Global Artificial Intelligence Ai In Drug Discovery Market
Tamanho do mercado em biliões de dólares
CAGR :
%
USD
981.64 Million
USD
1,483.82 Million
2024
2032
| 2025 –2032 | |
| USD 981.64 Million | |
| USD 1,483.82 Million | |
|
|
|
Segmentação do mercado global de inteligência artificial (IA) na descoberta de medicamentos, por aplicação (candidatos a novos medicamentos, otimização e reaproveitamento de medicamentos, testes pré-clínicos e aprovação, monitoramento de medicamentos, descoberta de novos alvos e vias associadas a doenças, compreensão dos mecanismos das doenças, agregação e síntese de informações, formação e qualificação de hipóteses, design de novos medicamentos, descoberta de alvos de medicamentos antigos e outros), tecnologia (aprendizado de máquina, aprendizado profundo, processamento de linguagem natural e outros), tipo de medicamento (molécula pequena e molécula grande), oferta (software e serviços), indicação (imuno-oncologia, doenças neurodegenerativas, doenças cardiovasculares, doenças metabólicas e outras), uso final (organizações de pesquisa contratadas (CROs), empresas farmacêuticas e de biotecnologia, centros de pesquisa e institutos acadêmicos e outros) - tendências do setor e previsão para 2032
Tamanho do mercado de inteligência artificial (IA) na descoberta de medicamentos
- O mercado global de inteligência artificial (IA) na descoberta de medicamentos foi avaliado em US$ 981,64 milhões em 2024 e deve atingir US$ 1.483,82 milhões até 2032.
- Durante o período previsto de 2025 a 2032, o mercado deverá crescer a um CAGR de 5,30%, impulsionado principalmente pela crescente disponibilidade de dados de saúde
- Este crescimento é impulsionado por fatores como a crescente prevalência de doenças crônicas e avanços nas tecnologias de IA que aprimoram os processos de descoberta de medicamentos.
Análise de Mercado de Inteligência Artificial (IA) na Descoberta de Medicamentos
- O mercado está passando por um rápido crescimento, impulsionado pelos avanços em tecnologias de IA, como aprendizado de máquina e aprendizado profundo, que estão simplificando os processos de descoberta de medicamentos e reduzindo custos.
- A IA está sendo amplamente adotada para otimização de medicamentos, reaproveitamento, testes pré-clínicos e design de ensaios clínicos, acelerando significativamente o cronograma de desenvolvimento de medicamentos
- A América do Norte lidera o mercado devido ao seu forte setor farmacêutico, enquanto a região da Ásia-Pacífico deverá crescer rapidamente, impulsionada pelo aumento dos investimentos em pesquisa e desenvolvimento.
Por exemplo, tecnologias de IA, como aprendizado de máquina e aprendizado profundo, estão sendo usadas para prever taxas de sucesso em ensaios clínicos, otimizar candidatos a medicamentos e identificar novos alvos terapêuticos, reduzindo significativamente o tempo e o custo do desenvolvimento de medicamentos.
- A adoção de IA na descoberta de medicamentos está revolucionando a indústria farmacêutica ao abordar desafios como altos custos, prazos longos e baixas taxas de sucesso em processos tradicionais de desenvolvimento de medicamentos.
Escopo do Relatório e Segmentação do Mercado de Inteligência Artificial (IA) na Descoberta de Medicamentos
|
Atributos |
Inteligência Artificial (IA) na Descoberta de Medicamentos: Principais Insights de Mercado |
|
Segmentos abrangidos |
|
|
Países abrangidos |
América do Norte
Europa
Ásia-Pacífico
Oriente Médio e África
Ámérica do Sul
|
|
Principais participantes do mercado |
|
|
Oportunidades de mercado |
|
|
Conjuntos de informações de dados de valor agregado |
Além dos insights sobre cenários de mercado, como valor de mercado, taxa de crescimento, segmentação, cobertura geográfica e principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research também incluem análise de importação e exportação, visão geral da capacidade de produção, análise de consumo de produção, análise de tendência de preço, cenário de mudança climática, análise da cadeia de suprimentos, análise da cadeia de valor, visão geral de matéria-prima/consumíveis, critérios de seleção de fornecedores, análise PESTLE, análise de Porter e estrutura regulatória. |
Tendências de mercado de inteligência artificial (IA) na descoberta de medicamentos
“Inovações impulsionadas pela IA revolucionando a descoberta de medicamentos”
- Uma tendência proeminente no mercado de IA na descoberta de medicamentos é a crescente adoção de tecnologias de aprendizado de máquina e aprendizado profundo para otimizar os processos de desenvolvimento de medicamentos .
