Relatório de Análise de Tamanho, Participação e Tendências do Mercado de Redes Neurais de Aprendizado Profundo (DNNs) da Ásia-Pacífico – Visão Geral e Previsão do Setor até 2032

Pedido de resumo Pedido de TOC Fale com Analista Fale com o analista Relatório de amostra grátis Relatório de amostra grátis Consulte antes Comprar Consulte antes  Comprar agora Comprar agora

Relatório de Análise de Tamanho, Participação e Tendências do Mercado de Redes Neurais de Aprendizado Profundo (DNNs) da Ásia-Pacífico – Visão Geral e Previsão do Setor até 2032

  • ICT
  • Upcoming Reports
  • Nov 2021
  • Asia-Pacific
  • 350 Páginas
  • Número de tabelas: 220
  • Número de figuras: 60
  • Author : Megha Gupta

Contorne os desafios das tarifas com uma consultoria ágil da cadeia de abastecimento

A análise do ecossistema da cadeia de abastecimento agora faz parte dos relatórios da DBMR

Asia Pacific Deep Learning Neural Networks Dnns Market

Tamanho do mercado em biliões de dólares

CAGR :  % Diagram

Chart Image USD 35.66 Billion USD 300.33 Billion 2024 2032
Diagram Período de previsão
2025 –2032
Diagram Tamanho do mercado (ano base )
USD 35.66 Billion
Diagram Tamanho do mercado ( Ano de previsão)
USD 300.33 Billion
Diagram CAGR
%
Diagram Principais participantes do mercado
  • LYUDA RESEARCH LLC
  • Alphabet Inc. (Google)
  • IBM
  • Micron Technologies Inc.
  • Neural Technologies Limited

Segmentação do mercado de redes neurais de aprendizado profundo (DNNs) da Ásia-Pacífico, por componente (hardware, software e serviços), aplicação (reconhecimento de imagem, processamento de linguagem natural, reconhecimento de fala, mineração de dados), usuário final (bancos, serviços financeiros e seguros (BFSI), TI e telecomunicações, saúde, varejo, automotivo, manufatura, aeroespacial e defesa, segurança, outros) - Tendências do setor e previsão até 2032

Mercado de Redes Neurais de Aprendizado Profundo (DNNs)

Tamanho do mercado de redes neurais de aprendizado profundo (DNNs)

  • O tamanho do mercado de redes neurais de aprendizado profundo (DNNs) da Ásia-Pacífico foi avaliado em US$ 35,66 bilhões em 2024  e deve atingir  US$ 300,33 bilhões até 2032 , com um CAGR de 30,52% durante o período previsto.
  • A notável expansão do mercado é impulsionada principalmente pela adoção acelerada da inteligência artificial (IA) em diversos setores, incluindo tecnologia de casas inteligentes, saúde, automotivo e manufatura. O avanço em dispositivos conectados e na infraestrutura de IoT também contribui significativamente para a crescente demanda por DNNs em aplicações residenciais e comerciais.
  • • Além disso, a crescente necessidade por sistemas inteligentes, seguros e automatizados está consolidando as Redes Neurais de Aprendizado Profundo (Deep Learning) como uma tecnologia fundamental para análise preditiva, reconhecimento de padrões e tomada de decisões inteligentes. Esses fatores estão impulsionando a adoção generalizada das Redes Neurais de Redes (DNNs), impulsionando a rápida transformação digital em toda a região da Ásia-Pacífico.

Análise de mercado de redes neurais de aprendizado profundo (DNNs)

  • Redes Neurais de Aprendizado Profundo (DNNs) estão se tornando parte integrante da transformação digital de indústrias na região da Ásia-Pacífico, particularmente em automação residencial inteligente, sistemas de segurança e vigilância inteligente. Esses algoritmos avançados permitem que máquinas executem tarefas como reconhecimento de imagem e fala, análise preditiva e tomada de decisão autônoma com precisão semelhante à humana.
  • O mercado de DNNs da Ásia-Pacífico está testemunhando um crescimento robusto devido à rápida adoção de tecnologias inteligentes em ambientes residenciais e comerciais. Governos e empresas em países como China, Japão, Coreia do Sul e Índia estão investindo pesadamente em infraestrutura baseada em IA, acelerando assim a implantação de soluções baseadas em DNNs em áreas urbanas e semiurbanas.
  • A crescente demanda dos consumidores por soluções inteligentes, seguras e de acesso remoto também está impulsionando o mercado de DNNs. Em ecossistemas de casas inteligentes, as DNNs aprimoram recursos como reconhecimento facial para controle de acesso, integração de comandos de voz e monitoramento de padrões comportamentais, oferecendo um novo nível de automação, personalização e conveniência.
  • Além disso, a proliferação de dispositivos de IoT, as melhorias no poder computacional e a expansão da infraestrutura 5G na região da Ásia-Pacífico estão promovendo a integração perfeita das Redes de Áreas de Trabalho Remotas (DNNs) em aplicações do dia a dia. Essas tendências estão remodelando significativamente setores como saúde, varejo, finanças e transporte, consolidando as DNNs como o núcleo da economia digital de próxima geração da região.
  • A China é um dos principais impulsionadores da rápida expansão do mercado de Redes Neurais de Aprendizado Profundo (DNNs) da Ásia-Pacífico, contribuindo significativamente para o CAGR projetado da região de 33,12% de 2025 a 2032.
  • O segmento de hardware foi responsável pela maior fatia da receita de mercado em 2024, impulsionado pela crescente implantação de hardware de computação de alto desempenho (HPC), como GPUs, TPUs e FPGAs para treinamento e inferência em modelos DNN.

