Global Ai Agriculture Market
Tamanho do mercado em biliões de dólares
CAGR :
%
USD
2.08 Billion
USD
10.49 Billion
2025
2032
| 2026 –2032 | |
| USD 2.08 Billion | |
| USD 10.49 Billion | |
|
|
|
|
Mercado global de Inteligência Artificial na Agricultura, por oferta (hardware, software e serviços), tecnologia (aprendizado de máquina (ML), visão computacional, processamento de linguagem natural (NLP), robótica e automação e outras), aplicação (agricultura de precisão, monitoramento de gado, previsão do tempo, manejo do solo, monitoramento da saúde das culturas, otimização da cadeia de suprimentos e outras), modo de implantação (local e nuvem), usuário final (fazendas, empresas de tecnologia agrícola, empresas de agroquímicos, institutos de pesquisa e outros) - Tendências e previsões do setor até 2032
Tamanho do mercado de inteligência artificial na agricultura
A Data Bridge Market Research prevê que o mercado global de inteligência artificial na agricultura atingirá um valor de US$ 10,49 bilhões até 2032 , com US$ 2,08 bilhões em 2025, a uma taxa de crescimento anual composta (CAGR) de 22,39% durante o período de previsão. O relatório sobre o mercado global de inteligência artificial na agricultura também abrange de forma abrangente análises de preços, patentes e avanços tecnológicos.
Análise de mercado de inteligência artificial na agricultura
O mercado global de inteligência artificial na agricultura está preparado para um crescimento substancial, impulsionado por diversos fatores-chave. O principal deles é a significativa redução de custos oferecida pelas soluções de Gestão de Despesas de Telecomunicações (TEM), o que atrai empresas que buscam otimizar seus gastos com telecomunicações. A crescente adoção de telefones celulares e outros dispositivos portáteis impulsiona ainda mais a demanda por soluções eficazes de gestão de despesas. A TEM proporciona transparência crucial nos custos, permitindo que as organizações compreendam e controlem melhor seus gastos com telecomunicações. Além disso, o crescimento da Internet das Coisas (IoT) e de aplicativos baseados em nuvem levou a uma maior demanda por soluções de TEM, visto que essas tecnologias introduzem novas complexidades na gestão de despesas de telecomunicações. No entanto, o mercado enfrenta restrições, principalmente o desafio de aderir às diferentes regulamentações e requisitos de conformidade de telecomunicações em diferentes regiões, o que complica a implementação e a gestão. Apesar desses desafios, existem consideráveis oportunidades de crescimento. A tecnologia de automação para gestão de despesas de telecomunicações representa uma oportunidade significativa, assim como a terceirização de soluções de TEM, que pode oferecer eficiência de custos e expertise.
|
Métrica do relatório |
Detalhes |
|
Período de previsão |
2025 a 2032 |
|
Ano Base |
2024 |
|
Anos históricos |
2023 (2018-2022) |
|
Unidades Quantitativas |
Receita em bilhões de dólares americanos |
|
Segmentos abrangidos |
Por meio da oferta (hardware, software e serviços), tecnologia [aprendizado de máquina (ML), visão computacional , processamento de linguagem natural (NLP) , robótica e automação e outras], aplicação ( agricultura de precisão , monitoramento de gado , previsão do tempo, manejo do solo, monitoramento da saúde das culturas, otimização da cadeia de suprimentos e outras), modo de implantação (local e nuvem) e usuário final (fazendas, empresas de agrotecnologia, empresas de agroquímicos, institutos de pesquisa e outros). |
|
Países abrangidos |
Estados Unidos, Canadá e México, Alemanha, França, Reino Unido, Países Baixos, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, restante da Europa, China, Japão, Índia, Coreia do Sul, Singapura, Malásia, Austrália, Tailândia, Indonésia, Filipinas, restante da Ásia-Pacífico, Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, restante do Oriente Médio e África, Brasil, Argentina e restante da América do Sul |
|
Participantes do mercado abrangidos |
Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva e Bowery Farming Inc., entre outras. |
Definição de mercado
O mercado global de inteligência artificial na agricultura abrange tecnologias e soluções que utilizam IA para aprimorar as práticas agrícolas. Isso inclui aprendizado de máquina, visão computacional e robótica para otimizar o manejo de culturas, a agricultura de precisão e a alocação de recursos. O mercado abrange ferramentas baseadas em IA para análise de dados, máquinas autônomas e análises preditivas, visando aumentar a eficiência, a produtividade e a sustentabilidade nas operações agrícolas. Ele atende a uma ampla gama de aplicações, incluindo monitoramento de culturas, manejo do solo, controle de pragas e otimização da cadeia de suprimentos.