- Essas tecnologias avançadas aumentam a eficiência e a precisão da descoberta de medicamentos ao analisar vastos conjuntos de dados, prever propriedades de ligação de moléculas e identificar potenciais candidatos a medicamentos.
- Por exemplo, plataformas alimentadas por IA estão sendo usadas para redirecionar medicamentos existentes para novas áreas terapêuticas, reduzindo significativamente o tempo e o custo associados aos métodos tradicionais de descoberta de medicamentos.
- A integração da IA também permite um melhor design de ensaios clínicos ao prever taxas de sucesso e identificar populações de pacientes, melhorando o sucesso geral do desenvolvimento de medicamentos.
- Essa tendência está transformando a indústria farmacêutica, acelerando o desenvolvimento de terapias inovadoras e atendendo a necessidades médicas não atendidas, impulsionando assim a demanda por soluções baseadas em IA no mercado.
Inteligência Artificial (IA) na Dinâmica do Mercado de Descoberta de Medicamentos
Motorista
“Aumento dos investimentos em P&D na indústria farmacêutica”
- As empresas farmacêuticas estão aumentando seus orçamentos de P&D para desenvolver novos medicamentos e terapias, garantindo que permaneçam competitivas e atendam às necessidades em evolução dos pacientes.
- Ferramentas de IA são integradas aos processos de P&D para aprimorar a descoberta de medicamentos, permitindo a identificação mais rápida de candidatos a medicamentos, melhorando as taxas de sucesso e otimizando a pesquisa em estágio inicial.
- A IA permite triagem de alto rendimento, acelerando significativamente o processo de teste de compostos e identificando candidatos promissores para desenvolvimento posterior.
- A IA pode processar grandes conjuntos de dados de genômica, ensaios clínicos e demografia de pacientes para descobrir padrões ocultos, acelerando a identificação de novos alvos terapêuticos.
- Com algoritmos de IA otimizando o recrutamento de pacientes e o design de testes, as empresas farmacêuticas podem conduzir testes clínicos mais eficientes, reduzindo tempo e custos.
Por exemplo,
- A Sanofi firmou uma parceria com a Exscientia , utilizando IA para desenvolver novos candidatos a medicamentos, acelerando o caminho para os ensaios clínicos. Em uma de suas colaborações, eles identificaram um candidato promissor para o tratamento de doenças autoimunes em uma fração do tempo que levaria com métodos tradicionais.
- A GlaxoSmithKline (GSK) e a 24M estão trabalhando juntas para aplicar IA para otimizar o processo de P&D, incluindo a identificação de novos alvos para medicamentos e acelerar o desenvolvimento de novas terapias, como para doenças raras.
- Os crescentes investimentos em P&D, aliados ao poder da IA, estão aumentando significativamente a capacidade da indústria farmacêutica de descobrir novos medicamentos de forma mais rápida, econômica e com maior precisão.
Oportunidade
“Modelagem Preditiva Aprimorada para Ensaios Clínicos”
- A IA pode otimizar os projetos de ensaios clínicos identificando os parâmetros de ensaio mais adequados, como tamanho da amostra, desfechos e regimes de tratamento, resultando em estudos mais eficientes e eficazes.
- Ao analisar registros eletrônicos de saúde e outros dados, a IA pode ajudar a identificar os pacientes certos para ensaios clínicos com base em critérios específicos de inclusão/exclusão, melhorando a velocidade e a precisão do recrutamento.
- Os modelos de IA podem prever o provável sucesso ou fracasso de um ensaio clínico com base em dados históricos e insights em tempo real, permitindo ajustes antecipados nos protocolos do ensaio e aumentando as chances de sucesso.
- Ao usar análise preditiva, a IA pode identificar pacientes com risco de abandono e sugerir intervenções para mantê-los engajados, reduzindo assim o número de testes incompletos.
