI 기반 약물 발견의 혁신을 주도하는 미국의 입지를 강화합니다.
미국 인공지능(AI)을 활용한 신약 개발 시장 통찰력
미국의 인공지능(AI) 신약 개발 시장은 높은 R&D 지출, 첨단 기술의 활발한 도입, 그리고 탄탄한 제약 및 바이오테크 환경에 힘입어 2024년 북미 지역에서 가장 큰 매출 점유율을 기록했습니다. 미국 기업들은 표적 식별, 리드 최적화, 그리고 개인 맞춤형 신약 개발을 위한 AI 활용을 선도하고 있습니다. AI 기술 기업과 생명과학 기업 간의 협력, 그리고 방대한 임상 및 유전체 데이터셋 활용은 시장 성장을 더욱 가속화하고 있습니다. FDA의 AI 도구에 대한 적응형 프레임워크를 포함한 규제 지원 또한 지속적인 혁신과 시장 지배력 강화에 기여하고 있습니다.
캐나다 인공지능(AI)을 활용한 약물 발견 시장 통찰력
캐나다의 신약 개발 인공지능(AI) 시장은 예측 기간 동안 상당한 연평균 성장률(CAGR)을 기록할 것으로 예상되며, 이는 정부의 AI 연구 지원 확대, 생명 과학 분야의 성장, 그리고 산학 협력 증가에 힘입은 것입니다. 캐나다 기관들은 AI 혁신의 선두에 있으며, 첨단 머신러닝 및 자연어 처리 도구를 활용하여 신약 개발을 가속화하고 있습니다. 캐나다는 개인 맞춤형 의료 서비스와 혁신 친화적인 규제 정책에 중점을 두고 있어 제약, 바이오테크, 연구 분야 전반에서 AI 도입이 확대될 것으로 예상됩니다.
멕시코 약물 발견 시장 통찰력에서의 인공지능(AI)
멕시코의 신약 개발 인공지능(AI) 시장은 의료 인프라 개선, 디지털화 확대, 그리고 의학 연구 투자 증가에 힘입어 예측 기간 동안 꾸준히 성장할 것으로 예상됩니다. 미국과 캐나다에 비해 초기 단계에 있지만, 멕시코는 글로벌 기업 및 연구 기관과의 파트너십을 통해 신약 개발에 AI 기술을 점진적으로 도입하고 있습니다. 생명공학 분야를 강화하고 기술 역량을 강화하기 위한 정부 정책은 특히 초기 단계의 신약 개발 및 신약 재창출 분야에서 장기적인 시장 성장을 뒷받침할 것입니다.
북미 약물 발견 시장에서 인공지능(AI)의 점유율
북미의 약물 발견 산업에서 인공지능(AI)을 선도하는 기업은 다음과 같습니다.
- 화이자(미국)
- 인실리코 메디슨(Insilico Medicine, Inc.) (미국)
- Atomwise Inc. (미국)
- Recursion Pharmaceuticals, Inc. (미국)
- 슈뢰딩거 주식회사(미국)
- BenevolentAI Ltd.(영국)
- Exscientia Ltd.(영국)
- XtalPi Inc.(미국)
- 클라우드 파마슈티컬스(미국)
- 엔비디아 코퍼레이션(미국)
- IBM Corporation(미국)
- PathAI, Inc. (미국)
- Deep Genomics Inc. (캐나다)
- BioAge Labs, Inc. (미국)
- Cyclica Inc. (캐나다)
- 발로 헬스(Valo Health, Inc.) (미국)
- Verge Genomics, Inc. (미국)
- BenchSci Analytics Inc.(캐나다)
- Roivant Sciences Ltd.(버뮤다)
- AbCellera Biologics Inc.(캐나다)
북미 약물 발견 시장에서 인공지능(AI)의 최근 동향은 무엇인가?
- 2024년 5월, 화이자(Pfizer Inc.)는 AI 및 정밀 의학 분야의 선두 기업인 템퍼스(Tempus)와의 파트너십 확대를 발표했습니다. 이 파트너십은 실시간 AI 기반 분석을 자사의 종양학 임상시험에 통합하기 위한 것입니다. 이번 협력은 환자 식별을 가속화하고 임상시험 프로토콜을 최적화하여 미국 전역에서 AI 기반 신약 개발 및 개인 맞춤형 의료 이니셔티브에 대한 화이자의 의지를 강화하는 것을 목표로 합니다.
- 2024년 4월, AI를 신약 개발에 활용하는 미국 바이오테크 기업 인실리코 메디슨(Insilico Medicine)은 특발성 폐섬유증을 표적으로 하는 AI 기반 신약 후보물질의 1상 임상시험 개시를 발표했습니다. 이는 AI 기반 신약 후보물질이 임상 시험에 진입한 최초의 사례 중 하나로, 초기 단계의 신약 개발을 실질적인 치료법으로 전환하는 데 있어 AI 플랫폼의 성숙도와 잠재력이 점차 높아지고 있음을 보여줍니다.
