Relatório de Análise de Tamanho, Participação e Tendências do Mercado Global de Inteligência Artificial (IA) na Descoberta de Medicamentos – Visão Geral do Setor e Previsão até 2032

Pedido de resumo Pedido de TOC Fale com Analista Fale com o analista Relatório de amostra grátis Relatório de amostra grátis Consulte antes Comprar Consulte antes  Comprar agora Comprar agora

Relatório de Análise de Tamanho, Participação e Tendências do Mercado Global de Inteligência Artificial (IA) na Descoberta de Medicamentos – Visão Geral do Setor e Previsão até 2032

  • Healthcare
  • Upcoming Reports
  • Mar 2025
  • Global
  • 350 Páginas
  • Número de tabelas: 220
  • Número de figuras: 60
  • Author : Sachin Pawar

Contorne os desafios das tarifas com uma consultoria ágil da cadeia de abastecimento

A análise do ecossistema da cadeia de abastecimento agora faz parte dos relatórios da DBMR

Global Artificial Intelligence Ai In Drug Discovery Market

Tamanho do mercado em biliões de dólares

CAGR :  % Diagram

Chart Image USD 981.64 Million USD 1,483.82 Million 2024 2032
Diagram Período de previsão
2025 –2032
Diagram Tamanho do mercado (ano base )
USD 981.64 Million
Diagram Tamanho do mercado ( Ano de previsão)
USD 1,483.82 Million
Diagram CAGR
%
Diagram Principais participantes do mercado
  • Manequim1
  • Manequim2
  • Manequim3
  • Manequim4
  • Manequim5

Segmentação do mercado global de inteligência artificial (IA) na descoberta de medicamentos, por aplicação (candidatos a novos medicamentos, otimização e reaproveitamento de medicamentos, testes pré-clínicos e aprovação, monitoramento de medicamentos, descoberta de novos alvos e vias associadas a doenças, compreensão dos mecanismos das doenças, agregação e síntese de informações, formação e qualificação de hipóteses, design de novos medicamentos, descoberta de alvos de medicamentos antigos e outros), tecnologia (aprendizado de máquina, aprendizado profundo, processamento de linguagem natural e outros), tipo de medicamento (molécula pequena e molécula grande), oferta (software e serviços), indicação (imuno-oncologia, doenças neurodegenerativas, doenças cardiovasculares, doenças metabólicas e outras), uso final (organizações de pesquisa contratadas (CROs), empresas farmacêuticas e de biotecnologia, centros de pesquisa e institutos acadêmicos e outros) - tendências do setor e previsão para 2032

Inteligência Artificial (IA) no Mercado de Descoberta de Medicamentos

Tamanho do mercado de inteligência artificial (IA) na descoberta de medicamentos

  • O mercado global de inteligência artificial (IA) na descoberta de medicamentos foi avaliado em US$ 981,64 milhões em 2024 e deve atingir US$ 1.483,82 milhões até 2032.
  • Durante o período previsto de 2025 a 2032, o mercado deverá crescer a um CAGR de 5,30%, impulsionado principalmente pela crescente disponibilidade de dados de saúde
  • Este crescimento é impulsionado por fatores como a crescente prevalência de doenças crônicas e avanços nas tecnologias de IA que aprimoram os processos de descoberta de medicamentos.

Análise de Mercado de Inteligência Artificial (IA) na Descoberta de Medicamentos

  • O mercado está passando por um rápido crescimento, impulsionado pelos avanços em tecnologias de IA, como aprendizado de máquina e aprendizado profundo, que estão simplificando os processos de descoberta de medicamentos e reduzindo custos.
  • A IA está sendo amplamente adotada para otimização de medicamentos, reaproveitamento, testes pré-clínicos e design de ensaios clínicos, acelerando significativamente o cronograma de desenvolvimento de medicamentos
  • A América do Norte lidera o mercado devido ao seu forte setor farmacêutico, enquanto a região da Ásia-Pacífico deverá crescer rapidamente, impulsionada pelo aumento dos investimentos em pesquisa e desenvolvimento.

Por exemplo, tecnologias de IA, como aprendizado de máquina e aprendizado profundo, estão sendo usadas para prever taxas de sucesso em ensaios clínicos, otimizar candidatos a medicamentos e identificar novos alvos terapêuticos, reduzindo significativamente o tempo e o custo do desenvolvimento de medicamentos.

  • A adoção de IA na descoberta de medicamentos está revolucionando a indústria farmacêutica ao abordar desafios como altos custos, prazos longos e baixas taxas de sucesso em processos tradicionais de desenvolvimento de medicamentos.

Escopo do Relatório e Segmentação do Mercado de Inteligência Artificial (IA) na Descoberta de Medicamentos

Atributos

Inteligência Artificial (IA) na Descoberta de Medicamentos: Principais Insights de Mercado

Segmentos abrangidos

  • Por aplicação : Candidatos a novos medicamentos, otimização e reaproveitamento de medicamentos, testes pré-clínicos e aprovação, monitoramento de medicamentos, descoberta de novos alvos e vias associadas a doenças, compreensão dos mecanismos de doenças, agregação e síntese de informações, formação e qualificação de hipóteses, design de novos medicamentos, descoberta de alvos de medicamentos de um medicamento antigo e outros.
  • Por tecnologia:   Aprendizado de máquina, aprendizado profundo , processamento de linguagem natural e outros
  • Por tipo de medicamento:  molécula pequena e molécula grande
  • Oferecendo:  Software e Serviços
  • Por Indicação : Imuno-Oncologia, Doenças Neurodegenerativas, Doenças Cardiovasculares, Doenças Metabólicas e Outras
  • Por uso final : Organizações de pesquisa contratadas (CROs), empresas farmacêuticas e de biotecnologia, centros de pesquisa e institutos acadêmicos e outros