Escopo do Relatório e Segmentação de Mercado de Redes Neurais de Aprendizado Profundo (DNNs)

Atributos

Principais insights de mercado sobre redes neurais de aprendizado profundo (DNNs)

Segmentos abrangidos

  • Por componente (hardware, software e serviços)
  • Por aplicação (reconhecimento de imagem, processamento de linguagem natural, reconhecimento de fala, mineração de dados)
  • Por usuário final (bancos, serviços financeiros e seguros (BFSI), TI e telecomunicações, saúde, varejo, automotivo, manufatura, aeroespacial e defesa, segurança, outros)

Países abrangidos

Ásia-Pacífico

  • China
  • Japão
  • Índia
  • Coréia do Sul
  • Cingapura
  • Malásia
  • Austrália
  • Tailândia
  • Indonésia
  • Filipinas
  • Resto da Ásia-Pacífico  

Principais participantes do mercado

  • LYUDA RESEARCH, LLC (Estados Unidos)
  • Alphabet Inc. (Google) (Estados Unidos)
  • IBM (Estados Unidos)
  • Micron Technologies, Inc. (Estados Unidos)
  • Neural Technologies Limited (Reino Unido)
  • NEURODIMENSION, INC. (Estados Unidos)
  • NEURALWARE (Estados Unidos)
  • NVIDIA Corporation (Estados Unidos)
  • Skymind Inc. (Estados Unidos)
  • Samsung (Coreia do Sul)
  • Qualcomm Technologies, Inc. (Estados Unidos)
  • Intel Corporation (Estados Unidos)
  • Amazon Web Services, Inc. (Estados Unidos)
  • Microsoft (Estados Unidos)
  • GMDH LLC.(Estados Unidos)
  • Sensory Inc. (Estados Unidos)
  • Ward Systems Group, Inc. (Estados Unidos)
  • Xilinx Inc. (Estados Unidos)
  • Starmind (Suíça)

Oportunidades de mercado

  • Aplicação crescente de DNNs em assistência médica de precisão
  • Surgimento de startups de IA e centros de pesquisa acadêmica

Conjuntos de informações de dados de valor agregado

Além dos insights sobre cenários de mercado, como valor de mercado, taxa de crescimento, segmentação, cobertura geográfica e principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research também incluem análises aprofundadas de especialistas, análises de preços, análises de participação de marca, pesquisas com consumidores, análises demográficas, análises da cadeia de suprimentos, análises da cadeia de valor, visão geral de matérias-primas/consumíveis, critérios de seleção de fornecedores, análise PESTLE, análise de Porter e estrutura regulatória.

Tendências de mercado de redes neurais de aprendizado profundo (DNNs)

Acelerando a integração da IA ​​e a demanda por processamento de dados em tempo real

  • A crescente integração da inteligência artificial (IA) em diversos setores, como finanças, saúde, varejo e manufatura, está aumentando significativamente a demanda por Redes Neurais de Aprendizado Profundo (DNNs). As empresas estão cada vez mais utilizando DNNs para tarefas como análise preditiva, modelagem do comportamento do cliente, detecção de fraudes e sistemas de recomendação personalizados, que exigem interpretação de dados em tempo real e de alta precisão.
  • Por exemplo, em março de 2024, a IBM aprimorou sua plataforma de IA e dados Watsonx para suportar modelos DNN mais sofisticados para automação inteligente e engajamento do cliente no setor de BFSI. Esse avanço permite que instituições financeiras aprimorem a avaliação de risco em tempo real e aprimorem a experiência do cliente por meio de insights baseados em IA.
  • Além disso, a capacidade das DNNs de processar dados não estruturados, como imagens, fala e vídeo, em tempo real, as torna indispensáveis ​​em aplicações modernas de IA. À medida que as empresas se concentram na transformação digital, a adoção de soluções de DNN escaláveis ​​e integradas à nuvem torna-se essencial para manter a competitividade e alcançar a eficiência operacional.

