Relatório de Análise do Tamanho, Participação e Tendências do Mercado Global de Redes Neurais de Aprendizado Profundo (DNNs) – Visão Geral do Setor e Previsão até 2032

Pedido de resumo Pedido de TOC Fale com Analista Fale com o analista Relatório de amostra grátis Relatório de amostra grátis Consulte antes Comprar Consulte antes  Comprar agora Comprar agora

Relatório de Análise do Tamanho, Participação e Tendências do Mercado Global de Redes Neurais de Aprendizado Profundo (DNNs) – Visão Geral do Setor e Previsão até 2032

  • ICT
  • Upcoming Reports
  • Mar 2021
  • Global
  • 350 Páginas
  • Número de tabelas: 220
  • Número de figuras: 60
  • Author : Megha Gupta

Contorne os desafios das tarifas com uma consultoria ágil da cadeia de abastecimento

A análise do ecossistema da cadeia de abastecimento agora faz parte dos relatórios da DBMR

Global Deep Learning Neural Networks Dnns Market

Tamanho do mercado em biliões de dólares

CAGR :  % Diagram

Chart Image USD 52.30 Billion USD 349.40 Billion 2024 2032
Diagram Período de previsão
2025 –2032
Diagram Tamanho do mercado (ano base )
USD 52.30 Billion
Diagram Tamanho do mercado ( Ano de previsão)
USD 349.40 Billion
Diagram CAGR
%
Diagram Principais participantes do mercado
  • Alyuda ResearchLLC.
  • IBM
  • Micron TechnologyInc.
  • Neural Technologies Limited
  • NeuroDimensionInc.

Segmentação do mercado global de redes neurais de aprendizado profundo (DNNs), por componente (hardware, software e serviços), aplicação (reconhecimento de imagem, processamento de linguagem natural, reconhecimento de fala e mineração de dados), usuário final (bancos, serviços financeiros e seguros (BFSI), TI e telecomunicações, saúde, varejo, automotivo, manufatura, aeroespacial e defesa, segurança e outros), - Tendências e previsões do setor até 2032

Mercado de Redes Neurais de Aprendizado Profundo (DNNs)

Tamanho do mercado de redes neurais de aprendizado profundo (DNNs)

  • O tamanho do mercado global de redes neurais de aprendizado profundo (DNNs) foi avaliado em US$ 52,3 bilhões em 2024  e deve atingir  US$ 349,4 bilhões até 2032 , com um CAGR de 31,2% durante o período previsto.
  • O crescimento do mercado é impulsionado, em grande parte, por avanços tecnológicos, aumento da disponibilidade de dados e expansão de aplicações industriais. À medida que a inteligência artificial (IA) se torna mais presente em setores como saúde, automotivo, finanças e manufatura, as DNNs se destacam por sua capacidade de processar conjuntos de dados massivos e extrair padrões complexos.
  • Além disso, os avanços da computação em nuvem e da IA ​​de ponta estão tornando as DNNs mais acessíveis e escaláveis. Governos e empresas em todo o mundo estão aumentando os investimentos em P&D em IA, impulsionando ainda mais a adoção de soluções baseadas em DNNs.

Análise de mercado de redes neurais de aprendizado profundo (DNNs)

  • O mercado global de Redes Neurais de Aprendizado Profundo (DNNs) está sendo impulsionado por avanços tecnológicos robustos em hardware específico de IA, permitindo treinamento e implantação de modelos mais rápidos e eficientes.
  • O aumento de sistemas autônomos, como carros autônomos e robôs de serviço, juntamente com o papel crescente do aprendizado profundo em PNL e reconhecimento de imagem, está impulsionando a adoção em todos os setores.
  • A América do Norte domina o mercado de Redes Neurais de Aprendizado Profundo (DNNs) com a maior participação de receita de 39,01% em 2024, caracterizada pela crescente adoção em veículos autônomos e robótica inteligente.
  • Espera-se que a Ásia-Pacífico seja a região de crescimento mais rápido no mercado de Redes Neurais de Aprendizado Profundo (DNNs) durante o período previsto devido à expansão da aplicação em processamento de linguagem natural (PLN) e visão computacional.
  • O segmento de software domina o mercado de Redes Neurais de Aprendizado Profundo (DNNs) com uma participação de mercado de 45,2% em 2024, impulsionado pela proliferação de big data e pela crescente complexidade de dados.