Dinâmica do mercado global de inteligência artificial na agricultura
Motoristas
- Aumentando a precisão do monitoramento de culturas e da previsão de rendimento
A Inteligência Artificial (IA) na agricultura aprimora o monitoramento das culturas e a precisão da previsão de rendimento. Ao utilizar algoritmos de aprendizado de máquina e análise de dados, a IA consegue analisar grandes quantidades de dados provenientes de diversas fontes, como imagens de satélite, sensores de solo e previsões meteorológicas. Isso permite que os agricultores monitorem a saúde das plantações, identifiquem infestações de pragas e prevejam os rendimentos com maior precisão. Consequentemente, os insights obtidos por meio da IA ajudam a otimizar a alocação de recursos, aprimorar a tomada de decisões e aumentar a produtividade agrícola geral.
Por exemplo,
- Em julho de 2021, de acordo com uma publicação no blog da Gramener, a previsão da produtividade agrícola utilizando aprendizado de máquina e inteligência artificial tornou-se cada vez mais relevante. O artigo discutiu como a análise espacial e os dispositivos IoT aprimoraram o monitoramento das culturas e a previsão da produtividade. Modelos de IA e aprendizado de máquina que utilizam imagens de satélite e dados climáticos melhoraram a precisão na previsão da produtividade agrícola, avaliando as condições do solo e os padrões climáticos. O uso dessas tecnologias beneficiou os produtores agrícolas, permitindo o monitoramento remoto, o mapeamento eficiente de recursos e a análise preditiva, o que facilitou uma melhor tomada de decisão e planejamento. Esse avanço contribui para um manejo mais eficaz das culturas.
Aumento da implementação de melhores técnicas agrícolas com IA
Aumentar a implementação de melhores técnicas agrícolas com IA envolve otimizar o uso de insumos como água, fertilizantes e pesticidas. Soluções baseadas em IA permitem o gerenciamento preciso desses recursos, garantindo que sejam aplicados de forma eficiente e somente onde necessário. Isso reduz custos e aumenta a produtividade, minimizando o desperdício e maximizando a produção agrícola, resultando, em última análise, em práticas agrícolas mais sustentáveis e rentáveis.
Por exemplo,
- Em janeiro de 2024, de acordo com um artigo publicado pela Intellias, a IA impactou significativamente a agricultura ao aprimorar as técnicas agrícolas. A IA possibilitou o gerenciamento preciso de água, fertilizantes e pesticidas, reduzindo custos e aumentando a produtividade. Sistemas automatizados otimizaram a irrigação e a aplicação de fertilizantes, resultando em melhores colheitas e maior eficiência no uso de recursos. Esses avanços apoiaram práticas agrícolas mais sustentáveis e rentáveis, beneficiando os agricultores por meio do aumento da produtividade e da redução de custos.
Oportunidade
- Tecnologia de automação para gestão de despesas em telecomunicações
A tecnologia de automação para Gestão de Despesas de Telecomunicações (TEM) simplifica processos, aumenta a precisão e reduz custos. Ao utilizar ferramentas e softwares automatizados, operadoras de telecomunicações e empresas gerenciam faturas, rastreiam despesas e analisam padrões de uso em tempo real com eficiência. Essa tecnologia melhora a transparência e o controle, além de permitir a tomada de decisões proativas com base em insights orientados por dados. Ademais, a automação minimiza erros humanos, garante a conformidade com as normas regulatórias e otimiza a alocação de recursos, transformando a TEM em um ativo estratégico.
Por exemplo,
- Em julho de 2022, de acordo com um artigo publicado pela Brightfin, a transição para um sistema automatizado de gestão de despesas de telecomunicações trouxe diversos benefícios. Primeiramente, reduziu significativamente o número de chamados de suporte técnico relacionados a problemas de telecomunicações, liberando recursos de TI. Essa automação também economizou tempo dos funcionários, automatizando tarefas rotineiras como processamento de faturas e gestão de despesas, permitindo que se concentrassem em projetos mais críticos. Além disso, a automação reduziu erros humanos, garantindo consistência e eficiência nas operações. Por fim, o sistema forneceu insights valiosos a partir de dados e ajudou a reduzir custos por meio da otimização dos processos de gestão de telecomunicações.
