Global Ai Agriculture Market
Tamanho do mercado em biliões de dólares
CAGR :
%
USD
2.08 Billion
USD
10.49 Billion
2025
2032
| 2026 –2032 | |
| USD 2.08 Billion | |
| USD 10.49 Billion | |
|
|
|
|
Mercado global de inteligência artificial na agricultura, oferecendo (hardware, software e serviços), tecnologia [aprendizagem automática (ML), visão por computador, processamento de linguagem natural (PLN), robótica e automação e outros], aplicação (agricultura de precisão, pecuária Monitorização, Previsão do Tempo, Gestão do Solo, Monitorização da Saúde das Culturas, Otimização da Cadeia de Abastecimento e Outros), Modo de Implantação (On-Premise e Cloud), Utilizador Final (Quintas, Empresas de Agrotecnologia, Empresas Agroquímicas, Institutos de Investigação e Outros) - Tendências e previsões do sector até 2031.
Análise e dimensão do mercado de inteligência artificial na agricultura
O mercado global de inteligência artificial na agricultura está pronto para um crescimento substancial, impulsionado por vários fatores importantes. O principal motivador é a redução significativa de custos que as soluções TEM oferecem, o que atrai as empresas que procuram otimizar os seus gastos em telecomunicações. A crescente adoção de telemóveis e outros dispositivos portáteis alimenta ainda mais a procura por soluções eficazes de gestão de despesas. O TEM proporciona transparência crítica das despesas, permitindo às organizações compreender e controlar melhor os seus gastos com telecomunicações. Além disso, o surgimento da IoT e das aplicações baseadas na cloud levou a uma maior procura por soluções TEM, uma vez que estas tecnologias introduzem novas complexidades na gestão de despesas de telecomunicações. No entanto, o mercado enfrenta restrições, principalmente o desafio de aderir a diferentes regulamentos de telecomunicações e requisitos de conformidade em diferentes regiões, o que complica a implementação e a gestão. Apesar destes desafios, existem oportunidades consideráveis de crescimento. A tecnologia de automatização para a gestão de despesas de telecomunicações apresenta uma oportunidade significativa, assim como a externalização de soluções TEM, que podem oferecer eficiência de custos e experiência.
A Data Bridge Market Research analisa que o mercado global de inteligência artificial na agricultura deverá atingir um valor de 8,5 mil milhões de dólares até 2031, com um CAGR de 22,4% durante o período previsto. O relatório do mercado global de inteligência artificial na agricultura também abrange de forma abrangente a análise de preços, a análise de patentes e os avanços tecnológicos.
|
Métrica de Reporte |
Detalhes |
|
Período de previsão |
2024 a 2031 |
|
Ano base |
2023 |
|
Anos históricos |
2022 |
|
Unidades quantitativas |
Receita em biliões de dólares americanos |
|
Segmentos abrangidos |
Ao oferecer (hardware, software e serviços), tecnologia [aprendizagem automática (ML), visão por computador , processamento de linguagem natural (PLN) , robótica e automação e outros), aplicação ( agricultura de precisão , monitorização de gado , previsão do tempo , gestão do solo , Monitorização da Saúde das Culturas, Otimização da Cadeia de Abastecimento e Outros), Modo de Implantação (On-Premise e Cloud), Utilizador Final (Quintas, Empresas de Agrotecnologia, Empresas Agroquímicas, Institutos de Investigação, Outros) |
|
Países abrangidos |
EUA, Canadá e México, Alemanha, França, Reino Unido, Países Baixos, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, resto da Europa, China, Japão, Índia, Coreia do Sul, Singapura, Malásia, Austrália, Tailândia, Indonésia , Filipinas , resto da Ásia-Pacífico, Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, resto do Médio Oriente e África, Brasil, Argentina e resto da América do Sul |
|
Atores do mercado abrangidos |
Português Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva e Bowery Farming Inc. entre outros |
Definição de Mercado
O mercado global de inteligência artificial na agricultura abrange tecnologias e soluções que aproveitam a IA para melhorar as práticas agrícolas. Isto inclui aprendizagem automática, visão computacional e robótica para otimizar a gestão de culturas, agricultura de precisão e alocação de recursos. O mercado abrange ferramentas baseadas em IA para análise de dados, máquinas autónomas e análises preditivas destinadas a aumentar a eficiência, o rendimento e a sustentabilidade nas operações agrícolas. Serve uma vasta gama de aplicações, incluindo monitorização de culturas, gestão de solos, controlo de pragas e otimização da cadeia de abastecimento.