Países abrangidos

América do Norte

  • NÓS
  • Canadá
  • México

Europa

  • Alemanha
  • França
  • Reino Unido
  • Holanda
  • Suíça
  • Bélgica
  • Rússia
  • Itália
  • Espanha
  • Peru
  • Resto da Europa

Ásia-Pacífico

  • China
  • Japão
  • Índia
  • Coréia do Sul
  • Cingapura
  • Malásia
  • Austrália
  • Tailândia
  • Indonésia
  • Filipinas
  • Resto da Ásia-Pacífico

Oriente Médio e África

  • Arábia Saudita
  • Emirados Árabes Unidos
  • África do Sul
  • Egito
  • Israel
  • Resto do Oriente Médio e África

Ámérica do Sul

  • Brasil
  • Argentina
  • Resto da América do Sul

Principais participantes do mercado

  • NVIDIA Corporation (EUA)
  • IBM Corp. (EUA)
  • Atomwise Inc. (EUA)
  • Microsoft (EUA)
  • Benevolent AI (Reino Unido)
  • Aria Pharmaceuticals, Inc. (EUA)
  • GENÔMICA PROFUNDA (Canadá)
  • Exscientia (Reino Unido)
  • Medicina Insilico (Hong Kong)
  • Cyclica (Canadá)
  • NuMedii, Inc. (EUA)
  • Envisagenics (EUA)
  • Owkin Inc. (EUA)
  • BERG LLC (EUA)
  • Schrödinger, Inc. (EUA)
  • XtalPi Inc. (China)
  • BIOAGE Inc. (EUA)

Oportunidades de mercado

  • Aumento dos investimentos em P&D na indústria farmacêutica
  • Modelagem preditiva aprimorada para ensaios clínicos

Conjuntos de informações de dados de valor agregado

Além dos insights sobre cenários de mercado, como valor de mercado, taxa de crescimento, segmentação, cobertura geográfica e principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research também incluem análise de importação e exportação, visão geral da capacidade de produção, análise de consumo de produção, análise de tendência de preço, cenário de mudança climática, análise da cadeia de suprimentos, análise da cadeia de valor, visão geral de matéria-prima/consumíveis, critérios de seleção de fornecedores, análise PESTLE, análise de Porter e estrutura regulatória.

Tendências de mercado de inteligência artificial (IA) na descoberta de medicamentos

“Inovações impulsionadas pela IA revolucionando a descoberta de medicamentos”

  • Uma tendência proeminente no mercado de IA na descoberta de medicamentos é a crescente adoção de tecnologias de aprendizado de máquina e aprendizado profundo para otimizar os processos de desenvolvimento de medicamentos .
  • Essas tecnologias avançadas aumentam a eficiência e a precisão da descoberta de medicamentos ao analisar vastos conjuntos de dados, prever propriedades de ligação de moléculas e identificar potenciais candidatos a medicamentos.
  • Por exemplo, plataformas alimentadas por IA estão sendo usadas para redirecionar medicamentos existentes para novas áreas terapêuticas, reduzindo significativamente o tempo e o custo associados aos métodos tradicionais de descoberta de medicamentos.
  • A integração da IA também permite um melhor design de ensaios clínicos ao prever taxas de sucesso e identificar populações de pacientes, melhorando o sucesso geral do desenvolvimento de medicamentos.
  • Essa tendência está transformando a indústria farmacêutica, acelerando o desenvolvimento de terapias inovadoras e atendendo a necessidades médicas não atendidas, impulsionando assim a demanda por soluções baseadas em IA no mercado.

Inteligência Artificial (IA) na Dinâmica do Mercado de Descoberta de Medicamentos

Motorista

“Aumento dos investimentos em P&D na indústria farmacêutica”

  • As empresas farmacêuticas estão aumentando seus orçamentos de P&D para desenvolver novos medicamentos e terapias, garantindo que permaneçam competitivas e atendam às necessidades em evolução dos pacientes.
  • Ferramentas de IA são integradas aos processos de P&D para aprimorar a descoberta de medicamentos, permitindo a identificação mais rápida de candidatos a medicamentos, melhorando as taxas de sucesso e otimizando a pesquisa em estágio inicial.
  • A IA permite triagem de alto rendimento, acelerando significativamente o processo de teste de compostos e identificando candidatos promissores para desenvolvimento posterior.
  • A IA pode processar grandes conjuntos de dados de genômica, ensaios clínicos e demografia de pacientes para descobrir padrões ocultos, acelerando a identificação de novos alvos terapêuticos.
  • Com algoritmos de IA otimizando o recrutamento de pacientes e o design de testes, as empresas farmacêuticas podem conduzir testes clínicos mais eficientes, reduzindo tempo e custos.