- A capacidade da IA de otimizar o processo de testes clínicos, desde a seleção de participantes até a previsão de resultados, pode reduzir significativamente os custos associados aos métodos tradicionais de testes.
Por exemplo,
- A Pfizer utilizou IA em parceria com a IBM Watson Health para aprimorar o recrutamento de participantes de ensaios clínicos e otimizar o design de ensaios para o desenvolvimento de um tratamento para uma doença rara. A abordagem baseada em IA ajudou a acelerar o recrutamento e a melhorar os resultados dos ensaios.
- A Novartis utilizou IA para prever as respostas dos pacientes e otimizar os desenhos de ensaios clínicos para seus tratamentos de terapia genética. Essa abordagem impulsionada pela IA resultou em terapias mais bem direcionadas e ensaios clínicos mais eficientes.
- A capacidade da IA de aprimorar a modelagem preditiva em ensaios clínicos oferece vantagens significativas, incluindo designs de ensaios mais eficientes, recrutamento mais rápido de pacientes, custos reduzidos e melhores resultados de ensaios, acelerando, em última análise, o desenvolvimento de novos tratamentos.
Restrição/Desafio
“Altos custos de investimento inicial”
- Ferramentas orientadas por IA exigem infraestrutura tecnológica cara, incluindo sistemas de computação poderosos, soluções de armazenamento de dados e software especializado, tornando o investimento inicial alto.
- Recrutar profissionais qualificados, como cientistas de dados, especialistas em IA e pesquisadores biofarmacêuticos com conhecimento em IA e descoberta de medicamentos é caro, aumentando o ônus financeiro da implementação de IA em P&D.
- A integração de ferramentas de IA em fluxos de trabalho de descoberta de medicamentos existentes, especialmente em sistemas legados, exige recursos financeiros significativos para adaptação, treinamento e otimização.
- As tecnologias de IA exigem manutenção contínua, atualizações de software e upgrades de hardware para se manterem atualizadas com os avanços em aprendizado de máquina e análise de dados, contribuindo para custos operacionais de longo prazo.
- Os sistemas de IA na descoberta de medicamentos dependem de conjuntos de dados vastos e de alta qualidade, e adquirir ou licenciar esses conjuntos de dados pode ser caro para empresas menores ou startups, aumentando ainda mais o custo da implementação da IA.
Por exemplo,
- A BenevolentAI investiu fortemente em plataformas de descoberta de medicamentos baseadas em IA e em expertise para otimizar o processo de desenvolvimento de medicamentos, com foco em oncologia. Apesar do alto investimento inicial, sua abordagem permitiu uma descoberta mais rápida de medicamentos com maiores taxas de sucesso.
- A Insilico Medicine , uma startup que utiliza IA para descoberta de medicamentos, exigiu um investimento inicial significativo para construir sua plataforma orientada por IA, o que permitiu acelerar o desenvolvimento de medicamentos para doenças como fibrose e câncer, mas os custos eram altos e difíceis de igualar para concorrentes menores.
- Os altos custos iniciais de investimento em IA para a descoberta de medicamentos criam uma barreira para empresas menores e startups, limitando sua capacidade de competir com organizações maiores que podem arcar com essas tecnologias. Superar esse desafio pode exigir modelos de financiamento ou parcerias inovadores para tornar a IA mais acessível a uma gama mais ampla de participantes da indústria farmacêutica.
Escopo de mercado de inteligência artificial (IA) na descoberta de medicamentos
O mercado é segmentado com base na aplicação, tipo de produto, tecnologia, tipo de ampliação, usuário final e canal de distribuição.
|
Segmentação |
Sub-segmentação |
|
Por aplicação |
|
|
Por Tecnologia |
|
|
Por tipo de medicamento |
|
|
Ao oferecer |
|
|
Por Indicação |
|
|
Por uso final
|
|
Análise regional do mercado de inteligência artificial (IA) na descoberta de medicamentos
“A América do Norte é a região dominante no mercado de inteligência artificial (IA) na descoberta de medicamentos”
- A América do Norte domina o mercado de inteligência artificial (IA) na descoberta de medicamentos , impulsionada por infraestrutura avançada de saúde, alta adoção de tecnologias médicas de ponta e forte presença de importantes participantes do mercado.