- 2024년 2월, 캘리포니아에 본사를 둔 Atomwise Inc.는 사노피와 다중 표적 약물 개발 협력 계약을 체결했습니다. 이 파트너십은 Atomwise의 AI 기반 구조 기반 약물 설계 역량을 활용하여 새로운 저분자 화합물 후보 물질을 발굴합니다. 이 계약은 제약 업계가 복잡한 치료 표적을 더욱 효율적으로 다루기 위해 AI에 대한 의존도가 높아지고 있음을 보여줍니다.
- 2024년 1월, 미국과 중국에 본사를 둔 AI 신약 개발 기업 XtalPi Inc.는 매사추세츠주 보스턴에 북미 혁신 센터를 설립한다고 발표했습니다. 이 센터는 양자 물리학 기반 분자 모델링과 신약 설계를 위한 생성 AI에 중점을 두고, 보스턴을 바이오테크 혁신의 허브로 더욱 발전시키고 XtalPi의 AI 기반 R&D 역량을 확대할 것입니다.
- 2023년 12월, 솔트레이크시티에 본사를 둔 임상 단계 생명공학 기업인 리커전 파마슈티컬스(Recursion Pharmaceuticals)는 엔비디아(NVIDIA)와 파트너십을 체결하여 고성능 컴퓨팅과 AI를 통합하여 희귀 질환 치료제 개발을 가속화했습니다. 이번 협력은 AI, 대규모 생물학, 그리고 컴퓨팅 플랫폼의 융합을 통해 더욱 빠르고 확장 가능한 신약 개발 파이프라인을 구축하는 것을 의미합니다.
SKU-
세계 최초의 시장 정보 클라우드 보고서에 온라인으로 접속하세요
- 대화형 데이터 분석 대시보드
- 높은 성장 잠재력 기회를 위한 회사 분석 대시보드
- 사용자 정의 및 질의를 위한 리서치 분석가 액세스
- 대화형 대시보드를 통한 경쟁자 분석
- 최신 뉴스, 업데이트 및 추세 분석
- 포괄적인 경쟁자 추적을 위한 벤치마크 분석의 힘 활용
연구 방법론
데이터 수집 및 기준 연도 분석은 대규모 샘플 크기의 데이터 수집 모듈을 사용하여 수행됩니다. 이 단계에는 다양한 소스와 전략을 통해 시장 정보 또는 관련 데이터를 얻는 것이 포함됩니다. 여기에는 과거에 수집한 모든 데이터를 미리 검토하고 계획하는 것이 포함됩니다. 또한 다양한 정보 소스에서 발견되는 정보 불일치를 검토하는 것도 포함됩니다. 시장 데이터는 시장 통계 및 일관된 모델을 사용하여 분석하고 추정합니다. 또한 시장 점유율 분석 및 주요 추세 분석은 시장 보고서의 주요 성공 요인입니다. 자세한 내용은 분석가에게 전화를 요청하거나 문의 사항을 드롭하세요.
DBMR 연구팀에서 사용하는 주요 연구 방법론은 데이터 마이닝, 시장에 대한 데이터 변수의 영향 분석 및 주요(산업 전문가) 검증을 포함하는 데이터 삼각 측량입니다. 데이터 모델에는 공급업체 포지셔닝 그리드, 시장 타임라인 분석, 시장 개요 및 가이드, 회사 포지셔닝 그리드, 특허 분석, 가격 분석, 회사 시장 점유율 분석, 측정 기준, 글로벌 대 지역 및 공급업체 점유율 분석이 포함됩니다. 연구 방법론에 대해 자세히 알아보려면 문의를 통해 업계 전문가에게 문의하세요.
사용자 정의 가능
Data Bridge Market Research는 고급 형성 연구 분야의 선두 주자입니다. 저희는 기존 및 신규 고객에게 목표에 맞는 데이터와 분석을 제공하는 데 자부심을 느낍니다. 보고서는 추가 국가에 대한 시장 이해(국가 목록 요청), 임상 시험 결과 데이터, 문헌 검토, 재생 시장 및 제품 기반 분석을 포함하도록 사용자 정의할 수 있습니다. 기술 기반 분석에서 시장 포트폴리오 전략에 이르기까지 타겟 경쟁업체의 시장 분석을 분석할 수 있습니다. 귀하가 원하는 형식과 데이터 스타일로 필요한 만큼 많은 경쟁자를 추가할 수 있습니다. 저희 분석가 팀은 또한 원시 엑셀 파일 피벗 테이블(팩트북)로 데이터를 제공하거나 보고서에서 사용 가능한 데이터 세트에서 프레젠테이션을 만드는 데 도움을 줄 수 있습니다.