Por exemplo,

  • A Sanofi firmou uma parceria com a Exscientia , utilizando IA para desenvolver novos candidatos a medicamentos, acelerando o caminho para os ensaios clínicos. Em uma de suas colaborações, eles identificaram um candidato promissor para o tratamento de doenças autoimunes em uma fração do tempo que levaria com métodos tradicionais.
  • A GlaxoSmithKline (GSK) e a 24M estão trabalhando juntas para aplicar IA para otimizar o processo de P&D, incluindo a identificação de novos alvos para medicamentos e acelerar o desenvolvimento de novas terapias, como para doenças raras.
  • Os crescentes investimentos em P&D, aliados ao poder da IA, estão aumentando significativamente a capacidade da indústria farmacêutica de descobrir novos medicamentos de forma mais rápida, econômica e com maior precisão.

Oportunidade

“Modelagem Preditiva Aprimorada para Ensaios Clínicos”

  • A IA pode otimizar os projetos de ensaios clínicos identificando os parâmetros de ensaio mais adequados, como tamanho da amostra, desfechos e regimes de tratamento, resultando em estudos mais eficientes e eficazes.
  • Ao analisar registros eletrônicos de saúde e outros dados, a IA pode ajudar a identificar os pacientes certos para ensaios clínicos com base em critérios específicos de inclusão/exclusão, melhorando a velocidade e a precisão do recrutamento.
  • Os modelos de IA podem prever o provável sucesso ou fracasso de um ensaio clínico com base em dados históricos e insights em tempo real, permitindo ajustes antecipados nos protocolos do ensaio e aumentando as chances de sucesso.
  • Ao usar análise preditiva, a IA pode identificar pacientes com risco de abandono e sugerir intervenções para mantê-los engajados, reduzindo assim o número de testes incompletos.
  • A capacidade da IA de otimizar o processo de testes clínicos, desde a seleção de participantes até a previsão de resultados, pode reduzir significativamente os custos associados aos métodos tradicionais de testes.

Por exemplo,

  • A Pfizer utilizou IA em parceria com a IBM Watson Health para aprimorar o recrutamento de participantes de ensaios clínicos e otimizar o design de ensaios para o desenvolvimento de um tratamento para uma doença rara. A abordagem baseada em IA ajudou a acelerar o recrutamento e a melhorar os resultados dos ensaios.
  • A Novartis utilizou IA para prever as respostas dos pacientes e otimizar os desenhos de ensaios clínicos para seus tratamentos de terapia genética. Essa abordagem impulsionada pela IA resultou em terapias mais bem direcionadas e ensaios clínicos mais eficientes.
  • A capacidade da IA de aprimorar a modelagem preditiva em ensaios clínicos oferece vantagens significativas, incluindo designs de ensaios mais eficientes, recrutamento mais rápido de pacientes, custos reduzidos e melhores resultados de ensaios, acelerando, em última análise, o desenvolvimento de novos tratamentos.

Restrição/Desafio

“Altos custos de investimento inicial”

  • Ferramentas orientadas por IA exigem infraestrutura tecnológica cara, incluindo sistemas de computação poderosos, soluções de armazenamento de dados e software especializado, tornando o investimento inicial alto.
  • Recrutar profissionais qualificados, como cientistas de dados, especialistas em IA e pesquisadores biofarmacêuticos com conhecimento em IA e descoberta de medicamentos é caro, aumentando o ônus financeiro da implementação de IA em P&D.
  • A integração de ferramentas de IA em fluxos de trabalho de descoberta de medicamentos existentes, especialmente em sistemas legados, exige recursos financeiros significativos para adaptação, treinamento e otimização.
  • As tecnologias de IA exigem manutenção contínua, atualizações de software e upgrades de hardware para se manterem atualizadas com os avanços em aprendizado de máquina e análise de dados, contribuindo para custos operacionais de longo prazo.
  • Os sistemas de IA na descoberta de medicamentos dependem de conjuntos de dados vastos e de alta qualidade, e adquirir ou licenciar esses conjuntos de dados pode ser caro para empresas menores ou startups, aumentando ainda mais o custo da implementação da IA.

Por exemplo,

  • A BenevolentAI investiu fortemente em plataformas de descoberta de medicamentos baseadas em IA e em expertise para otimizar o processo de desenvolvimento de medicamentos, com foco em oncologia. Apesar do alto investimento inicial, sua abordagem permitiu uma descoberta mais rápida de medicamentos com maiores taxas de sucesso.
  • A Insilico Medicine , uma startup que utiliza IA para descoberta de medicamentos, exigiu um investimento inicial significativo para construir sua plataforma orientada por IA, o que permitiu acelerar o desenvolvimento de medicamentos para doenças como fibrose e câncer, mas os custos eram altos e difíceis de igualar para concorrentes menores.
  • Os altos custos iniciais de investimento em IA para a descoberta de medicamentos criam uma barreira para empresas menores e startups, limitando sua capacidade de competir com organizações maiores que podem arcar com essas tecnologias. Superar esse desafio pode exigir modelos de financiamento ou parcerias inovadores para tornar a IA mais acessível a uma gama mais ampla de participantes da indústria farmacêutica.

Escopo de mercado de inteligência artificial (IA) na descoberta de medicamentos

O mercado é segmentado com base na aplicação, tipo de produto, tecnologia, tipo de ampliação, usuário final e canal de distribuição.