Escopo do Relatório e Segmentação de Mercado de Redes Neurais de Aprendizado Profundo (DNNs)    

Atributos

Insights de mercado de redes neurais de aprendizado profundo (DNNs)

Segmentos abrangidos

  • Por componente: hardware, software e serviços
  • Por aplicação: reconhecimento de imagem, processamento de linguagem natural, reconhecimento de fala e mineração de dados
  • Por usuário final: bancos, serviços financeiros e seguros (BFSI), TI e telecomunicações, saúde, varejo, automotivo, manufatura, aeroespacial e defesa, segurança e outros

Países abrangidos

América do Norte

  • NÓS
  • Canadá
  • México

Europa

  • Alemanha
  • França
  • Reino Unido
  • Holanda
  • Suíça
  • Bélgica
  • Rússia
  • Itália
  • Espanha
  • Peru
  • Resto da Europa

Ásia-Pacífico

  • China
  • Japão
  • Índia
  • Coréia do Sul
  • Cingapura
  • Malásia
  • Austrália
  • Tailândia
  • Indonésia
  • Filipinas
  • Resto da Ásia-Pacífico

Oriente Médio e África

  • Arábia Saudita
  • Emirados Árabes Unidos
  • África do Sul
  • Egito
  • Israel
  • Resto do Oriente Médio e África

Ámérica do Sul

  • Brasil
  • Argentina
  • Resto da América do Sul

Principais participantes do mercado

  • ALYUDA RESEARCH, LLC
  • Google
  • IBM
  • Micron Technologies, Inc.
  • Tecnologias Neurais Limitadas
  • NEURODIMENSION, INC.
  • NEURALWARE
  • NVIDIA CORPORAÇÃO
  • SKYMIND INC
  • SAMSUNG
  • Qualcomm Technologies, Inc.
  • Corporação Intel
  • Amazon Web Services, Inc.
  • Microsoft
  • GMDH LLC.
  • Sensorial Inc.
  • Ward Systems Group, Inc.
  • Xilinx Inc.
  • Mente Estelar

Oportunidades de mercado

  • O amplo crescimento de dados aumentará a demanda por soluções de aprendizado profundo
  • Integração de DNNs com dispositivos de computação de ponta e IoT.

Conjuntos de informações de dados de valor agregado

Além dos insights sobre cenários de mercado, como valor de mercado, taxa de crescimento, segmentação, cobertura geográfica e principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research também incluem análises aprofundadas de especialistas, análises de preços, análises de participação de marca, pesquisas com consumidores, análises demográficas, análises da cadeia de suprimentos, análises da cadeia de valor, visão geral de matérias-primas/consumíveis, critérios de seleção de fornecedores, análise PESTLE, análise de Porter e estrutura regulatória.

Tendências de mercado de redes neurais de aprendizado profundo (DNNs)