Dinâmica do mercado global de inteligência artificial na agricultura
Esta secção trata da compreensão dos impulsionadores, vantagens, oportunidades, restrições e desafios do mercado. Tudo isto é discutido em detalhe abaixo:
Motoristas
- Aumento da precisão da monitorização das culturas e da previsão de rendimento
A inteligência artificial (IA) na agricultura melhora a monitorização das culturas e a precisão da previsão do rendimento. Ao aproveitar os algoritmos de aprendizagem automática e análise de dados, a IA pode analisar grandes quantidades de dados de várias fontes, como imagens de satélite, sensores de solo e previsões meteorológicas. Isto permite aos agricultores monitorizar a saúde das culturas, identificar infestações de pragas e prever os rendimentos com maior precisão. Consequentemente, os insights baseados em IA ajudam a otimizar a alocação de recursos, a melhorar a tomada de decisões e a aumentar a produtividade agrícola global.
Por exemplo,
- Em julho de 2021, de acordo com o blogue publicado pela Gramener, a previsão do rendimento das culturas utilizando a aprendizagem automática e a IA tornou-se cada vez mais relevante. O artigo discutiu como a análise espacial e os dispositivos IoT melhoraram a monitorização das culturas e a previsão da produtividade. Os modelos de IA e de aprendizagem automática que utilizam imagens de satélite e dados climáticos melhoraram a precisão na previsão dos rendimentos das culturas ao avaliar as condições do solo e os padrões climáticos. A utilização destas tecnologias beneficiou os produtores agrícolas ao permitir a monitorização remota, o mapeamento eficiente dos recursos e a análise preditiva, o que facilitou uma melhor tomada de decisão e planeamento. Este avanço permite uma gestão mais eficaz das culturas
Aumento da implementação de melhores técnicas agrícolas com IA
Aumentar a implementação de melhores técnicas agrícolas com IA passa por otimizar a utilização de inputs como água, fertilizantes e pesticidas. As soluções baseadas em IA permitem a gestão precisa destes recursos, garantindo que são aplicados de forma eficiente e apenas onde necessário. Isto reduz os custos e aumenta a produtividade ao minimizar o desperdício e maximizar o rendimento das culturas, levando a práticas agrícolas mais sustentáveis e rentáveis.
Por exemplo,
- Em janeiro de 2024, de acordo com um artigo publicado pela Intellias, a IA impactou significativamente a agricultura ao melhorar as técnicas de cultivo. A IA permitiu uma gestão precisa da água, fertilizantes e pesticidas, reduzindo custos e aumentando a produtividade. Os sistemas automatizados otimizaram a irrigação e a aplicação de fertilizantes, resultando em melhores rendimentos das culturas e eficiência dos recursos. Estes avanços apoiaram práticas agrícolas mais sustentáveis e rentáveis, beneficiando, em última análise, os agricultores através de melhores rendimentos e poupanças de custos.