Dinâmica de mercado de redes neurais de aprendizado profundo (DNNs)

Motorista

“Expansão de dispositivos inteligentes e ecossistemas de IoT”

  • A proliferação de dispositivos de Internet das Coisas (IoT) e o uso crescente de infraestrutura inteligente estão acelerando a implantação de DNNs na borda. As DNNs permitem a tomada de decisões em tempo real em dispositivos conectados, como veículos autônomos, sistemas residenciais inteligentes e configurações de automação industrial, reduzindo a latência e permitindo o processamento localizado.
  • Por exemplo, em abril de 2024, a Qualcomm Technologies, Inc. lançou uma plataforma de computação de ponta habilitada para IA integrada com modelos DNN avançados para melhorar a capacidade de resposta em aplicações de cidades inteligentes, como controle de tráfego e gerenciamento de energia.
  • Espera-se que a convergência de DNNs com IoT e computação de ponta impulsione uma demanda robusta em vários setores, especialmente em regiões com fortes investimentos em infraestrutura inteligente, como Ásia-Pacífico, EUA e partes da Europa.

Restrição/Desafio

Altos custos computacionais e consumo de energia

  • Um grande desafio enfrentado pelo mercado de Redes Neurais de Aprendizado Profundo (DNNs) é o significativo poder computacional e a energia necessária para treinar e implementar modelos complexos. Esses requisitos frequentemente exigem o uso de GPUs de alto desempenho, armazenamento de dados em larga escala e sistemas de resfriamento avançados, o que eleva os custos operacionais.
  • Isso representa uma barreira para pequenas e médias empresas (PMEs), especialmente em países em desenvolvimento, onde o acesso à infraestrutura e ao financiamento pode ser limitado. Além disso, à medida que a sustentabilidade ambiental se torna uma prioridade global, a alta pegada de carbono associada ao treinamento de grandes DNNs está atraindo a atenção de órgãos reguladores e partes interessadas.
  • Consequentemente, o setor enfrenta pressão para desenvolver algoritmos mais eficientes e hardware de IA de baixo consumo para tornar a adoção de DNN mais sustentável e acessível em todos os estratos econômicos.

Escopo de mercado de redes neurais de aprendizado profundo (DNNs)

O mercado é segmentado com base no componente, na aplicação e no usuário final.

  • Por componente

Com base nos componentes, o mercado de Redes Neurais de Aprendizado Profundo (DNNs) é segmentado em hardware, software e serviços. O segmento de hardware foi responsável pela maior fatia da receita de mercado em 2024, impulsionado pela crescente implantação de hardware de computação de alto desempenho (HPC), como GPUs, TPUs e FPGAs, para treinamento e inferência em modelos de DNN. A crescente necessidade de infraestrutura escalável em cargas de trabalho de aprendizado profundo em empresas e instituições de pesquisa impulsiona ainda mais a demanda por hardware específico para IA.

O segmento de software deverá apresentar o CAGR mais rápido entre 2025 e 2032, devido aos avanços em frameworks de aprendizado profundo (como TensorFlow, PyTorch e MXNet) e ao aumento do uso de modelos e bibliotecas pré-treinados para processamento de linguagem natural, visão computacional e sistemas de recomendação. Plataformas de IA baseadas em nuvem também estão impulsionando esse crescimento por meio do desenvolvimento e implantação simplificados de modelos.

  • Por aplicação

Com base na aplicação, o mercado de Redes Neurais de Aprendizado Profundo (DNNs) é segmentado em reconhecimento de imagem, reconhecimento de fala, processamento de linguagem natural (PLN) e mineração de dados. O segmento de reconhecimento de imagem deteve a maior participação de mercado em 2024, impulsionado pela ampla adoção em veículos autônomos, diagnósticos de saúde, reconhecimento facial e sistemas de vigilância. O uso crescente de Redes Neurais Convolucionais (CNNs) para análise de dados visuais e processamento de imagens em tempo real impulsiona significativamente o crescimento desse segmento.

Espera-se que o segmento de processamento de linguagem natural (PLN) testemunhe o crescimento mais rápido entre 2025 e 2032, impulsionado por rápidos avanços em IA generativa, assistentes virtuais, chatbots, ferramentas de análise de sentimentos e serviços de tradução com tecnologia de IA. A crescente utilidade do PNL em atendimento ao cliente, educação e automação empresarial continua a impulsionar a tração do mercado.