Segmentação

Sub-segmentação

Por aplicação

  • Novos candidatos a medicamentos
  • Otimização e Reaproveitamento de Medicamentos
  • Testes pré-clínicos e aprovação
  • Monitoramento de Medicamentos
  • Encontrando novos alvos e caminhos associados a doenças
  • Compreendendo os mecanismos da doença
  • Agregação e síntese de informações
  • Formação e Qualificação de Hipóteses
  • Design de Novo Medicamento
  • Encontrando alvos de drogas de uma droga antiga
  • Outros

Por Tecnologia

  • Aprendizado de máquina
  • Aprendizado profundo
  • Processamento de Linguagem Natural
  • Outros

Por tipo de medicamento

  • Molécula pequena
  • Molécula Grande

Ao oferecer

  • Software
  • Serviços

Por Indicação

  • Imuno-Oncologia
  • Doenças Neurodegenerativas
  • Doenças Cardiovasculares
  • Doenças Metabólicas
  • Outros

Por uso final

 

  • Organizações de Pesquisa Contratadas (CROs)
  • Empresas Farmacêuticas e de Biotecnologia
  • Centros de Pesquisa e Institutos Acadêmicos
  • Outros

Análise regional do mercado de inteligência artificial (IA) na descoberta de medicamentos

“A América do Norte é a região dominante no mercado de inteligência artificial (IA) na descoberta de medicamentos”

  • A América do Norte domina o mercado de inteligência artificial (IA) na descoberta de medicamentos , impulsionada por infraestrutura avançada de saúde, alta adoção de tecnologias médicas de ponta e forte presença de importantes participantes do mercado.
  • Os EUA abrigam algumas das maiores empresas farmacêuticas, como Pfizer , Johnson & Johnson , Merck e Eli Lilly , que estão na vanguarda da adoção de IA na descoberta de medicamentos. Essas empresas estão investindo pesadamente em IA para otimizar o processo de desenvolvimento de medicamentos e melhorar os resultados.
  • A América do Norte possui um ecossistema tecnológico bem estabelecido, com grandes players de IA, como IBM Watson Health e Google DeepMind, impulsionando a inovação na descoberta de medicamentos. Essas empresas lideram a pesquisa em IA e fornecem ferramentas de IA poderosas para P&D farmacêutico.
  • A América do Norte investe consistentemente uma parcela significativa do seu PIB em pesquisa e desenvolvimento (P&D). Esse financiamento impulsiona a adoção de tecnologias avançadas de IA na descoberta de medicamentos, à medida que as empresas buscam maneiras de acelerar a descoberta de novos medicamentos e tratamentos.
  • A América do Norte tem testemunhado inúmeras parcerias entre empresas farmacêuticas e startups de IA ou empresas de tecnologia. Por exemplo, colaborações como a da Novartis em parceria com a Microsoft para usar IA na descoberta de medicamentos destacam a liderança da região em alavancar a IA para inovar no desenvolvimento de medicamentos.

“A Ásia-Pacífico deverá registar a maior taxa de crescimento”

  • Espera-se que a região da Ásia-Pacífico testemunhe a maior taxa de crescimento em Inteligência Artificial (IA) na descoberta de medicamentos , impulsionada pela rápida expansão na infraestrutura de assistência médica, aumento da conscientização sobre a saúde ocular e aumento nos volumes cirúrgicos.
  • Países como China , Índia e Japão estão investindo pesadamente em IA e biotecnologia , com o objetivo de aprimorar seus setores farmacêuticos e atender às crescentes necessidades de saúde. Esses investimentos estão acelerando a adoção da IA na descoberta de medicamentos.
  • Os governos da região Ásia-Pacífico estão promovendo ativamente a integração da saúde digital e da IA por meio de diversas iniciativas. Por exemplo, a China implementou estratégias nacionais para incorporar a IA na saúde, fomentando o crescimento da IA na descoberta de medicamentos.
  • Os países da APAC têm grandes populações e vastas quantidades de dados de saúde que podem ser aproveitados para a descoberta de medicamentos com tecnologia de IA. A robusta infraestrutura digital da região apoia a integração de tecnologias de IA para o desenvolvimento de medicamentos.
  • A região da Ásia-Pacífico (APAC) é a que mais cresce no mercado de IA na descoberta de medicamentos, impulsionada pelo aumento de investimentos, políticas governamentais de apoio, um grande conjunto de dados e a expansão de empresas de biotecnologia que alavancam a tecnologia de IA.

Participação de mercado da inteligência artificial (IA) na descoberta de medicamentos

O cenário competitivo do mercado fornece detalhes por concorrente. Os detalhes incluem visão geral da empresa, finanças da empresa, receita gerada, potencial de mercado, investimento em pesquisa e desenvolvimento, novas iniciativas de mercado, presença global, locais e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa, lançamento de produto, abrangência e amplitude do produto e domínio da aplicação. Os pontos de dados fornecidos acima referem-se apenas ao foco das empresas em relação ao mercado.

Os principais líderes de mercado que operam no mercado são:

  • NVIDIA Corporation (EUA)
  • IBM Corp. (EUA)
  • Atomwise Inc. (EUA)
  • Microsoft (EUA)
  • Benevolent AI (Reino Unido)
  • Aria Pharmaceuticals, Inc. (EUA)
  • GENÔMICA PROFUNDA (Canadá)
  • Exscientia (Reino Unido)
  • Medicina Insilico (Hong Kong)
  • Cyclica (Canadá)
  • NuMedii, Inc. (EUA)
  • Envisagenics (EUA)
  • Owkin Inc. (EUA)
  • BERG LLC (EUA)
  • Schrödinger, Inc. (EUA)
  • XtalPi Inc. (China)
  • BIOAGE Inc. (EUA)

Últimos desenvolvimentos em inteligência artificial global (IA) no mercado de descoberta de medicamentos