- Segundo um artigo publicado pela PAG, a automação está transformando a gestão de despesas de telecomunicações. Ela simplificou tarefas como o monitoramento do uso e a conciliação de faturas, sendo particularmente benéfica para hospitais e organizações de saúde. As soluções automatizadas reduzem o tempo e o esforço gastos em auditorias, identificando economias significativas por meio da otimização do uso de equipamentos e contratos de telecomunicações.
Restrição/Desafio
- Preocupações persistentes com a privacidade e segurança dos dados
Apesar dos avanços promissores da IA na agricultura, as persistentes preocupações com a privacidade e a segurança dos dados ofuscam esses benefícios. À medida que os sistemas de IA coletam e analisam grandes quantidades de dados agrícolas sensíveis, incluindo produtividade das colheitas, condições do solo e operações agrícolas, eles expõem os agricultores a riscos significativos. O acesso não autorizado e as violações desses dados podem levar a consequências graves, incluindo a perda de propriedade intelectual, a manipulação de informações sensíveis e o aumento da vulnerabilidade a ataques cibernéticos. Essas questões de segurança minam a confiança nas tecnologias de IA e dificultam sua adoção em larga escala.
Por exemplo
- Em agosto de 2023, de acordo com uma publicação no blog da ShardSecure, o setor agrícola enfrentava crescentes preocupações com a privacidade e a segurança de dados. Ataques cibernéticos, como o ataque de ransomware sofrido pela JBS Foods em 2021, evidenciaram a vulnerabilidade do setor. Com a agricultura de precisão gerando grandes volumes de dados e o crescimento dos dispositivos IoT, os riscos se intensificaram. O recém-criado Centro de Análise e Compartilhamento de Informações sobre Alimentos e Agricultura (Food and Agriculture Information Sharing and Analysis Center) visava solucionar esses problemas. No entanto, muitas empresas do agronegócio ainda enfrentam dificuldades com a segurança de dados, a conformidade com as normas e a proteção contra ameaças relacionadas à inteligência artificial (IA). Medidas de segurança aprimoradas podem beneficiar as empresas, protegendo dados sensíveis e reduzindo o risco de interrupções dispendiosas.
Impacto da Covid-19 no mercado global de inteligência artificial na agricultura
O cenário pós-COVID-19 impactou significativamente o mercado global. No entanto, com a recuperação gradual da economia, há um foco crescente no desenvolvimento de infraestrutura, o que leva a uma retomada dos projetos. O setor está se adaptando às novas normas, com protocolos de segurança aprimorados e tecnologias digitais para otimizar os processos. A demanda por serviços de telecomunicações está se recuperando à medida que os projetos de construção ganham novo impulso, apresentando oportunidades para que os participantes do mercado contribuam para o crescimento da infraestrutura do país no período pós-pandemia.
Desenvolvimentos recentes
Por exemplo,
- Em junho de 2024, a TeeJet Technologies lançou o medidor de vazão eletromagnético FM9380-F75, que apresenta um design inovador sem partes móveis para operação livre de manutenção, desempenho otimizado em diferentes condições de fluidos e ampla compatibilidade de aplicações, beneficiando seu portfólio de produtos para agricultura de precisão e aumentando a eficiência operacional.
- Em novembro de 2023, a Kubota Corporation apresentou o Agri Robo KVT na Agritechnica, marcando um avanço significativo na tecnologia de agricultura autônoma. Este trator aprimorado solucionou a escassez de mão de obra, aumentou a segurança e promoveu uma agricultura mais eficiente, beneficiando a Kubota com maior competitividade no mercado e liderança em inovação.
Escopo do mercado global de inteligência artificial na agricultura
O mercado de inteligência artificial na agricultura está segmentado em cinco segmentos principais, com base na oferta, tecnologia, aplicação, modo de implantação e usuário final. O crescimento nesses segmentos ajudará você a analisar os segmentos de crescimento mais lento do setor e fornecerá aos usuários uma visão geral valiosa do mercado e insights que os ajudarão a tomar decisões estratégicas para identificar as principais aplicações de mercado.