Expandindo aplicações em todos os setores

  • Uma tendência importante no mercado global de Redes Neurais de Aprendizado Profundo (DNNs) é a rápida expansão das aplicações de DNN em diversos setores, incluindo saúde, automotivo, financeiro e manufatura. Essas redes estão possibilitando avanços em diagnósticos médicos, detecção de fraudes, direção autônoma e manutenção preditiva.
    • Por exemplo, na área da saúde, as DNNs são cada vez mais utilizadas para diagnósticos baseados em imagens, como a detecção de tumores em exames radiológicos. Empresas como a Aidoc e a Zebra Medical Vision estão utilizando DNNs para auxiliar radiologistas a fazer diagnósticos mais rápidos e precisos.
  • No setor automotivo, a América do Norte e a Europa lideram a implantação de sistemas avançados de assistência ao motorista (ADAS) com tecnologia DNN e veículos autônomos. Tesla, NVIDIA e Waymo estão utilizando o aprendizado profundo para aprimorar a tomada de decisões e o reconhecimento de imagens em tempo real na estrada.
  • O setor financeiro também está adotando DNNs para detectar anomalias e prever tendências de mercado com alta precisão. O JP Morgan Chase e o Goldman Sachs estão investindo pesado em equipes de IA focadas na construção de sistemas de negociação e avaliação de risco baseados em DNNs.  
  • Na indústria, as DNNs viabilizam fábricas inteligentes por meio da automação de inspeção visual, detecção de defeitos e manutenção preditiva de equipamentos. Empresas como Siemens e GE são pioneiras no desenvolvimento desses sistemas inteligentes para reduzir o tempo de inatividade e aumentar a eficiência operacional.
  • A Ásia-Pacífico está emergindo como a região de crescimento mais rápido devido às fortes estratégias de IA de países como China, Coreia do Sul e Índia. Iniciativas apoiadas por governos e financiamento significativo em P&D de IA estão impulsionando a adoção de redes digitais digitais em larga escala.

Dinâmica de mercado de redes neurais de aprendizado profundo (DNNs)

Motorista

“Proliferação de Big Data e Aumento do Poder de Computação”

  • O crescimento exponencial na geração de dados de fontes como dispositivos de IoT, mídias sociais e sistemas empresariais está impulsionando a adoção de redes neurais de aprendizado profundo para tarefas como reconhecimento de imagem, processamento de linguagem natural e análise preditiva.
    • Por exemplo, em março de 2025, a NVIDIA revelou sua arquitetura de GPU Blackwell, proporcionando uma melhoria de desempenho de mais de 4x para cargas de trabalho de treinamento e inferência de aprendizado profundo, permitindo aplicações em tempo real em serviços de saúde, automotivos e financeiros.
  • Provedores de serviços de nuvem, incluindo AWS e Google Cloud, estão cada vez mais oferecendo estruturas DNN otimizadas como serviços gerenciados, simplificando a implantação e o dimensionamento.
  • De acordo com a IDC, mais de 70% das empresas em todo o mundo integraram soluções baseadas em DNN em pelo menos uma função comercial no primeiro trimestre de 2025, refletindo o forte impulso do mercado.

Restrição/Desafio

Alto consumo de recursos e complexidade no treinamento de modelos

  • O treinamento de redes neurais de aprendizado profundo geralmente requer recursos computacionais significativos, hardware especializado (por exemplo, GPUs, TPUs) e consumo de energia, o que pode ter um custo proibitivo.
    • Por exemplo, o GPT-4 da OpenAI exigiu vários milhares de petaflops/s-dias de computação e energia equivalente à usada por centenas de lares americanos anualmente.
  • Além disso, a complexidade de ajustar hiperparâmetros, lidar com overfitting e alcançar a interpretabilidade do modelo continua a desafiar os desenvolvedores, especialmente em setores regulamentados como finanças e saúde.
  • Essas barreiras são particularmente pronunciadas para empresas de pequeno e médio porte que não têm acesso à infraestrutura de computação de alto desempenho e a grandes conjuntos de talentos em IA.

Escopo de mercado de redes neurais de aprendizado profundo (DNNs)

O mercado é segmentado com base no componente, na aplicação e no usuário final.

  • Por componente

Com base nos componentes, o mercado de Redes Neurais de Aprendizado Profundo (DNNs) é segmentado em hardware, software e serviços. O segmento de software domina a maior fatia da receita de mercado, com 48,2% em 2024, impulsionado por robustos avanços tecnológicos em hardware específico para IA, permitindo treinamento e implantação de modelos mais rápidos e eficientes.