- Os EUA abrigam algumas das maiores empresas farmacêuticas, como Pfizer , Johnson & Johnson , Merck e Eli Lilly , que estão na vanguarda da adoção de IA na descoberta de medicamentos. Essas empresas estão investindo pesadamente em IA para otimizar o processo de desenvolvimento de medicamentos e melhorar os resultados.
- A América do Norte possui um ecossistema tecnológico bem estabelecido, com grandes players de IA, como IBM Watson Health e Google DeepMind, impulsionando a inovação na descoberta de medicamentos. Essas empresas lideram a pesquisa em IA e fornecem ferramentas de IA poderosas para P&D farmacêutico.
- A América do Norte investe consistentemente uma parcela significativa do seu PIB em pesquisa e desenvolvimento (P&D). Esse financiamento impulsiona a adoção de tecnologias avançadas de IA na descoberta de medicamentos, à medida que as empresas buscam maneiras de acelerar a descoberta de novos medicamentos e tratamentos.
- A América do Norte tem testemunhado inúmeras parcerias entre empresas farmacêuticas e startups de IA ou empresas de tecnologia. Por exemplo, colaborações como a da Novartis em parceria com a Microsoft para usar IA na descoberta de medicamentos destacam a liderança da região em alavancar a IA para inovar no desenvolvimento de medicamentos.
“A Ásia-Pacífico deverá registar a maior taxa de crescimento”
- Espera-se que a região da Ásia-Pacífico testemunhe a maior taxa de crescimento em Inteligência Artificial (IA) na descoberta de medicamentos , impulsionada pela rápida expansão na infraestrutura de assistência médica, aumento da conscientização sobre a saúde ocular e aumento nos volumes cirúrgicos.
- Países como China , Índia e Japão estão investindo pesadamente em IA e biotecnologia , com o objetivo de aprimorar seus setores farmacêuticos e atender às crescentes necessidades de saúde. Esses investimentos estão acelerando a adoção da IA na descoberta de medicamentos.
- Os governos da região Ásia-Pacífico estão promovendo ativamente a integração da saúde digital e da IA por meio de diversas iniciativas. Por exemplo, a China implementou estratégias nacionais para incorporar a IA na saúde, fomentando o crescimento da IA na descoberta de medicamentos.
- Os países da APAC têm grandes populações e vastas quantidades de dados de saúde que podem ser aproveitados para a descoberta de medicamentos com tecnologia de IA. A robusta infraestrutura digital da região apoia a integração de tecnologias de IA para o desenvolvimento de medicamentos.
- A região da Ásia-Pacífico (APAC) é a que mais cresce no mercado de IA na descoberta de medicamentos, impulsionada pelo aumento de investimentos, políticas governamentais de apoio, um grande conjunto de dados e a expansão de empresas de biotecnologia que alavancam a tecnologia de IA.
Participação de mercado da inteligência artificial (IA) na descoberta de medicamentos
O cenário competitivo do mercado fornece detalhes por concorrente. Os detalhes incluem visão geral da empresa, finanças da empresa, receita gerada, potencial de mercado, investimento em pesquisa e desenvolvimento, novas iniciativas de mercado, presença global, locais e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa, lançamento de produto, abrangência e amplitude do produto e domínio da aplicação. Os pontos de dados fornecidos acima referem-se apenas ao foco das empresas em relação ao mercado.
Os principais líderes de mercado que operam no mercado são:
- NVIDIA Corporation (EUA)
- IBM Corp. (EUA)
- Atomwise Inc. (EUA)
- Microsoft (EUA)
- Benevolent AI (Reino Unido)
- Aria Pharmaceuticals, Inc. (EUA)
- GENÔMICA PROFUNDA (Canadá)
- Exscientia (Reino Unido)
- Medicina Insilico (Hong Kong)
- Cyclica (Canadá)
- NuMedii, Inc. (EUA)
- Envisagenics (EUA)
- Owkin Inc. (EUA)
- BERG LLC (EUA)
- Schrödinger, Inc. (EUA)
- XtalPi Inc. (China)
- BIOAGE Inc. (EUA)
Últimos desenvolvimentos em inteligência artificial global (IA) no mercado de descoberta de medicamentos
- Em maio de 2024, o Google DeepMind revelou a terceira versão do seu modelo de IA AlphaFold, projetado para aprimorar o desenvolvimento de medicamentos e o direcionamento de doenças. Esta versão avançada permite que pesquisadores do DeepMind e do Isomorphic Labs analisem o comportamento de todas as moléculas, incluindo o DNA humano.