  • Por usuário final

Com base no usuário final, o mercado de Redes Neurais de Aprendizado Profundo (DNNs) é segmentado em bancos, serviços financeiros e seguros (BFSI), TI e telecomunicações, saúde, varejo, automotivo, manufatura, aeroespacial e defesa, segurança, entre outros. O segmento de TI e telecomunicações dominou o mercado em 2024, impulsionado pela necessidade de otimização de rede em tempo real, detecção de anomalias e manutenção preditiva. As operadoras de telecomunicações estão utilizando DNNs para melhorar a experiência do cliente e automatizar a prestação de serviços por meio de agentes virtuais inteligentes e análise de dados.

Prevê-se que o segmento de saúde cresça com a CAGR mais rápida entre 2025 e 2032, impulsionado pela crescente implantação de redes de área de dados (DNNs) em imagens médicas, descoberta de medicamentos, diagnósticos e avaliação de risco de pacientes. A capacidade dos modelos de aprendizado profundo de processar grandes volumes de dados médicos não estruturados está revolucionando a medicina personalizada e acelerando os fluxos de trabalho de P&D.

Análise regional do mercado de redes neurais de aprendizado profundo (DNNs)

  • A China é um dos principais impulsionadores da rápida expansão do mercado de Redes Neurais de Aprendizado Profundo (DNNs) da Ásia-Pacífico, contribuindo significativamente para o CAGR projetado da região de 33,12% de 2025 a 2032.
  • O crescimento do país é impulsionado por investimentos governamentais substanciais em inteligência artificial por meio de estratégias nacionais como o "Plano de Desenvolvimento de Inteligência Artificial de Próxima Geração", promovendo ampla integração de DNNs em todos os setores.
  • A enorme base de consumidores e as iniciativas de cidades inteligentes da China estão incentivando a proliferação de soluções baseadas em DNN em reconhecimento facial, vigilância inteligente, veículos autônomos e experiências personalizadas de comércio eletrônico.
  • Além disso, grandes players nacionais como Baidu, Alibaba, Tencent e Huawei estão desenvolvendo ativamente chipsets de IA, plataformas de nuvem e estruturas de aprendizado profundo, facilitando a implantação mais rápida e localizada de aplicativos DNN.
  • O ecossistema de fabricação de eletrônicos de baixo custo do país, combinado com a ampla implementação da infraestrutura 5G, também está reduzindo as barreiras de entrada e permitindo a adoção de sistemas baseados em DNN em mercados urbanos e rurais.
  • À medida que a China se posiciona como uma superpotência global de IA, o mercado local de Redes Neurais de Aprendizado Profundo (DNNs) está se beneficiando de inovação agressiva, estruturas políticas favoráveis ​​e colaborações crescentes entre empresas e governos, consolidando ainda mais sua liderança na região da Ásia-Pacífico.

Visão do mercado de redes neurais de aprendizado profundo (DNNs) do Japão

O mercado japonês de Redes Neurais de Aprendizado Profundo (DNNs) está testemunhando um crescimento substancial, impulsionado por seu cenário tecnológico avançado, pela crescente demanda por automação e por uma sociedade altamente urbanizada. O forte foco do país em robótica e sistemas baseados em IA complementa a crescente implantação de DNNs em análises em tempo real, diagnósticos de saúde, sistemas automotivos e aplicações para casas inteligentes. O envelhecimento da população japonesa também está criando oportunidades para tecnologias assistivas baseadas em IA, que se baseiam em algoritmos de DNN para aprimorar a segurança, a conveniência e a qualidade do atendimento.

Visão do mercado de redes neurais de aprendizado profundo (DNNs) da Índia

O mercado indiano de Redes Neurais de Aprendizado Profundo (DNNs) deverá crescer rapidamente devido à expansão do ecossistema digital, ao ambiente de startups de tecnologia em expansão e ao crescente foco governamental em IA por meio de iniciativas como a Estratégia Nacional de IA e a Índia Digital. À medida que setores como saúde, BFSI e comércio eletrônico se digitalizam rapidamente, a demanda por ferramentas baseadas em DNNs para detecção de fraudes, análise de clientes e recomendações personalizadas está aumentando. Além disso, o mercado indiano, sensível a custos, está se beneficiando do surgimento de estruturas de DNNs baseadas em nuvem e de código aberto, promovendo ampla experimentação e adoção.