  • Em maio de 2024, o Google DeepMind revelou a terceira versão do seu modelo de IA AlphaFold, projetado para aprimorar o desenvolvimento de medicamentos e o direcionamento de doenças. Esta versão avançada permite que pesquisadores do DeepMind e do Isomorphic Labs analisem o comportamento de todas as moléculas, incluindo o DNA humano.
  • Em abril de 2024, a Xaira Therapeutics, uma empresa inovadora especializada em descoberta e desenvolvimento de medicamentos com tecnologia de IA, captou mais de US$ 1 milhão em uma rodada de financiamento colaborativo com a ARCH Venture Partners e a Foresite Labs. Utilizando aprendizado de máquina, modelos de geração de dados e desenvolvimento de produtos terapêuticos, a empresa se concentra em abordar alvos de medicamentos que tradicionalmente têm sido difíceis de lidar.
  • Em dezembro de 2023, a MilliporeSigma, divisão de ciências da vida da Merck, lançou o AIDDISON, um software de ponta para descoberta de medicamentos. Esta plataforma preenche a lacuna entre o design virtual de moléculas e a capacidade de fabricação no mundo real, integrando a API do software de retrossíntese Synthia. Ela combina IA generativa, aprendizado de máquina e design de medicamentos auxiliado por computador para otimizar os processos de desenvolvimento de medicamentos.
  • Em maio de 2023, o Google lançou duas ferramentas inovadoras baseadas em IA com o objetivo de auxiliar empresas de biotecnologia e farmacêuticas a acelerar a descoberta de medicamentos e refinar a medicina de precisão. Essas soluções visam reduzir o tempo e os custos envolvidos na introdução de novos tratamentos no mercado americano. Entre os pioneiros na adoção dessas ferramentas estão Cerevel Therapeutics, Pfizer e Colossal Biosciences .


SKU-

Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo

  • Painel interativo de análise de dados
  • Painel de análise da empresa para oportunidades de elevado potencial de crescimento
  • Acesso de analista de pesquisa para personalização e customização. consultas
  • Análise da concorrência com painel interativo
  • Últimas notícias, atualizações e atualizações Análise de tendências
  • Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Pedido de demonstração