- Em abril de 2024, a Xaira Therapeutics, uma empresa inovadora especializada em descoberta e desenvolvimento de medicamentos com tecnologia de IA, captou mais de US$ 1 milhão em uma rodada de financiamento colaborativo com a ARCH Venture Partners e a Foresite Labs. Utilizando aprendizado de máquina, modelos de geração de dados e desenvolvimento de produtos terapêuticos, a empresa se concentra em abordar alvos de medicamentos que tradicionalmente têm sido difíceis de lidar.
- Em dezembro de 2023, a MilliporeSigma, divisão de ciências da vida da Merck, lançou o AIDDISON, um software de ponta para descoberta de medicamentos. Esta plataforma preenche a lacuna entre o design virtual de moléculas e a capacidade de fabricação no mundo real, integrando a API do software de retrossíntese Synthia. Ela combina IA generativa, aprendizado de máquina e design de medicamentos auxiliado por computador para otimizar os processos de desenvolvimento de medicamentos.
- Em maio de 2023, o Google lançou duas ferramentas inovadoras baseadas em IA com o objetivo de auxiliar empresas de biotecnologia e farmacêuticas a acelerar a descoberta de medicamentos e refinar a medicina de precisão. Essas soluções visam reduzir o tempo e os custos envolvidos na introdução de novos tratamentos no mercado americano. Entre os pioneiros na adoção dessas ferramentas estão Cerevel Therapeutics, Pfizer e Colossal Biosciences .
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Índice
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 MARKETS COVERED
2.5 GEOGRAPHIC SCOPE
2.6 YEARS CONSIDERED FOR THE STUDY
2.7 RESEARCH METHODOLOGY
2.8 TECHNOLOGY LIFE LINE CURVE
2.9 MULTIVARIATE MODELLING
2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.11 DBMR MARKET POSITION GRID
2.12 MARKET APPLICATION COVERAGE GRID
2.13 DBMR MARKET CHALLENGE MATRIX
2.14 SECONDARY SOURCES
2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT
2.16 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 PESTEL ANALYSIS
5.2 PORTER’S FIVE FORCES MODEL
6 INDUSTRY INSIGHTS
6.1 MICRO AND MACRO ECONOMIC FACTORS
6.2 PENETRATION AND GROWTH PROSPECT MAPPING
6.3 KEY PRICING STRATEGIES
6.4 INTERVIEWS WITH SPECIALIST
6.5 ANALYIS AND RECOMMENDATION
7 INTELLECTUAL PROPERTY (IP) PORTFOLIO
7.1 PATENT QUALITY AND STRENGTH
7.2 PATENT FAMILIES
7.3 LICENSING AND COLLABORATIONS
7.4 COMPETITIVE LANDSCAPE
7.5 IP STRATEGY AND MANAGEMENT
7.6 OTHER
8 COST ANALYSIS BREAKDOWN
9 TECHNONLOGY ROADMAP
10 INNOVATION TRACKER AND STRATEGIC ANALYSIS
10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS
10.1.1 JOINT VENTURES
10.1.2 MERGERS AND ACQUISITIONS
