Global Artificial Intelligence Ai In Insurance Market
Tamanho do mercado em biliões de dólares
CAGR :
%
USD
6.44 Billion
USD
63.27 Billion
2024
2032
| 2025 –2032 | |
| USD 6.44 Billion | |
| USD 63.27 Billion | |
|
|
|
|
Segmentação do mercado global de inteligência artificial (IA) em seguros, por componente (hardware, software e serviços), tecnologia (aprendizagem de máquina e profunda, processamento de linguagem natural (PLN), visão de máquina e automação robótica), modelo de implantação (local e nuvem), tamanho das empresas (grandes empresas e PMEs), aplicação (gerenciamento de sinistros, gerenciamento de riscos e conformidade, chatbots e outros), setor (seguro de vida, seguro saúde, seguro de título, seguro automóvel e outros) - tendências do setor e previsão até 2032
Inteligência Artificial (IA) no Tamanho do Mercado de Seguros
- O mercado global de inteligência artificial (IA) em seguros foi avaliado em US$ 6,44 bilhões em 2024 e deve atingir US$ 63,27 bilhões até 2032
- Durante o período previsto de 2025 a 2032, o mercado deverá crescer a um CAGR de 33,06%, impulsionado principalmente pelos avanços na análise preditiva
- Este crescimento é impulsionado por fatores como melhor avaliação de risco e precificação, integração de IoT e processamento de reclamações mais rápido
Inteligência Artificial (IA) na Análise do Mercado de Seguros
- A inteligência artificial em seguros refere-se ao uso de tecnologias de inteligência artificial, como aprendizado de máquina, processamento de linguagem natural e análise preditiva para aprimorar a avaliação de risco, o processamento de reclamações, a detecção de fraudes e o envolvimento do cliente.
- O crescimento do mercado é impulsionado pela crescente adoção de automação com tecnologia de IA, pela crescente demanda por análises de dados em tempo real e pela necessidade de detecção aprimorada de fraudes. À medida que as seguradoras adotam a transformação digital, as soluções de IA se tornam essenciais para aumentar a eficiência e reduzir os custos operacionais.
- A integração da IA com big data, IoT e computação em nuvem está remodelando o cenário dos seguros. Ferramentas com tecnologia de IA permitem a precificação personalizada de apólices, subscrição automatizada e modelagem preditiva de riscos, otimizando os processos de tomada de decisão.
- Por exemplo, a Lemonade , uma seguradora digital, usa chatbots de IA para processar reclamações em minutos, enquanto a Allstate emprega análises baseadas em IA para otimizar recomendações de políticas com base em dados de clientes.
- O mercado de seguros com IA está pronto para um crescimento sustentado, impulsionado por avanços em automação, análises em tempo real e tomada de decisões orientada por IA. O aumento dos investimentos em InsurTech e a demanda por experiências digitais integradas impulsionarão ainda mais a expansão do mercado, com as seguradoras priorizando a adoção de IA para manter a competitividade.
Escopo do Relatório e Inteligência Artificial (IA) na Segmentação do Mercado de Seguros
|
Atributos |
Inteligência Artificial (IA) em Seguros: Principais Insights de Mercado |
|
Segmentos abrangidos |
|
|
Países abrangidos |
América do Norte
Europa
Ásia-Pacífico
Oriente Médio e África
Ámérica do Sul
|
|
Principais participantes do mercado |
|
|
Oportunidades de mercado |
|
|
Conjuntos de informações de dados de valor agregado |
Além de insights de mercado, como valor de mercado, taxa de crescimento, segmentos de mercado, cobertura geográfica, participantes do mercado e cenário de mercado, o relatório de mercado selecionado pela equipe de pesquisa de mercado da Data Bridge inclui análise aprofundada de especialistas, análise de importação/exportação, análise de preços, análise de consumo de produção e análise pilão. |
Tendências da Inteligência Artificial (IA) no Mercado de Seguros
“Uso crescente de chatbots e assistentes virtuais baseados em IA”
- Uma tendência proeminente no mercado global de inteligência artificial (IA) em seguros é o uso crescente de chatbots e assistentes virtuais baseados em IA
- Essa tendência é impulsionada pelas seguradoras que integram IA conversacional para lidar com consultas, processar reivindicações e oferecer recomendações de apólices personalizadas, reduzindo os tempos de resposta e melhorando a eficiência.