Índice

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 MARKETS COVERED

2.5 GEOGRAPHIC SCOPE

2.6 YEARS CONSIDERED FOR THE STUDY

2.7 RESEARCH METHODOLOGY

2.8 TECHNOLOGY LIFE LINE CURVE

2.9 MULTIVARIATE MODELLING

2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS

2.11 DBMR MARKET POSITION GRID

2.12 MARKET APPLICATION COVERAGE GRID

2.13 DBMR MARKET CHALLENGE MATRIX

2.14 SECONDARY SOURCES

2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT

2.16 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

5.1 PESTEL ANALYSIS

5.2 PORTER’S FIVE FORCES MODEL

6 INDUSTRY INSIGHTS

6.1 MICRO AND MACRO ECONOMIC FACTORS

6.2 PENETRATION AND GROWTH PROSPECT MAPPING

6.3 KEY PRICING STRATEGIES

6.4 INTERVIEWS WITH SPECIALIST

6.5 ANALYIS AND RECOMMENDATION

7 INTELLECTUAL PROPERTY (IP) PORTFOLIO

7.1 PATENT QUALITY AND STRENGTH

7.2 PATENT FAMILIES

7.3 LICENSING AND COLLABORATIONS

7.4 COMPETITIVE LANDSCAPE

7.5 IP STRATEGY AND MANAGEMENT

7.6 OTHER

8 COST ANALYSIS BREAKDOWN

9 TECHNONLOGY ROADMAP

10 INNOVATION TRACKER AND STRATEGIC ANALYSIS

10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS

10.1.1 JOINT VENTURES

10.1.2 MERGERS AND ACQUISITIONS

10.1.3 LICENSING AND PARTNERSHIP

10.1.4 TECHNOLOGY COLLABORATIONS

10.1.5 STRATEGIC DIVESTMENTS

10.2 NUMBER OF PRODUCTS IN DEVELOPMENT

10.3 STAGE OF DEVELOPMENT

10.4 TIMELINES AND MILESTONES

10.5 INNOVATION STRATEGIES AND METHODOLOGIES

10.6 RISK ASSESSMENT AND MITIGATION

10.7 FUTURE OUTLOOK

11 REGULATORY COMPLIANCE

11.1 REGULATORY AUTHORITIES

11.2 REGULATORY CLASSIFICATIONS

11.2.1 CLASS I

11.2.2 CLASS II

11.2.3 CLASS III

11.3 REGULATORY SUBMISSIONS

11.4 INTERNATIONAL HARMONIZATION

11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS

11.6 REGULATORY CHALLENGES AND STRATEGIES

12 REIMBURSEMENT FRAMEWORK

13 OPPUTUNITY MAP ANALYSIS

14 VALUE CHAIN ANALYSIS

15 HEALTHCARE ECONOMY

15.1 HEALTHCARE EXPENDITURE

15.2 CAPITAL EXPENDITURE

15.3 CAPEX TRENDS

15.4 CAPEX ALLOCATION

15.5 FUNDING SOURCES

15.6 INDUSTRY BENCHMARKS

15.7 GDP RATION IN OVERALL GDP

15.8 HEALTHCARE SYSTEM STRUCTURE

15.9 GOVERNMENT POLICIES

15.1 ECONOMIC DEVELOPMENT

16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING

16.1 OVERVIEW

16.2 SOFTWARE

16.2.1 INTEGRATED

16.2.2 STANDALONE

16.3 SERVICES

17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY

17.1 OVERVIEW

17.2 MACHINE LEARNING (ML)

17.2.1 SUPERVISED LEARNING

17.2.2 UNSUPERVISED LEARNING

17.2.3 REINFORCEMENT LEARNING

17.3 DEEP LEARNING

17.4 NATURAL LANGUAGE PROCESSING (NLP)

17.5 OTHERS

18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE

18.1 OVERVIEW

18.2 SMALL MOLECULE

18.3 LARGE MOLECULE

19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION

19.1 OVERVIEW

19.2 NOVEL DRUG CANDIDATES

19.2.1 IDENTIFY BIOLOGICS TARGET

19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE

19.2.3 OTHERS

19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL

19.4 DRUG MONITORING

19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS

19.6 UNDERSTANDING DISEASE MECHANISMS

19.7 AGGREGATING AND SYNTHESIZING INFORMATION

19.8 FORM ATION & QUALIFICATION OF HYPOTHESES

19.9 DE NOVO DRUG DESIGN

19.1 FINDING DRUG TARGETS OF AN OLD DRUG

19.11 OTHERS

20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION

20.1 OVERVIEW

20.2 IMMUNO-ONCOLOGY

20.2.1 PROSTATE CANCER

20.2.2 BREAST CANCER

20.2.3 BRAIN CANCER

20.2.4 LUNG CANCER

20.2.5 PANCREATIC CANCER

20.2.6 COLORECTAL CANCER

20.2.7 LEUKEMIA

20.2.8 OTHERS

20.3 NEURODEGENERATIVE DISEASES

20.4 CARDIOVASCULAR DISEASES

20.5 METABOLIC DISEASES

20.6 OTHERS

21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER

21.1 OVERVIEW

21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES

21.3 CONTRACT RESEARCH ORGANIZATIONS

21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES

21.5 OTHERS

22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)

GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

22.1 OVERVIEW

22.2 NORTH AMERICA

22.2.1 U.S.

22.2.2 CANADA

22.2.3 MEXICO

22.3 EUROPE

22.3.1 GERMANY

22.3.2 U.K.

22.3.3 ITALY

22.3.4 FRANCE

22.3.5 SPAIN

22.3.6 SWITZERLAND

22.3.7 RUSSIA

22.3.8 TURKEY

22.3.9 BELGIUM

22.3.10 NETHERLANDS

22.3.11 REST OF EUROPE

22.4 ASIA-PACIFIC

22.4.1 JAPAN

22.4.2 CHINA

22.4.3 SOUTH KOREA

22.4.4 INDIA

22.4.5 AUSTRALIA & NEW ZEALAND

22.4.6 SINGAPORE

22.4.7 THAILAND

22.4.8 INDONESIA

22.4.9 MALAYSIA

22.4.10 PHILIPPINES

22.4.11 REST OF ASIA-PACIFIC

22.5 SOUTH AMERICA

22.5.1 BRAZIL

22.5.2 ARGENTINA

22.5.3 REST OF SOUTH AMERICA

22.6 MIDDLE EAST AND AFRICA

22.6.1 SOUTH AFRICA

22.6.2 EGYPT

22.6.3 SAUDI ARABIA

22.6.4 UNITED ARAB EMIRATES

22.6.5 ISRAEL

22.6.6 REST OF MIDDLE EAST AND AFRICA

23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE

23.1 COMPANY SHARE ANALYSIS: GLOBAL

23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

23.3 COMPANY SHARE ANALYSIS: EUROPE

23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

23.5 MERGERS & ACQUISITIONS

23.6 NEW PRODUCT DEVELOPMENT & APPROVALS

23.7 EXPANSIONS

23.8 REGULATORY CHANGES

23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES

24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS

25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE

25.1 MICROSOFT

25.1.1 COMPANY OVERVIEW

25.1.2 REVENUE ANALYSIS

25.1.3 PRODUCT PORTFOLIO

25.1.4 RECENT DEVELOPMENTS

25.2 SHANGHAI MEDICILON INC.

25.2.1 COMPANY OVERVIEW

25.2.2 REVENUE ANALYSIS

25.2.3 PRODUCT PORTFOLIO

25.2.4 RECENT DEVELOPMENTS

25.3 NVIDIA CORPORATION + ASTRAZENECA

25.3.1 COMPANY OVERVIEW

25.3.2 REVENUE ANALYSIS

25.3.3 PRODUCT PORTFOLIO

25.3.4 RECENT DEVELOPMENTS

25.4 ATOMWISE INC.

25.4.1 COMPANY OVERVIEW

25.4.2 REVENUE ANALYSIS

25.4.3 PRODUCT PORTFOLIO

25.4.4 RECENT DEVELOPMENTS

25.5 DEEP GENOMICS

25.5.1 COMPANY OVERVIEW

25.5.2 REVENUE ANALYSIS

25.5.3 PRODUCT PORTFOLIO

25.5.4 RECENT DEVELOPMENTS

25.6 CLOUD PHARMACEUTICALS INC.

25.6.1 COMPANY OVERVIEW

25.6.2 REVENUE ANALYSIS

25.6.3 PRODUCT PORTFOLIO

25.6.4 RECENT DEVELOPMENTS

25.7 INSILICO MEDICINE

25.7.1 COMPANY OVERVIEW

25.7.2 REVENUE ANALYSIS

25.7.3 PRODUCT PORTFOLIO

25.7.4 RECENT DEVELOPMENTS

25.8 BENEVOLENTAI

25.8.1 COMPANY OVERVIEW

25.8.2 REVENUE ANALYSIS

25.8.3 PRODUCT PORTFOLIO

25.8.4 RECENT DEVELOPMENTS

25.9 EXSCIENTIA

25.9.1 COMPANY OVERVIEW

25.9.2 REVENUE ANALYSIS

25.9.3 PRODUCT PORTFOLIO

25.9.4 RECENT DEVELOPMENTS

25.1 CYCLICA

25.10.1 COMPANY OVERVIEW

25.10.2 REVENUE ANALYSIS

25.10.3 PRODUCT PORTFOLIO

25.10.4 RECENT DEVELOPMENTS

25.11 OWKIN, INC

25.11.1 COMPANY OVERVIEW

25.11.2 REVENUE ANALYSIS

25.11.3 PRODUCT PORTFOLIO

25.11.4 RECENT DEVELOPMENTS

25.12 ENVISAGENICS

25.12.1 COMPANY OVERVIEW

25.12.2 REVENUE ANALYSIS

25.12.3 PRODUCT PORTFOLIO

25.12.4 RECENT DEVELOPMENTS

25.13 NUMEDII, INC.

25.13.1 COMPANY OVERVIEW

25.13.2 REVENUE ANALYSIS

25.13.3 PRODUCT PORTFOLIO

25.13.4 RECENT DEVELOPMENTS

25.14 BIOSYNTAGMA

25.14.1 COMPANY OVERVIEW

25.14.2 REVENUE ANALYSIS

25.14.3 PRODUCT PORTFOLIO

25.14.4 RECENT DEVELOPMENTS

25.15 COLLABORATIONS PHARMACEUTICALS, INC.

25.15.1 COMPANY OVERVIEW

25.15.2 REVENUE ANALYSIS

25.15.3 PRODUCT PORTFOLIO

25.15.4 RECENT DEVELOPMENTS

25.16 INVENIAI LLC

25.16.1 COMPANY OVERVIEW

25.16.2 REVENUE ANALYSIS

25.16.3 PRODUCT PORTFOLIO

25.16.4 RECENT DEVELOPMENTS

25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION

25.17.1 COMPANY OVERVIEW

25.17.2 REVENUE ANALYSIS

25.17.3 PRODUCT PORTFOLIO

25.17.4 RECENT DEVELOPMENTS

25.18 VALO HEALTH

25.18.1 COMPANY OVERVIEW

25.18.2 REVENUE ANALYSIS

25.18.3 PRODUCT PORTFOLIO

25.18.4 RECENT DEVELOPMENTS

25.19 AIFORIA

25.19.1 COMPANY OVERVIEW

25.19.2 REVENUE ANALYSIS

25.19.3 PRODUCT PORTFOLIO

25.19.4 RECENT DEVELOPMENTS

25.2 CHEMALIVE

25.20.1 COMPANY OVERVIEW

25.20.2 REVENUE ANALYSIS

25.20.3 PRODUCT PORTFOLIO

25.20.4 RECENT DEVELOPMENTS

25.21 DEEPMATTER GROUP LIMITED

25.21.1 COMPANY OVERVIEW

25.21.2 REVENUE ANALYSIS

25.21.3 PRODUCT PORTFOLIO

25.21.4 RECENT DEVELOPMENTS

25.22 MABSILICO.

25.22.1 COMPANY OVERVIEW

25.22.2 REVENUE ANALYSIS

25.22.3 PRODUCT PORTFOLIO

25.22.4 RECENT DEVELOPMENTS

25.23 OPTIBRIUM, LTD.

25.23.1 COMPANY OVERVIEW

25.23.2 REVENUE ANALYSIS

25.23.3 PRODUCT PORTFOLIO

25.23.4 RECENT DEVELOPMENTS

25.24 ABBVIE AND BIGHAT BIOSCIENCES

25.24.1 COMPANY OVERVIEW

25.24.2 REVENUE ANALYSIS

25.24.3 PRODUCT PORTFOLIO

25.24.4 RECENT DEVELOPMENTS

25.25 ADAGENE

25.25.1 COMPANY OVERVIEW

25.25.2 REVENUE ANALYSIS

25.25.3 PRODUCT PORTFOLIO

25.25.4 RECENT DEVELOPMENTS

25.26 PEPTICOM LTD.

25.26.1 COMPANY OVERVIEW

25.26.2 REVENUE ANALYSIS

25.26.3 PRODUCT PORTFOLIO

25.26.4 RECENT DEVELOPMENTS

25.27 DEARGEN INC.

25.27.1 COMPANY OVERVIEW

25.27.2 REVENUE ANALYSIS

25.27.3 PRODUCT PORTFOLIO

25.27.4 RECENT DEVELOPMENTS

25.28 GERO.AI

25.28.1 COMPANY OVERVIEW

25.28.2 REVENUE ANALYSIS

25.28.3 PRODUCT PORTFOLIO

25.28.4 RECENT DEVELOPMENTS

25.29 3BIGS CO. LTD.