Este relatório de pesquisa categoriza o mercado global de inteligência artificial na agricultura nos seguintes segmentos:
OFERTA
- FERRAGENS
- SOFTWARE
- SERVIÇOS
Com base na oferta, o mercado é segmentado em hardware, software e serviços.
TECNOLOGIA
- APRENDIZADO DE MÁQUINA (ML)
- VISÃO COMPUTACIONAL
- PROCESSAMENTO DE LINGUAGEM NATURAL (PLN)
- ROBÓTICA E AUTOMAÇÃO
- OUTROS
Com base na tecnologia, o mercado é segmentado em aprendizado de máquina (ML), visão computacional, processamento de linguagem natural (NLP), robótica e automação, entre outros.
APLICATIVO
- AGRICULTURA DE PRECISÃO
- MONITORAMENTO DE GADO
- PREVISÃO DO TEMPO
- MANEJO DO SOLO
- MONITORAMENTO DA SAÚDE DAS CULTURAS
- Otimização da cadeia de suprimentos
- OUTROS
Com base na aplicação, o mercado é segmentado em agricultura de precisão, monitoramento de gado, previsão do tempo, manejo do solo, monitoramento da saúde das culturas, otimização da cadeia de suprimentos e outros.
MODO DE IMPLANTAÇÃO
- NUVEM
- NO LOCAL
Com base no modo de implantação, o mercado é segmentado em nuvem e local (on-premise).
USUÁRIO FINAL
- FAZENDAS
- EMPRESAS DE AGROTECNOLOGIA
- EMPRESAS AGROQUÍMICAS
- INSTITUTOS DE PESQUISA
- OUTROS
Com base no usuário final, o mercado é segmentado em fazendas, empresas de tecnologia agrícola, empresas de agroquímicos, institutos de pesquisa e outros.
Mercado global de inteligência artificial na agricultura
O mercado global de inteligência artificial na agricultura está segmentado em cinco segmentos principais, com base na oferta, tecnologia, aplicação, modo de implantação e usuário final. Os países abrangidos pelo mercado global de Internet das Coisas (IoT) na agricultura são: Estados Unidos, Canadá e México na América do Norte; Alemanha, França, Reino Unido, Holanda, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia e o restante da Europa; China, Japão, Índia, Coreia do Sul, Singapura, Malásia, Austrália, Tailândia, Indonésia, Filipinas e o restante da Ásia-Pacífico; Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel e o restante do Oriente Médio e África; Brasil, Argentina e o restante da América do Sul.
Na América do Norte, os EUA dominam como o país com o maior número de fornecedores de componentes de hardware. Já na Europa, o Reino Unido se destaca devido ao seu avanço tecnológico em todo o país. Na região Ásia-Pacífico, a China é o país líder, com a maior concentração de fabricantes de componentes de hardware da região.
A seção do relatório dedicada a cada país também fornece informações sobre os fatores individuais que impactam o mercado e as mudanças na regulamentação que afetam as tendências atuais e futuras. Dados como análises da cadeia de valor a montante e a jusante, tendências tecnológicas, análise das cinco forças de Porter e estudos de caso são alguns dos indicadores utilizados para prever o cenário de mercado em cada país. Além disso, a presença e a disponibilidade de marcas da região Ásia-Pacífico e os desafios que enfrentam devido à concorrência, seja ela intensa ou escassa, de marcas locais e nacionais, o impacto das tarifas domésticas e as rotas comerciais são considerados na análise das projeções para cada país.
Análise do cenário competitivo e da participação de mercado global de inteligência artificial na agricultura
O panorama competitivo do mercado global de inteligência artificial na agricultura fornece detalhes sobre os concorrentes. Essas informações incluem visão geral da empresa, dados financeiros, receita gerada, potencial de mercado, investimento em pesquisa e desenvolvimento, iniciativas em novos mercados, presença na região Ásia-Pacífico e Sudeste Asiático, locais e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa, lançamento de produtos, amplitude e profundidade do portfólio de produtos e domínio de aplicações. Os dados acima referem-se apenas ao foco das empresas no mercado global de inteligência artificial na agricultura. Alguns dos principais players que atuam nesse mercado são: Open Text Corporation, OpenAI, Valmont Industries, Inc., AGCO Corporation e IBM, entre outros.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