10.1.3 LICENSING AND PARTNERSHIP
10.1.4 TECHNOLOGY COLLABORATIONS
10.1.5 STRATEGIC DIVESTMENTS
10.2 NUMBER OF PRODUCTS IN DEVELOPMENT
10.3 STAGE OF DEVELOPMENT
10.4 TIMELINES AND MILESTONES
10.5 INNOVATION STRATEGIES AND METHODOLOGIES
10.6 RISK ASSESSMENT AND MITIGATION
10.7 FUTURE OUTLOOK
11 REGULATORY COMPLIANCE
11.1 REGULATORY AUTHORITIES
11.2 REGULATORY CLASSIFICATIONS
11.2.1 CLASS I
11.2.2 CLASS II
11.2.3 CLASS III
11.3 REGULATORY SUBMISSIONS
11.4 INTERNATIONAL HARMONIZATION
11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS
11.6 REGULATORY CHALLENGES AND STRATEGIES
12 REIMBURSEMENT FRAMEWORK
13 OPPUTUNITY MAP ANALYSIS
14 VALUE CHAIN ANALYSIS
15 HEALTHCARE ECONOMY
15.1 HEALTHCARE EXPENDITURE
15.2 CAPITAL EXPENDITURE
15.3 CAPEX TRENDS
15.4 CAPEX ALLOCATION
15.5 FUNDING SOURCES
15.6 INDUSTRY BENCHMARKS
15.7 GDP RATION IN OVERALL GDP
15.8 HEALTHCARE SYSTEM STRUCTURE
15.9 GOVERNMENT POLICIES
15.1 ECONOMIC DEVELOPMENT
16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
16.1 OVERVIEW
16.2 SOFTWARE
16.2.1 INTEGRATED
16.2.2 STANDALONE
16.3 SERVICES
17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
17.1 OVERVIEW
17.2 MACHINE LEARNING (ML)
17.2.1 SUPERVISED LEARNING
17.2.2 UNSUPERVISED LEARNING
17.2.3 REINFORCEMENT LEARNING
17.3 DEEP LEARNING
17.4 NATURAL LANGUAGE PROCESSING (NLP)
17.5 OTHERS
18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE
18.1 OVERVIEW
18.2 SMALL MOLECULE
18.3 LARGE MOLECULE
19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
19.1 OVERVIEW
19.2 NOVEL DRUG CANDIDATES
19.2.1 IDENTIFY BIOLOGICS TARGET
19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE
19.2.3 OTHERS
19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL
19.4 DRUG MONITORING
19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS
19.6 UNDERSTANDING DISEASE MECHANISMS
19.7 AGGREGATING AND SYNTHESIZING INFORMATION
19.8 FORM ATION & QUALIFICATION OF HYPOTHESES
19.9 DE NOVO DRUG DESIGN
19.1 FINDING DRUG TARGETS OF AN OLD DRUG
19.11 OTHERS
20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
20.1 OVERVIEW
20.2 IMMUNO-ONCOLOGY
20.2.1 PROSTATE CANCER
20.2.2 BREAST CANCER
20.2.3 BRAIN CANCER
20.2.4 LUNG CANCER
20.2.5 PANCREATIC CANCER
20.2.6 COLORECTAL CANCER
20.2.7 LEUKEMIA
20.2.8 OTHERS
20.3 NEURODEGENERATIVE DISEASES
20.4 CARDIOVASCULAR DISEASES
20.5 METABOLIC DISEASES
20.6 OTHERS
21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER
21.1 OVERVIEW
21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
21.3 CONTRACT RESEARCH ORGANIZATIONS
21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES
21.5 OTHERS
22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)
GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
22.1 OVERVIEW
22.2 NORTH AMERICA
22.2.1 U.S.
22.2.2 CANADA
22.2.3 MEXICO
22.3 EUROPE
22.3.1 GERMANY
22.3.2 U.K.
22.3.3 ITALY
22.3.4 FRANCE
22.3.5 SPAIN
22.3.6 SWITZERLAND
22.3.7 RUSSIA
22.3.8 TURKEY
22.3.9 BELGIUM
22.3.10 NETHERLANDS
22.3.11 REST OF EUROPE
22.4 ASIA-PACIFIC
22.4.1 JAPAN
22.4.2 CHINA
22.4.3 SOUTH KOREA
22.4.4 INDIA
22.4.5 AUSTRALIA & NEW ZEALAND
22.4.6 SINGAPORE
22.4.7 THAILAND
22.4.8 INDONESIA
22.4.9 MALAYSIA
22.4.10 PHILIPPINES
22.4.11 REST OF ASIA-PACIFIC
22.5 SOUTH AMERICA
22.5.1 BRAZIL
22.5.2 ARGENTINA
22.5.3 REST OF SOUTH AMERICA
22.6 MIDDLE EAST AND AFRICA
22.6.1 SOUTH AFRICA
22.6.2 EGYPT
22.6.3 SAUDI ARABIA
22.6.4 UNITED ARAB EMIRATES
22.6.5 ISRAEL
22.6.6 REST OF MIDDLE EAST AND AFRICA
23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE
23.1 COMPANY SHARE ANALYSIS: GLOBAL
23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
23.3 COMPANY SHARE ANALYSIS: EUROPE
23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
23.5 MERGERS & ACQUISITIONS
23.6 NEW PRODUCT DEVELOPMENT & APPROVALS
23.7 EXPANSIONS
23.8 REGULATORY CHANGES
23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES
24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS
25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE
25.1 MICROSOFT
25.1.1 COMPANY OVERVIEW
25.1.2 REVENUE ANALYSIS
25.1.3 PRODUCT PORTFOLIO
25.1.4 RECENT DEVELOPMENTS
25.2 SHANGHAI MEDICILON INC.
25.2.1 COMPANY OVERVIEW
25.2.2 REVENUE ANALYSIS
25.2.3 PRODUCT PORTFOLIO
25.2.4 RECENT DEVELOPMENTS
25.3 NVIDIA CORPORATION + ASTRAZENECA
25.3.1 COMPANY OVERVIEW
25.3.2 REVENUE ANALYSIS
25.3.3 PRODUCT PORTFOLIO
25.3.4 RECENT DEVELOPMENTS
25.4 ATOMWISE INC.
25.4.1 COMPANY OVERVIEW
25.4.2 REVENUE ANALYSIS
25.4.3 PRODUCT PORTFOLIO
25.4.4 RECENT DEVELOPMENTS
25.5 DEEP GENOMICS
25.5.1 COMPANY OVERVIEW
25.5.2 REVENUE ANALYSIS
25.5.3 PRODUCT PORTFOLIO
25.5.4 RECENT DEVELOPMENTS
25.6 CLOUD PHARMACEUTICALS INC.
25.6.1 COMPANY OVERVIEW
25.6.2 REVENUE ANALYSIS
25.6.3 PRODUCT PORTFOLIO
25.6.4 RECENT DEVELOPMENTS
25.7 INSILICO MEDICINE
25.7.1 COMPANY OVERVIEW
25.7.2 REVENUE ANALYSIS
25.7.3 PRODUCT PORTFOLIO
25.7.4 RECENT DEVELOPMENTS
25.8 BENEVOLENTAI
25.8.1 COMPANY OVERVIEW
25.8.2 REVENUE ANALYSIS
25.8.3 PRODUCT PORTFOLIO
25.8.4 RECENT DEVELOPMENTS
25.9 EXSCIENTIA
25.9.1 COMPANY OVERVIEW
25.9.2 REVENUE ANALYSIS
25.9.3 PRODUCT PORTFOLIO
25.9.4 RECENT DEVELOPMENTS
25.1 CYCLICA
25.10.1 COMPANY OVERVIEW
25.10.2 REVENUE ANALYSIS
25.10.3 PRODUCT PORTFOLIO
25.10.4 RECENT DEVELOPMENTS
25.11 OWKIN, INC
25.11.1 COMPANY OVERVIEW
25.11.2 REVENUE ANALYSIS
25.11.3 PRODUCT PORTFOLIO
25.11.4 RECENT DEVELOPMENTS
25.12 ENVISAGENICS
25.12.1 COMPANY OVERVIEW
25.12.2 REVENUE ANALYSIS
25.12.3 PRODUCT PORTFOLIO
25.12.4 RECENT DEVELOPMENTS
25.13 NUMEDII, INC.