Oportunidade
- Tecnologia de automação para gestão de despesas de telecomunicações
A tecnologia de automatização para a gestão de despesas de telecomunicações (TEM) simplifica os processos, aumenta a precisão e reduz os custos. Ao tirar partido de ferramentas e software automatizados, os operadores de telecomunicações e as empresas gerem faturas, acompanham despesas e analisam padrões de utilização em tempo real de forma eficiente. Esta tecnologia melhora a transparência, o controlo e permite a tomada de decisões proativas com base em insights baseados em dados. Além disso, a automatização minimiza o erro humano, garante a conformidade com os requisitos regulamentares e otimiza a alocação de recursos, transformando o TEM num ativo estratégico
Por exemplo,
- Em julho de 2022, de acordo com um artigo publicado pela Brightfin, a mudança para um sistema automatizado de gestão de despesas de telecomunicações trouxe vários benefícios. Em primeiro lugar, reduziu significativamente o número de tickets de helpdesk relacionados com problemas de telecomunicações, libertando recursos de TI. Esta automatização também poupou tempo aos colaboradores ao lidar com tarefas rotineiras como o processamento de faturas e a gestão de despesas, permitindo-lhes concentrar-se em projetos mais críticos. Além disso, a automação reduziu os erros humanos, garantindo consistência e eficiência nas operações. Por fim, o sistema forneceu informações valiosas sobre os dados e ajudou a reduzir os custos através de processos simplificados de gestão de telecomunicações
- De acordo com um artigo publicado pelo PAG, a automatização está a transformar a gestão das despesas de telecomunicações. Simplificou tarefas como a monitorização da utilização e a reconciliação de faturas, o que é particularmente benéfico para hospitais e organizações de saúde. As soluções automatizadas reduzem o tempo e o esforço gastos em auditorias, identificando poupanças significativas através da otimização da utilização de equipamentos e contratos de telecomunicações
Restrição/Desafio
- Preocupações persistentes com a privacidade e segurança dos dados
Apesar dos avanços promissores na IA para a agricultura, as preocupações persistentes com a privacidade e a segurança dos dados ofuscam estes benefícios. À medida que os sistemas de IA recolhem e analisam grandes quantidades de dados agrícolas confidenciais, incluindo rendimentos das culturas, condições do solo e operações agrícolas, expõem os agricultores a riscos significativos. O acesso não autorizado e as violações destes dados podem levar a consequências graves, incluindo a perda de propriedade intelectual, a manipulação de informações confidenciais e a maior vulnerabilidade a ataques cibernéticos. Estes problemas de segurança minam a confiança nas tecnologias de IA e dificultam a sua adoção generalizada.
Por exemplo
- Em agosto de 2023, de acordo com o blogue publicado pela ShardSecure, a agricultura enfrentou crescentes preocupações com a privacidade e a segurança dos dados. Os ciberataques, como o ataque de ransomware de 2021 à JBS Foods, evidenciaram a vulnerabilidade do setor. Com a agricultura de precisão a gerar grandes quantidades de dados e o aparecimento de dispositivos IoT, os riscos aumentaram. O recém-criado Centro de Análise e Partilha de Informação sobre Alimentação e Agricultura teve como objectivo abordar estas questões. No entanto, muitos agronegócios ainda enfrentam dificuldades com a segurança de dados, conformidade e proteção contra ameaças relacionadas com a IA. As medidas de segurança melhoradas podem beneficiar as empresas ao proteger dados confidenciais e reduzir o risco de interrupções dispendiosas
Impacto pós-Covid-19 no mercado global de inteligência artificial na agricultura
O cenário pós-COVID-19 impactou significativamente o mercado global. No entanto, à medida que a economia recupera gradualmente, há um maior foco no desenvolvimento de infra-estruturas, levando a um ressurgimento de projectos. O setor está a adaptar-se às novas normas com protocolos de segurança melhorados e tecnologias digitais para agilizar os processos. A procura de serviços de telecomunicações está a recuperar à medida que os projectos de construção ganham força, apresentando oportunidades para os participantes no mercado contribuírem para o crescimento das infra-estruturas do país na era pós-pandemia.
Desenvolvimentos recentes
Por exemplo,
- Em junho de 2024, a TeeJet Technologies lançou o caudalímetro eletromagnético FM9380-F75, apresentando um design inovador sem peças móveis para um funcionamento sem manutenção, um desempenho otimizado em condições de fluido e uma ampla compatibilidade de aplicações, beneficiando o seu portfólio de produtos de agricultura de precisão e aumentando a eficiência operacional
- Em novembro de 2023, a Kubota Corporation apresentou o Agri Robo KVT na Agritechnica, marcando um avanço significativo na tecnologia de agricultura autónoma. Este trator melhorado resolveu a escassez de mão-de-obra, aumentou a segurança e promoveu uma agricultura eficiente, beneficiando a Kubota com uma maior competitividade de mercado e liderança na inovação
Âmbito do mercado global de inteligência artificial na agricultura
O mercado da inteligência artificial na agricultura está segmentado em cinco segmentos notáveis, que se baseiam na oferta, tecnologia, aplicação, modo de implementação e utilizador final. O crescimento entre estes segmentos irá ajudá-lo a analisar segmentos de baixo crescimento nos setores e fornecerá aos utilizadores uma visão geral e informações valiosas do mercado para os ajudar a tomar decisões estratégicas para identificar as principais aplicações do mercado.