Espera-se que o segmento de software testemunhe a taxa de crescimento mais rápida de 21,7% entre 2025 e 2032, impulsionado pelo aumento de sistemas autônomos, como carros autônomos e robôs de serviço, juntamente com o papel crescente do aprendizado profundo em PNL e reconhecimento de imagem, o que está impulsionando a adoção em todos os setores.

  • Por aplicação

Com base na aplicação, o mercado de Redes Neurais de Aprendizado Profundo (DNNs) é segmentado em reconhecimento de imagem, processamento de linguagem natural, reconhecimento de fala e mineração de dados. O segmento de reconhecimento de imagem deteve a maior fatia da receita de mercado em 2024, impulsionado pelo crescimento exponencial do Big Data, que fornece informações valiosas para esses modelos, especialmente na área da saúde, onde as DNNs estão revolucionando o diagnóstico e a personalização do tratamento.

Espera-se que o segmento de processamento de linguagem natural testemunhe o CAGR mais rápido de 2025 a 2032, impulsionado pela convergência do aprendizado profundo com tecnologias de fronteira, como computação quântica e chips neuromórficos, que prometem redefinir os limites de desempenho, abrindo novas fronteiras comerciais e científicas.

  • Pelo usuário final

Com base no usuário final, o mercado de Redes Neurais de Aprendizado Profundo (DNNs) é segmentado em bancos, serviços financeiros e seguros (BFSI), TI e telecomunicações, saúde, varejo, automotivo, manufatura, aeroespacial e defesa, segurança e outros. O segmento bancário deteve a maior fatia da receita de mercado em 2024, impulsionado por inovações em hardware, como o desenvolvimento de chips de IA especializados, como GPUs e TPUs, que estão aprimorando a eficiência dos processos de aprendizado profundo.

Espera-se que o setor de saúde testemunhe o CAGR mais rápido de 2025 a 2032, impulsionado pelo crescimento exponencial na geração de dados de fontes como dispositivos de IoT, mídias sociais e sistemas empresariais, o que está alimentando a adoção de redes neurais de aprendizado profundo para tarefas como reconhecimento de imagem, processamento de linguagem natural e análise preditiva.

Análise regional do mercado de redes neurais de aprendizado profundo (DNNs)

  • A América do Norte domina o mercado de Redes Neurais de Aprendizado Profundo (DNNs), com a maior participação na receita, de 39,01% em 2024, impulsionada por avanços tecnológicos, aumento da disponibilidade de dados e expansão das aplicações industriais. À medida que a inteligência artificial (IA) se torna mais presente em setores como saúde, automotivo, financeiro e manufatura, as DNNs se destacam por sua capacidade de processar conjuntos de dados massivos e extrair padrões complexos.
  • Isso abriu inúmeros motores e oportunidades de crescimento. O principal deles é a crescente demanda por serviços personalizados, automação aprimorada e análise preditiva. Além disso, os avanços da computação em nuvem e da IA ​​de ponta estão tornando as DNNs mais acessíveis e escaláveis.
  • Governos e empresas em todo o mundo estão aumentando os investimentos em P&D em IA, impulsionando ainda mais a adoção de soluções baseadas em DNN. Outro fator crucial é a proliferação de dispositivos inteligentes e sensores de IoT, que alimentam dados em tempo real que impulsionam o treinamento em DNN.

Visão do mercado de redes neurais de aprendizado profundo (DNNs) dos EUA

O mercado de Redes Neurais de Aprendizado Profundo (DNNs) dos EUA capturou a maior fatia da receita, de 81%, em 2024, na América do Norte, impulsionado por financiamento governamental e institucional para pesquisa em IA, especialmente nos setores de defesa, saúde e educação. O aprendizado profundo está sendo cada vez mais aplicado em diversos setores. Na saúde, é utilizado para análise preditiva e detecção precoce de doenças. A indústria automotiva utiliza as DNNs para avanços em veículos autônomos, enquanto o setor varejista as utiliza para reconhecimento de imagem e análise do comportamento do cliente.  