Participação de mercado de redes neurais de aprendizado profundo (DNNs)

O setor de Redes Neurais de Aprendizado Profundo (DNNs) é liderado principalmente por empresas bem estabelecidas, incluindo:

  • LYUDA RESEARCH, LLC (Estados Unidos)
  • Alphabet Inc. (Google) (Estados Unidos)
  • IBM (Estados Unidos)
  • Micron Technologies, Inc. (Estados Unidos)
  • Neural Technologies Limited (Reino Unido)
  • NEURODIMENSION, INC. (Estados Unidos)
  • NEURALWARE (Estados Unidos)
  • NVIDIA Corporation (Estados Unidos)
  • Skymind Inc. (Estados Unidos)
  • Samsung (Coreia do Sul)
  • Qualcomm Technologies, Inc. (Estados Unidos)
  • Intel Corporation (Estados Unidos)
  • Amazon Web Services, Inc. (Estados Unidos)
  • Microsoft (Estados Unidos)
  • GMDH LLC.(Estados Unidos)
  • Sensory Inc. (Estados Unidos)
  • Ward Systems Group, Inc. (Estados Unidos)
  • Xilinx Inc. (Estados Unidos)
  • Starmind (Suíça)

Últimos desenvolvimentos no mercado de redes neurais de aprendizado profundo (DNNs) da Ásia-Pacífico

  • Em fevereiro de 2025, a NDRC e as empresas de semicondutores da China revelaram reformas regulatórias históricas para apoiar modelos DNN de código aberto e domínio específico. Esta iniciativa visa democratizar o desenvolvimento avançado de IA, permitindo treinamento em configurações de GPU acessíveis, promovendo a inovação local e reduzindo a dependência de infraestrutura estrangeira.
  • Em 2024, a Huawei reformulou completamente sua estrutura de aprendizado profundo de código aberto MindSpore (v2.3), otimizada para NPUs baseadas em ARM em chips HarmonyOS e Ascend. Esta atualização reforça o desempenho de DNN em dispositivos como smartphones, dispositivos IoT e plataformas de computação de ponta na região da Ásia-Pacífico.
  • Em fevereiro de 2025, a revista Nature relatou uma competição acelerada entre os modelos de IA chineses e ocidentais, com as redes de computadores digitais de pequena escala chinesas reduzindo a diferença de desempenho. Isso reflete o ecossistema em desenvolvimento da região Ásia-Pacífico (APAC) de modelos de redes neurais de alta qualidade e desenvolvidos localmente.
  • No início de 2025, a Origin Quantum firmou uma parceria com a Phoenix para alavancar seus chips quânticos supercondutores “Wukong” no treinamento de redes neurais digitais (DNN). Essa colaboração de ponta na China demonstra o interesse crescente na integração da computação quântica com fluxos de trabalho de redes neurais.
  • Em junho de 2025, a conferência MLANN 2025 foi realizada em Xiamen, China, reunindo pesquisadores líderes e profissionais da indústria em aprendizado de máquina e redes neurais. O evento apresentou novas arquiteturas, técnicas de otimização e aplicações reais de DNN em saúde, robótica e manufatura inteligente.


SKU-

Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo

  • Painel interativo de análise de dados
  • Painel de análise da empresa para oportunidades de elevado potencial de crescimento
  • Acesso de analista de pesquisa para personalização e customização. consultas
  • Análise da concorrência com painel interativo
  • Últimas notícias, atualizações e atualizações Análise de tendências
  • Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Pedido de demonstração

Metodologia de Investigação

A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados ​​e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.

A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis ​​de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.

Personalização disponível

A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

Perguntas frequentes

O mercado é segmentado com base em Segmentação do mercado de redes neurais de aprendizado profundo (DNNs) da Ásia-Pacífico, por componente (hardware, software e serviços), aplicação (reconhecimento de imagem, processamento de linguagem natural, reconhecimento de fala, mineração de dados), usuário final (bancos, serviços financeiros e seguros (BFSI), TI e telecomunicações, saúde, varejo, automotivo, manufatura, aeroespacial e defesa, segurança, outros) - Tendências do setor e previsão até 2032 .
O tamanho do Relatório de Análise de Tamanho, Participação e Tendências do Mercado foi avaliado em USD 35.66 USD Billion no ano de 2024.
O Relatório de Análise de Tamanho, Participação e Tendências do Mercado está projetado para crescer a um CAGR de 30.52% durante o período de previsão de 2025 a 2032.
Os principais players do mercado incluem LYUDA RESEARCH LLC, Alphabet Inc. (Google), IBM, Micron Technologies Inc., Neural Technologies Limited.
Testimonial