- Por exemplo, a assistente virtual da GEICO, Kate , fornece aos segurados assistência em tempo real, enquanto o chatbot de IA da Lemonade, Maya, facilita o processamento perfeito de reivindicações em minutos.
- A crescente demanda por atendimento ao cliente 24 horas por dia, 7 dias por semana e prioritariamente digital está acelerando a adoção de chatbots com tecnologia de IA no setor de seguros
- À medida que as seguradoras buscam reduzir custos operacionais e aprimorar a experiência do usuário, o papel da IA conversacional continuará a se expandir. Espera-se que os avanços futuros em IA emocional e reconhecimento de voz refinem ainda mais as capacidades dos chatbots, tornando as interações mais humanas e personalizadas.
Inteligência Artificial (IA) na Dinâmica do Mercado de Seguros
Motorista
“Crescente demanda por processamento automatizado de reivindicações”
- A crescente dependência da inteligência artificial (IA) e da automação é um fator-chave para o crescimento da IA no mercado de seguros. À medida que as seguradoras migram do tratamento tradicional de sinistros para a automação com tecnologia de IA, a necessidade de um processamento eficiente e preciso de sinistros tornou-se mais crítica do que nunca.
- Essa transição é particularmente evidente em seguros de saúde, automóveis e propriedades, onde as seguradoras estão aproveitando a automação de sinistros orientada por IA para reduzir os tempos de processamento, detectar fraudes e melhorar a experiência do cliente.
- Com as seguradoras lidando com enormes volumes de dados de sinistros, a complexidade da gestão de sinistros aumentou. As empresas agora estão investindo em soluções de sinistros com tecnologia de IA para avaliar danos, verificar documentos e garantir interações fluidas com os segurados, reduzindo, ao mesmo tempo, as ineficiências operacionais.
- A crescente preferência dos consumidores por acordos de sinistros rápidos e digitais alimenta ainda mais a demanda por automação baseada em IA
- Ao integrar o aprendizado de máquina (ML) e o processamento de linguagem natural (PLN), as seguradoras podem melhorar a tomada de decisões, minimizar a intervenção humana e aumentar a confiança dos segurados
Por exemplo,
- A Progressive Insurance emprega ferramentas de avaliação de danos baseadas em IA em seguros de automóveis, usando visão computacional para analisar fotos de acidentes e fornecer estimativas de reparo em tempo real
- O sistema de reivindicações baseado em IA da Allstate detecta atividades fraudulentas e garante uma liquidação mais rápida ao automatizar avaliações de reivindicações de rotina
- Com o aumento dos investimentos em automação orientada por IA e transformação digital, o processamento de sinistros com tecnologia de IA desempenhará um papel crucial na redução do tempo de resposta, na prevenção de sinistros fraudulentos e na melhoria da satisfação dos segurados, impulsionando o crescimento sustentado do mercado.
Oportunidade
“Expansão da Avaliação de Riscos com Tecnologia de IA”
- A crescente adoção de modelos de avaliação de risco baseados em IA representa uma oportunidade significativa no mercado de seguros. As seguradoras estão utilizando análises de big data, modelagem preditiva e aprendizado de máquina (ML) para aprimorar a avaliação de risco, personalizar apólices e aumentar a precisão da subscrição.