Visão do mercado de redes neurais de aprendizado profundo (DNNs) na Europa

O mercado europeu de Redes Neurais de Aprendizado Profundo (DNNs) deverá crescer a um CAGR substancial ao longo do período previsto, impulsionado principalmente por inovações em hardware, como o desenvolvimento de chips de IA especializados, como GPUs e TPUs, que estão aprimorando a eficiência dos processos de aprendizado profundo. Além disso, o surgimento de plataformas de Aprendizado Profundo como Serviço (DLaaS) está tornando essas tecnologias mais acessíveis às empresas, reduzindo a necessidade de investimentos iniciais significativos em infraestrutura.

Visão do mercado de redes neurais de aprendizado profundo (DNNs) do Reino Unido

O mercado de Redes Neurais de Aprendizado Profundo (DNNs) do Reino Unido deverá crescer a um CAGR notável durante o período previsto, impulsionado por avanços tecnológicos robustos em hardware específico para IA, permitindo treinamento e implantação de modelos mais rápidos e eficientes. O aumento no número de sistemas autônomos, como carros autônomos e robôs de serviço, aliado ao papel crescente do aprendizado profundo em PLN e reconhecimento de imagem, está impulsionando a adoção em todos os setores. O crescimento exponencial do big data fornece informações valiosas para esses modelos, especialmente na área da saúde, onde as DNNs estão revolucionando o diagnóstico e a personalização do tratamento.  

Visão do mercado de redes neurais de aprendizado profundo (DNNs) na Alemanha

Espera-se que o mercado alemão de Redes Neurais de Aprendizado Profundo (DNNs) se expanda a um CAGR considerável durante o período previsto, impulsionado pelas inúmeras oportunidades em aplicações de IA de ponta, onde a integração de DNNs em dispositivos inteligentes pode gerar insights em tempo real com baixa latência. Além disso, a convergência do aprendizado profundo com tecnologias de ponta, como computação quântica e chips neuromórficos, promete redefinir os limites de desempenho, abrindo novas fronteiras comerciais e científicas.  

Visão do mercado de redes neurais de aprendizado profundo (DNNs) da Ásia-Pacífico

O mercado de redes neurais de aprendizado profundo (DNNs) da Ásia-Pacífico está prestes a crescer a uma taxa composta de crescimento anual (CAGR) mais rápida, de 24%, durante o período previsto de 2025 a 2032, impulsionado por rápidos avanços em hardware de GPU/TPU e computação quântica, permitindo um processamento de DNN mais rápido e eficiente.  

Visão do mercado de redes neurais de aprendizado profundo (DNNs) do Japão

O mercado japonês de Redes Neurais de Aprendizado Profundo (DNNs) está ganhando força devido à cultura de alta tecnologia do país, à rápida urbanização e à demanda por conveniência. O mercado japonês dá grande ênfase à segurança, e a adoção de fechaduras inteligentes é impulsionada pela expansão de sistemas autônomos (por exemplo, carros autônomos, drones e robótica) que dependem fortemente de algoritmos de aprendizado profundo.  

Visão do mercado de redes neurais de aprendizado profundo (DNNs) da China

O mercado de redes neurais de aprendizado profundo (DNNs) da China foi responsável pela maior fatia de receita de mercado na Ásia-Pacífico em 2024, impulsionado por uma IA ética e explicável que se tornou uma preocupação. A oportunidade para desenvolver modelos de redes neurais interpretáveis ​​também está criando novos canais de crescimento.