25.29.1 COMPANY OVERVIEW

25.29.2 REVENUE ANALYSIS

25.29.3 PRODUCT PORTFOLIO

25.29.4 RECENT DEVELOPMENTS

25.3 BPGBIO INC.

25.30.1 COMPANY OVERVIEW

25.30.2 REVENUE ANALYSIS

25.30.3 PRODUCT PORTFOLIO

25.30.4 RECENT DEVELOPMENTS

25.31 SCHRÖDINGER, INC.

25.31.1 COMPANY OVERVIEW

25.31.2 REVENUE ANALYSIS

25.31.3 PRODUCT PORTFOLIO

25.31.4 RECENT DEVELOPMENTS

25.32 XTALPI INC.

25.32.1 COMPANY OVERVIEW

25.32.2 REVENUE ANALYSIS

25.32.3 PRODUCT PORTFOLIO

25.32.4 RECENT DEVELOPMENTS

25.33 BIOAGE INC.

25.33.1 COMPANY OVERVIEW

25.33.2 REVENUE ANALYSIS

25.33.3 PRODUCT PORTFOLIO

25.33.4 RECENT DEVELOPMENTS

26 RELATED REPORTS

27 QUESTIONNAIRE

28 CONCLUSION

29 ABOUT DATA BRIDGE MARKET RESEARCH

View Detailed Information Right Arrow

Metodologia de Investigação

A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados ​​e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.

A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis ​​de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.

Personalização disponível

A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

Perguntas frequentes

The global artificial intelligence (ai) in drug discovery market size was valued at USD 981.64 million in 2024.
The global artificial intelligence (ai) in drug discovery market is to grow at a CAGR of 5.30 % during the forecast period of 2025 to 2032.
The artificial intelligence (ai) in drug discovery market is segmented on the basis of application, technology, drug type, offering, indication, and end use. On the basis of application, the market is segmented into novel drug candidates, drug optimization and repurposing preclinical testing and approval, drug monitoring, finding new diseases associated targets and pathways, understanding disease mechanisms, aggregating and synthesizing information, formation and qualification of hypotheses, de novo drug design, finding drug targets of an old drug and others. On the basis of technology, the market is segmented into machine learning, deep learning, natural language processing, and others. On the basis of drug type, the market is segmented into small molecule and large molecule. On the basis of offering, the market is segmented into software and services. On the basis of indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others. On the basis of end use, the market is segmented into direct contract research organizations (CROS), pharmaceutical and biotechnology companies, research centers and academic institutes, and others.
Companies such as NVIDIA Corporation (U.S.), IBM Corp. (U.S.), Atomwise Inc. (U.S.), Microsoft (U.S.), Benevolent AI (U.K.) are the major companies in the artificial intelligence (ai) in drug discovery market.
In January 2025, Bausch + Lomb Corporation, a global leader in eye health, has announced the commercial launch of its enVista Aspire monofocal and toric intraocular lenses (IOLs) in the European Union, following the receipt of a CE Mark. In September 2024, Haag-Streit announced the launch of METIS, its cutting-edge ophthalmic microscope system, which brings superior optical performance into the operating room with exceptional clarity, a brilliant coaxial red reflex, and optimized optics for precise color reproduction, high light transmission, and an expansive depth of field, making it ideal for delicate ophthalmic procedures. It will be officially launched in Q1 2025
The countries covered in the artificial intelligence (ai) in drug discovery market are U.S., Canada, Mexico, Germany, France, U.K., Italy, Spain, Russia, Turkey, Netherlands, Switzerland, Austria, Poland, Norway, Ireland, Hungary, Lithuania, rest of Europe, China, Japan, India, South Korea, Australia, Taiwan, Philippines, Thailand, Malaysia, Vietnam, Indonesia, Singapore, rest of Asia-Pacific, Brazil, Argentina, Chili, Colombia, Peru, Venezuela, Ecuador, Uruguay, Paraguay ,Bolivia, Trinidad And Tobago, Curaçao, rest Of South America, South Africa, Saudi Arabia, U.A.E, Egypt, Israel, Kuwait, rest of Middle East and Africa, Guatemala, Costa Rica, Honduras, EL Salvador, Nicaragua, and rest of Central America.
The Asia-Pacific (APAC) region is projected to be the fastest-growing market for artificial intelligence (AI) in drug discovery, with a notable compound annual growth rate (CAGR) expected in the coming years. This growth is driven by increasing investments in healthcare infrastructure, rising adoption of AI technologies, and a growing focus on drug discovery and development in the region.
U.S. is expected to dominate the artificial intelligence (AI) in drug discovery market. This is due to its well-established pharmaceutical and biotechnology sectors, significant investments in AI research, and strong collaborations between tech companies and healthcare organizations.
North America holds the largest share in the global artificial intelligence (AI) in drug discovery market. This dominance is attributed to its well-established pharmaceutical industry, significant investments in AI research, and the presence of leading pharmaceutical and biotechnology companies.
China, is expected to witness the highest compound annual growth rate (CAGR) in the artificial intelligence (AI) in drug discovery market. This growth is driven by increasing investments in AI technologies, expanding pharmaceutical industries, and government initiatives supporting innovation in healthcare.
AI-Driven innovations revolutionizing drug discovery, is emerging as a pivotal trend driving the global artificial intelligence (AI) in drug discovery market.
The major factors driving the growth of the artificial intelligence (ai) in drug discovery market is rising R&D investments in pharmaceutical industry.
The primary challenges include high initial investment costs.
The oncology segment is currently dominating the artificial intelligence (AI) in drug discovery market.
Testimonial