- Os métodos tradicionais de avaliação de risco baseiam-se em dados históricos e critérios padronizados, o que frequentemente leva a ineficiências na precificação de apólices e na aprovação de sinistros. Ferramentas com tecnologia de IA analisam dados comportamentais e contextuais em tempo real, permitindo que as seguradoras realizem avaliações de risco mais precisas e dinâmicas.
- A avaliação de risco orientada por IA permite que as seguradoras personalizem as taxas de prêmio com base no comportamento de direção em tempo real (seguro automóvel), hábitos de estilo de vida (seguro saúde) e padrões de uso de propriedade (seguro residencial)
Por exemplo,
- A Swiss Re utiliza modelos preditivos baseados em IA para avaliar riscos climáticos, ajudando as seguradoras a subscrever seguros de propriedade e catástrofes com maior precisão
- A Lemonade Inc., uma empresa de insurtech orientada por IA, usa dados comportamentais e algoritmos de IA para avaliar riscos e agilizar a subscrição, permitindo aprovações instantâneas de apólices.
- À medida que o setor de seguros muda para modelos baseados em dados e centrados no cliente, as soluções de avaliação de risco baseadas em IA continuarão a impulsionar a eficiência, reduzir perdas e aumentar a satisfação dos segurados, criando oportunidades de crescimento significativas para os participantes do mercado.
Restrição/Desafio
“Privacidade de Dados e Conformidade Regulatória”
- A ampla adoção de soluções baseadas em IA em seguros levanta preocupações significativas em relação à privacidade de dados, segurança e conformidade regulatória. As seguradoras dependem de grandes volumes de dados pessoais, financeiros e comportamentais para aprimorar a avaliação de riscos, o processamento de sinistros e a detecção de fraudes, tornando a proteção de dados um desafio crítico.
- Regulamentações rigorosas, como o Regulamento Geral de Proteção de Dados (GDPR) na Europa, a Lei de Privacidade do Consumidor da Califórnia (CCPA) nos EUA e leis específicas do setor, como a Lei de Portabilidade e Responsabilidade de Seguros de Saúde (HIPAA), impõem diretrizes rígidas sobre como as seguradoras coletam, processam e armazenam dados dos clientes.
- Além disso, a tomada de decisões baseada em IA na subscrição e no processamento de sinistros gerou preocupações sobre o enviesamento algorítmico e a falta de transparência
Por exemplo,
- A Lei de Proteção de Informações Pessoais da China (PIPL) impôs regulamentações rígidas às seguradoras estrangeiras que operam no país, impactando a análise de dados baseada em IA e a personalização de apólices.
- Esses desafios regulatórios e de privacidade podem desacelerar a adoção da IA em seguros, aumentando os custos de conformidade e limitando a inovação. As seguradoras precisarão equilibrar os avanços da IA com a adesão rigorosa às regulamentações, o que pode levar a uma expansão mais lenta do mercado e a estratégias cautelosas de implementação da IA nos próximos anos.
Inteligência Artificial (IA) no Escopo do Mercado de Seguros
O mercado é segmentado com base no componente, tecnologia, modelo de implantação, tamanho das empresas, aplicação e setor.
|
Segmentação |
Sub-segmentação |
|
Por componente |
|
|
Por Tecnologia |
|
|
Por modelo de implantação |
|
|
Por tamanho das empresas
|
|
|
Por aplicação |
|
|
Por setor |
|
Análise regional de inteligência artificial (IA) no mercado de seguros
“A América do Norte é a região dominante no mercado de Inteligência Artificial (IA) em Seguros ”
- A América do Norte domina o mercado de Inteligência Artificial (IA) em Seguros , impulsionada pela adoção antecipada de tecnologias baseadas em IA, fortes estruturas regulatórias e a presença de provedores líderes de soluções de IA na região
- Os EUA detêm uma participação significativa devido aos investimentos significativos em subscrição orientada por IA, automação de sinistros e detecção de fraudes por grandes seguradoras
- A infraestrutura avançada de TI da região e as altas taxas de adoção de IA entre as seguradoras contribuem ainda mais para sua liderança de mercado. Empresas nos EUA e no Canadá estão utilizando aprendizado de máquina, processamento de linguagem natural e análise preditiva para aprimorar a experiência do cliente e a eficiência operacional.