25.13.1 COMPANY OVERVIEW
25.13.2 REVENUE ANALYSIS
25.13.3 PRODUCT PORTFOLIO
25.13.4 RECENT DEVELOPMENTS
25.14 BIOSYNTAGMA
25.14.1 COMPANY OVERVIEW
25.14.2 REVENUE ANALYSIS
25.14.3 PRODUCT PORTFOLIO
25.14.4 RECENT DEVELOPMENTS
25.15 COLLABORATIONS PHARMACEUTICALS, INC.
25.15.1 COMPANY OVERVIEW
25.15.2 REVENUE ANALYSIS
25.15.3 PRODUCT PORTFOLIO
25.15.4 RECENT DEVELOPMENTS
25.16 INVENIAI LLC
25.16.1 COMPANY OVERVIEW
25.16.2 REVENUE ANALYSIS
25.16.3 PRODUCT PORTFOLIO
25.16.4 RECENT DEVELOPMENTS
25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION
25.17.1 COMPANY OVERVIEW
25.17.2 REVENUE ANALYSIS
25.17.3 PRODUCT PORTFOLIO
25.17.4 RECENT DEVELOPMENTS
25.18 VALO HEALTH
25.18.1 COMPANY OVERVIEW
25.18.2 REVENUE ANALYSIS
25.18.3 PRODUCT PORTFOLIO
25.18.4 RECENT DEVELOPMENTS
25.19 AIFORIA
25.19.1 COMPANY OVERVIEW
25.19.2 REVENUE ANALYSIS
25.19.3 PRODUCT PORTFOLIO
25.19.4 RECENT DEVELOPMENTS
25.2 CHEMALIVE
25.20.1 COMPANY OVERVIEW
25.20.2 REVENUE ANALYSIS
25.20.3 PRODUCT PORTFOLIO
25.20.4 RECENT DEVELOPMENTS
25.21 DEEPMATTER GROUP LIMITED
25.21.1 COMPANY OVERVIEW
25.21.2 REVENUE ANALYSIS
25.21.3 PRODUCT PORTFOLIO
25.21.4 RECENT DEVELOPMENTS
25.22 MABSILICO.
25.22.1 COMPANY OVERVIEW
25.22.2 REVENUE ANALYSIS
25.22.3 PRODUCT PORTFOLIO
25.22.4 RECENT DEVELOPMENTS
25.23 OPTIBRIUM, LTD.
25.23.1 COMPANY OVERVIEW
25.23.2 REVENUE ANALYSIS
25.23.3 PRODUCT PORTFOLIO
25.23.4 RECENT DEVELOPMENTS
25.24 ABBVIE AND BIGHAT BIOSCIENCES
25.24.1 COMPANY OVERVIEW
25.24.2 REVENUE ANALYSIS
25.24.3 PRODUCT PORTFOLIO
25.24.4 RECENT DEVELOPMENTS
25.25 ADAGENE
25.25.1 COMPANY OVERVIEW
25.25.2 REVENUE ANALYSIS
25.25.3 PRODUCT PORTFOLIO
25.25.4 RECENT DEVELOPMENTS
25.26 PEPTICOM LTD.
25.26.1 COMPANY OVERVIEW
25.26.2 REVENUE ANALYSIS
25.26.3 PRODUCT PORTFOLIO
25.26.4 RECENT DEVELOPMENTS
25.27 DEARGEN INC.
25.27.1 COMPANY OVERVIEW
25.27.2 REVENUE ANALYSIS
25.27.3 PRODUCT PORTFOLIO
25.27.4 RECENT DEVELOPMENTS
25.28 GERO.AI
25.28.1 COMPANY OVERVIEW
25.28.2 REVENUE ANALYSIS
25.28.3 PRODUCT PORTFOLIO
25.28.4 RECENT DEVELOPMENTS
25.29 3BIGS CO. LTD.
25.29.1 COMPANY OVERVIEW
25.29.2 REVENUE ANALYSIS
25.29.3 PRODUCT PORTFOLIO
25.29.4 RECENT DEVELOPMENTS
25.3 BPGBIO INC.
25.30.1 COMPANY OVERVIEW
25.30.2 REVENUE ANALYSIS
25.30.3 PRODUCT PORTFOLIO
25.30.4 RECENT DEVELOPMENTS
25.31 SCHRÖDINGER, INC.
25.31.1 COMPANY OVERVIEW
25.31.2 REVENUE ANALYSIS
25.31.3 PRODUCT PORTFOLIO
25.31.4 RECENT DEVELOPMENTS
25.32 XTALPI INC.
25.32.1 COMPANY OVERVIEW
25.32.2 REVENUE ANALYSIS
25.32.3 PRODUCT PORTFOLIO
25.32.4 RECENT DEVELOPMENTS
25.33 BIOAGE INC.
25.33.1 COMPANY OVERVIEW
25.33.2 REVENUE ANALYSIS
25.33.3 PRODUCT PORTFOLIO
25.33.4 RECENT DEVELOPMENTS
26 RELATED REPORTS
27 QUESTIONNAIRE
28 CONCLUSION
29 ABOUT DATA BRIDGE MARKET RESEARCH
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