Este relatório de investigação categoriza o mercado global de inteligência artificial na agricultura nos seguintes segmentos:
OFERTA
- HARDWARE
- SOFTWARE
- SERVIÇOS
Com base na oferta, o mercado está segmentado em hardware, software e serviços.
TECNOLOGIA
- APRENDIZAGEM DE MÁQUINA (ML)
- VISÃO COMPUTADORIZADA
- PROCESSAMENTO DE LINGUAGEM NATURAL (PLN)
- ROBÓTICA E AUTOMAÇÃO
- OUTROS
Com base na tecnologia, o mercado está segmentado em aprendizagem automática (ML), visão computacional, processamento de linguagem natural (PLN), robótica e automação e outros.
APLICAÇÃO
- AGRICULTURA DE PRECISÃO
- MONITORIZAÇÃO DE GADO
- PREVISÃO DO TEMPO
- GESTÃO DO SOLO
- MONITORIZAÇÃO DA SAÚDE DAS CULTURAS
- OTIMIZAÇÃO DA CADEIA DE FORNECIMENTO
- OUTROS
Com base na aplicação, o mercado está segmentado em agricultura de precisão, monitorização de gado, previsão meteorológica, gestão do solo, monitorização da saúde das culturas, otimização da cadeia de abastecimento e outros.
MODO DE IMPLANTAÇÃO
- NUVEM
- NO LOCAL
Com base no modo de implementação, o mercado está segmentado em cloud e local.
UTILIZADOR FINAL
- FAZENDAS
- EMPRESAS AGRO-TECNOLÓGICAS
- EMPRESAS AGROQUÍMICAS
- INSTITUTOS DE INVESTIGAÇÃO
- OUTROS
Com base no utilizador final, o mercado está segmentado em explorações agrícolas, empresas de agrotecnologia, empresas agroquímicas, institutos de investigação e outros.
Mercado global de inteligência artificial na agricultura
O mercado global de inteligência artificial na agricultura está segmentado em cinco segmentos notáveis, que se baseiam na oferta, tecnologia, aplicação, modo de implementação e utilizador final. Os países abrangidos pelo mercado global da internet das coisas (IOT) na agricultura são os EUA, Canadá e México na América do Norte, Alemanha, França, Reino Unido, Holanda, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, resto da Europa, China , Japão, Índia, Coreia do Sul, Singapura, Malásia, Austrália, Tailândia, Indonésia, Filipinas, resto da Ásia-Pacífico, Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, resto do Médio Oriente e África, Brasil, Argentina e resto da América do Sul.
Na América do Norte, os EUA dominam como o país com o maior número de fornecedores de componentes de hardware. Além disso, na Europa, o Reino Unido está a dominar devido ao seu avanço tecnológico em todo o país. Na Ásia-Pacífico, a China domina, pois é o país que tem os maiores fabricantes de componentes de hardware na região.
A secção de países do relatório também fornece fatores individuais que impactam o mercado e alterações na regulamentação do mercado que impactam as tendências atuais e futuras do mercado. Pontos de dados como a análise da cadeia de valor a montante e a jusante, tendências técnicas e análise das cinco forças de Porter, estudos de caso são alguns dos indicadores utilizados para prever o cenário de mercado para países individuais. Além disso, a presença e disponibilidade de marcas da APAC e os seus desafios enfrentados devido à grande ou escassa concorrência de marcas locais e nacionais, o impacto das tarifas domésticas e das rotas comerciais são considerados ao fornecer uma análise de previsão dos dados do país.
Análise do cenário competitivo e da quota de mercado global de inteligência artificial na agricultura
O cenário competitivo do mercado global de inteligência artificial na agricultura fornece detalhes dos concorrentes. Os detalhes incluídos são a visão geral da empresa, finanças da empresa, receitas geradas, potencial de mercado, investimento em investigação e desenvolvimento, novas iniciativas de mercado, presença na APAC e SEA, localizações e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa, lançamento do produto, amplitude e amplitude do produto , domínio da aplicação. Os pontos de dados fornecidos acima estão apenas relacionados com o foco das empresas em relação ao mercado global de inteligência artificial na agricultura. Alguns dos principais participantes que operam no mercado global de inteligência artificial na agricultura são: Open Text Corporation, OpenAI, VALMONT INDUSTRIES, INC., AGCO Corporation e IBM, entre outros.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.