- Além disso, as iniciativas regulatórias que promovem a transparência da IA e o uso ético da IA incentivaram as seguradoras a integrar a tomada de decisões baseada em IA, mantendo a conformidade, reforçando a posição da América do Norte como um player dominante no mercado.
“A Ásia-Pacífico deverá registar a maior taxa de crescimento”
- Espera-se que a região da Ásia-Pacífico testemunhe a maior taxa de crescimento no mercado de Inteligência Artificial (IA) em Seguros , impulsionada por iniciativas de transformação digital lideradas pelo governo e investimentos crescentes em tecnologias de seguros baseadas em IA.
- Países como China, Índia e Japão estão vivenciando uma rápida digitalização, o que leva à adoção de chatbots com tecnologia de IA, processamento automatizado de sinistros e modelos de precificação de apólices personalizados para melhorar o engajamento do cliente e a eficiência operacional.
- A expansão de startups de insurtech, a crescente penetração de soluções de avaliação de risco baseadas em IoT e a crescente demanda por detecção de fraudes baseada em IA estão impulsionando ainda mais o crescimento do mercado na região.
- À medida que as seguradoras na Ásia-Pacífico continuam a integrar análises baseadas em IA, telemática e modelagem preditiva, a região apresenta oportunidades significativas para provedores de soluções de IA que buscam expandir em mercados de seguros emergentes.
Inteligência Artificial (IA) na Participação do Mercado de Seguros
O cenário competitivo do mercado fornece detalhes por concorrente. Os detalhes incluem visão geral da empresa, finanças da empresa, receita gerada, potencial de mercado, investimento em pesquisa e desenvolvimento, novas iniciativas de mercado, presença global, locais e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa, lançamento de produto, abrangência e amplitude do produto e domínio da aplicação. Os pontos de dados fornecidos acima referem-se apenas ao foco das empresas em relação ao mercado.
Os principais líderes de mercado que operam no mercado são:
- Microsoft (EUA)
- Infosys Limited (Índia)
- Tratável (Reino Unido)
- Insurify, Inc. (EUA)
- Slice Insurance Technologies Inc (EUA)
- Google (EUA)
- Oracle (EUA)
- Amazon Web Services Inc. (EUA)
- IBM (EUA)
- Avaamo (EUA)
- CAPE Analytics (EUA)
- Wipro (Índia)
- Acko General Insurance (Índia)
- Shift Technology (França)
- Quantemplate (Reino Unido)
- Zurique (Suíça)
- Lemonade Inc. (EUA)
Últimos desenvolvimentos em inteligência artificial global (IA) no mercado de seguros
- Em junho de 2023, a Simplifai , empresa especializada em soluções de automação de IA, lançou o Simplifai InsuranceGPT , a primeira ferramenta proprietária de GPT projetada especificamente para o setor de seguros. Essa inovação revolucionária é baseada na plataforma sem código e com tecnologia de IA da Simplifai, aprimorando ainda mais os robustos recursos de automação de processos de negócios da empresa.