Participação de mercado de redes neurais de aprendizado profundo (DNNs)

O mercado de Redes Neurais de Aprendizado Profundo (DNNs) é liderado principalmente por empresas bem estabelecidas, incluindo:

  • ALYUDA RESEARCH, LLC
  • Google
  • IBM
  • Micron Technologies, Inc.
  • Tecnologias Neurais Limitadas
  • NEURODIMENSION, INC.
  • NEURALWARE
  • NVIDIA CORPORAÇÃO
  • SKYMIND INC
  • SAMSUNG
  • Qualcomm Technologies, Inc.
  • Corporação Intel
  • Amazon Web Services, Inc.
  • Microsoft
  • GMDH LLC.
  • Sensorial Inc.
  • Ward Systems Group, Inc.
  • Xilinx Inc.
  • Mente Estelar

Últimos desenvolvimentos no mercado global de redes neurais de aprendizado profundo (DNNs)

  • Em abril de 2025, o Google DeepMind, líder em pesquisa de IA, desenvolveu modelos avançados como Gemma e PaliGemma 2, com foco em tarefas de linguagem e visão. Suas inovações, como o Ithaca, auxiliam na restauração de textos antigos, demonstrando a versatilidade das aplicações de aprendizado profundo.
  • Em março de 2024, a IBM, com seu legado em IA, integra a plataforma Watson da IBM ao aprendizado de máquina em processos de negócios, oferecendo soluções como chatbots de atendimento ao cliente. Seu compromisso com a pesquisa em IA continua a influenciar diversos setores.
  • Em março de 2025, a Intel expandiu seus recursos de IA por meio de aquisições como a Nervana e a Movidius, aprimorando softwares de aprendizado profundo e levando aplicativos de IA para dispositivos de baixo consumo. Colaborações, como a com a Microsoft para a aceleração de IA do Bing, destacam seu impacto no mercado.
  • Em fevereiro de 2025, a Microsoft integra IA em seus produtos, da assistente Cortana aos serviços de aprendizado de máquina do Azure. Seus investimentos em startups e ferramentas de IA demonstram uma abordagem robusta para o avanço das tecnologias de aprendizado profundo.
  • Em janeiro de 2025, a OpenAI, conhecida por desenvolver modelos avançados de IA, concentra-se em criar IA que beneficie a humanidade. Sua abordagem de código aberto e as colaborações com empresas como Microsoft e Amazon reforçam sua influência na comunidade de IA.


SKU-

Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo

  • Painel interativo de análise de dados
  • Painel de análise da empresa para oportunidades de elevado potencial de crescimento
  • Acesso de analista de pesquisa para personalização e customização. consultas
  • Análise da concorrência com painel interativo
  • Últimas notícias, atualizações e atualizações Análise de tendências
  • Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Pedido de demonstração

Metodologia de Investigação

A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados ​​e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.

A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis ​​de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.

Personalização disponível

A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

Perguntas frequentes

O mercado é segmentado com base em Segmentação do mercado global de redes neurais de aprendizado profundo (DNNs), por componente (hardware, software e serviços), aplicação (reconhecimento de imagem, processamento de linguagem natural, reconhecimento de fala e mineração de dados), usuário final (bancos, serviços financeiros e seguros (BFSI), TI e telecomunicações, saúde, varejo, automotivo, manufatura, aeroespacial e defesa, segurança e outros), - Tendências e previsões do setor até 2032 .
O tamanho do Relatório de Análise do Tamanho, Participação e Tendências do Mercado foi avaliado em USD 52.30 USD Billion no ano de 2024.
O Relatório de Análise do Tamanho, Participação e Tendências do Mercado está projetado para crescer a um CAGR de 31.2% durante o período de previsão de 2025 a 2032.
Os principais players do mercado incluem Alyuda ResearchLLC., IBM, Micron TechnologyInc., Neural Technologies Limited, NeuroDimensionInc., NeuralWare, NVIDIA Corporation, SAMSUNG, Skymind, Qualcomm TechnologiesInc., Intel Corporation, Amazon Web ServicesInc., Microsoft, GMDH Inc., Sensory Inc., Ward Systems GroupInc., Xilinx, Starmind and Google LLC .
Testimonial