- Em janeiro de 2023, a AI inside Inc. , empresa dedicada à democratização da IA por meio de infraestrutura e serviços de consultoria, lançou uma nova solução DX . Essa solução facilita o desenvolvimento de novos produtos de seguros, utilizando certificados de saúde semiestruturados digitalizados por OCR, desenvolvidos especificamente para o setor de seguros de vida.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Índice
1. INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2. MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMAPANY MARKET SHARE ANALYSIS
2.2.5 MULTIVARIATE MODELLING
2.2.6 TOP TO BOTTOM ANALYSIS
2.2.7 STANDARDS OF MEASUREMENT
2.2.8 VENDOR SHARE ANALYSIS
2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3. MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4. EXECUTIVE SUMMARY
5. PREMIUM INSIGHT
5.1 PORTERS FIVE FORCES
5.2 REGULATORY STANDARDS
5.3 TECHNOLOGICAL TRENDS
5.4 PATENT ANALYSIS
5.5 CASE STUDY
5.6 VALUE CHAIN ANALYSIS
5.7 COMPANY COMPARITIVE ANALYSIS
5.8 THE IMPACT OF AI ON THE FUTURE OF INSURANCE
5.9 AI DRIVEN INNOVATION IN THE INSURANCE SECTOR
6. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 HARDWARE
6.2.1 PROCESSORS
6.2.1.1. MICROPROCESSING UNIT
6.2.1.2. GRAPHICS PROCESSING UNIT
6.2.1.3. FIELD PROGRAMMABLE GATE ARRAYS
6.2.1.4. OTHERS
6.2.2 MEMORY
6.2.3 NETWORK
6.3 SOFTWARE
6.3.1 SOFTWARE TOOL
6.3.1.1. DATA DISCOVERY
6.3.1.2. DATA QUALITY AND DATA GOVERNANCE
6.3.1.3. DATA VISUALIZATION
6.3.2 PLATFORM
6.4 SERVICES
6.4.1 MANAGED SERVICES
6.4.2 PROFESSIONAL SERVICES
7. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY TECHNOLOGY
7.1 OVERVIEW
7.2 MACHINE LEARNING
7.2.1 DEEP LEARNING
7.2.1.1. CONVOLUTIONAL NEURAL NETWORK (CNN)
7.2.1.2. RECURRENT NEURAL NETWORK (RNN)
7.2.1.3. GENERATIVE ADVERSARIAL NETWORKS (GAN)
7.2.2 SUPERVISED LEARNING
7.2.3 UNSUPERVISED LEARNING
7.2.4 REINFORCEMENT LEARNING
7.3 NATURAL LANGUAGE PROCESSING (NLP)
7.4 COMPUTER VISION
7.5 CONTEXT AWARENESS
7.6 ROBOTIC AUTOMATION
7.7 OTHERS
8. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY DEPLOYMENT MODE
8.1 OVERVIEW
8.2 CLOUD
8.3 ON-PREMISE
9. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY ENTERPRISE SIZE
9.1 OVERVIEW
9.2 SMALL & MEDIUM SIZE ENTERPRISE
9.2.1 BY DEPLOYMENT MODE
9.2.1.1. CLOUD
9.2.1.2. ON-PREMISE
9.3 LARGE SIZE ENTERPRISE
9.3.1 BY DEPLOYMENT MODE
9.3.1.1. CLOUD
9.3.1.2. ON-PREMISE
10. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY APPLICATION
10.1 OVERVIEW
10.2 CLAIMS MANAGEMENT
10.3 RISK MANAGEMENT AND COMPLIANCE
10.4 CHATBOTS
10.5 FRAUD DETECTION
10.6 CUSTOMER RELATIONSHIP MANAGEMENT
10.7 CYBERSECURITY
10.8 OTHERS
11. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY END USER
11.1 OVERVIEW
11.2 INSURANCE COMPANIES
11.3 BROKERS
11.4 AGENTS
12. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY SECTOR
12.1 OVERVIEW
12.2 LIFE INSURANCE
12.2.1 BY COMPONENT
12.2.1.1. HARDWARE
12.2.1.2. SOFTWARE
12.2.1.3. SERVICES
12.3 HEALTH INSURANCE
12.3.1 BY COMPONENT
12.3.1.1. HARDWARE
12.3.1.2. SOFTWARE
12.3.1.3. SERVICES
12.4 TITLE INSURANCE
12.4.1 BY COMPONENT
12.4.1.1. HARDWARE
12.4.1.2. SOFTWARE
12.4.1.3. SERVICES
12.5 AUTO INSURANCE
12.5.1 BY COMPONENT
12.5.1.1. HARDWARE
12.5.1.2. SOFTWARE
12.5.1.3. SERVICES
12.6 OTHERS
13. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY GEOGRAPHY
13.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
13.1.1 NORTH AMERICA
13.1.1.1. U.S.
13.1.1.2. CANADA
13.1.1.3. MEXICO
13.1.2 EUROPE
13.1.2.1. GERMANY
13.1.2.2. FRANCE
13.1.2.3. U.K.
13.1.2.4. ITALY
13.1.2.5. SPAIN
13.1.2.6. RUSSIA
13.1.2.7. TURKEY
13.1.2.8. BELGIUM
13.1.2.9. NETHERLANDS
13.1.2.10. NORWAY
13.1.2.11. FINLAND
13.1.2.12. SWITZERLAND
13.1.2.13. DENMARK
13.1.2.14. SWEDEN
13.1.2.15. POLAND
13.1.2.16. REST OF EUROPE
13.1.3 ASIA PACIFIC
13.1.3.1. JAPAN
13.1.3.2. CHINA
13.1.3.3. SOUTH KOREA
13.1.3.4. INDIA
13.1.3.5. AUSTRALIA
13.1.3.6. NEW ZEALAND
13.1.3.7. SINGAPORE
13.1.3.8. THAILAND
13.1.3.9. MALAYSIA
13.1.3.10. INDONESIA
13.1.3.11. PHILIPPINES
13.1.3.12. TAIWAN
13.1.3.13. VIETNAM
13.1.3.14. REST OF ASIA PACIFIC
13.1.4 SOUTH AMERICA
13.1.4.1. BRAZIL
13.1.4.2. ARGENTINA
13.1.4.3. REST OF SOUTH AMERICA
13.1.5 MIDDLE EAST AND AFRICA
13.1.5.1. SOUTH AFRICA
13.1.5.2. EGYPT
13.1.5.3. SAUDI ARABIA
13.1.5.4. U.A.E
13.1.5.5. OMAN
13.1.5.6. BAHRAIN
13.1.5.7. ISRAEL
13.1.5.8. KUWAIT
13.1.5.9. QATAR
13.1.5.10. REST OF MIDDLE EAST AND AFRICA
13.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
14. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET,COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: GLOBAL
14.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
14.3 COMPANY SHARE ANALYSIS: EUROPE
14.4 COMPANY SHARE ANALYSIS: ASIA PACIFIC
14.5 MERGERS & ACQUISITIONS
14.6 NEW PRODUCT DEVELOPMENT AND APPROVALS
14.7 EXPANSIONS
14.8 REGULATORY CHANGES
14.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, SWOT & DBMR ANALYSIS
16. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, COMPANY PROFILE
16.1 IBM
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 PRODUCT PORTFOLIO
16.1.4 RECENT DEVELOPMENT
16.2 DAMCO GROUP
16.2.1 COMPANY SNAPSHOT
16.2.2 REVENUE ANALYSIS
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENT
16.3 MICROSOFT
16.3.1 COMPANY SNAPSHOT
16.3.2 REVENUE ANALYSIS
16.3.3 PRODUCT PORTFOLIO
16.3.4 RECENT DEVELOPMENT
16.4 AMAZON WEB SERVICES, INC.
16.4.1 COMPANY SNAPSHOT
16.4.2 REVENUE ANALYSIS
16.4.3 PRODUCT PORTFOLIO
16.4.4 RECENT DEVELOPMENT
16.5 ORACLE
16.5.1 COMPANY SNAPSHOT
16.5.2 REVENUE ANALYSIS
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENT
16.6 AVAAMO
16.6.1 COMPANY SNAPSHOT
16.6.2 REVENUE ANALYSIS
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENT
16.7 SAP
16.7.1 COMPANY SNAPSHOT
16.7.2 REVENUE ANALYSIS
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENT
16.8 CAPE ANALYTICS
16.8.1 COMPANY SNAPSHOT
16.8.2 REVENUE ANALYSIS
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENT
16.9 WIPRO
16.9.1 COMPANY SNAPSHOT
16.9.2 REVENUE ANALYSIS
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENT
16.10 SHIFT TECHNOLOGY
16.10.1 COMPANY SNAPSHOT
16.10.2 REVENUE ANALYSIS
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENT
16.11 QUANTEMPLATE
16.11.1 COMPANY SNAPSHOT
16.11.2 REVENUE ANALYSIS
16.11.3 PRODUCT PORTFOLIO
16.11.4 RECENT DEVELOPMENT
16.12 ZURICH
16.12.1 COMPANY SNAPSHOT
16.12.2 REVENUE ANALYSIS
16.12.3 PRODUCT PORTFOLIO
16.12.4 RECENT DEVELOPMENT
16.13 LEMONADE, INC.
16.13.1 COMPANY SNAPSHOT
16.13.2 REVENUE ANALYSIS
16.13.3 PRODUCT PORTFOLIO
16.13.4 RECENT DEVELOPMENT
16.14 SLICE INSURANCE TECHNOLOGIES INC
16.14.1 COMPANY SNAPSHOT
16.14.2 REVENUE ANALYSIS
16.14.3 PRODUCT PORTFOLIO
16.14.4 RECENT DEVELOPMENT
16.15 INSURIFY, INC.
16.15.1 COMPANY SNAPSHOT
16.15.2 REVENUE ANALYSIS
16.15.3 PRODUCT PORTFOLIO
16.15.4 RECENT DEVELOPMENT
16.16 INSURMI
16.16.1 COMPANY SNAPSHOT
16.16.2 REVENUE ANALYSIS
16.16.3 PRODUCT PORTFOLIO
16.16.4 RECENT DEVELOPMENT
16.17 PLANCK RESOLUTION LTD.
16.17.1 COMPANY SNAPSHOT
16.17.2 REVENUE ANALYSIS
16.17.3 PRODUCT PORTFOLIO
16.17.4 RECENT DEVELOPMENT
16.18 TRACTABLE LTD.
16.18.1 COMPANY SNAPSHOT
16.18.2 REVENUE ANALYSIS
16.18.3 PRODUCT PORTFOLIO
16.18.4 RECENT DEVELOPMENT
16.19 GOOGLE
16.19.1 COMPANY SNAPSHOT
16.19.2 REVENUE ANALYSIS
16.19.3 PRODUCT PORTFOLIO
16.19.4 RECENT DEVELOPMENT
16.20 INFOSYS LIMITED
16.20.1 COMPANY SNAPSHOT
16.20.2 REVENUE ANALYSIS
16.20.3 PRODUCT PORTFOLIO
16.20.4 RECENT DEVELOPMENT
16.21 FLYREEL, INC. ( A PART OF LEXISNEXIS® RISK SOLUTIONS)
16.21.1 COMPANY SNAPSHOT
16.21.2 REVENUE ANALYSIS
16.21.3 PRODUCT PORTFOLIO
16.21.4 RECENT DEVELOPMENT
16.22 ANADEA, INC
16.22.1 COMPANY SNAPSHOT
16.22.2 REVENUE ANALYSIS
16.22.3 PRODUCT PORTFOLIO
16.22.4 RECENT DEVELOPMENT
16.23 WORKFUSION, INC.
16.23.1 COMPANY SNAPSHOT
16.23.2 REVENUE ANALYSIS
16.23.3 PRODUCT PORTFOLIO
16.23.4 RECENT DEVELOPMENT
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
17. CONCLUSION
18. QUESTIONNAIRE
19. RELATED REPORTS
20. ABOUT DATA BRIDGE MARKET RESEARCH
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

