Global Machine Vision Camera Market
Tamanho do mercado em biliões de dólares
CAGR :
%
USD
1.67 Billion
USD
3.16 Billion
2024
2032
| 2025 –2032 | |
| USD 1.67 Billion | |
| USD 3.16 Billion | |
|
|
|
|
Segmentação do mercado global de câmeras de visão de máquina, por produto (câmeras de varredura de linha, câmeras de varredura de área e câmeras 3D), padrões de hardware (Camera Link HS, Camera Link, GigE Vision, CoaXPress, USB3 Vision e outros), tipo de pixel (menos de 1 MP, 1 a 3 MP, 3 a 5 MP, 5 a 8 MP, 8 a 12 MP e 12 MP), tipo de sensor (tecnologia de dispositivo de carga acoplada, tecnologia complementar de metal-óxido-semicondutor, tecnologia de sensor de porta interna modificada e tecnologia de sensor de metal-óxido-semicondutor tipo N), tipo de processo (sensor de imagem 1D, sensor de imagem 2D e sensor de imagem 3D), tipo de espectro (espectro infravermelho, espectro de raios X, espectro de luz visível e outros), detecção (detecção de contorno, detecção de cor, detecção de texto/código de barras e outros), tipo de lente (lente normal, lente teleobjetiva e lente grande angular), plataforma Tipo (câmeras sem fio, câmeras inteligentes/portáteis, câmeras baseadas em PC e câmeras vestíveis), aplicações (orientação, inspeção, medição, identificação e outras) – Tendências e previsões do setor até 2032.
Tamanho do mercado de câmeras de visão computacional
- O tamanho do mercado global de câmeras de visão computacional foi avaliado em US$ 1,67 bilhão em 2024 e deve atingir US$ 3,16 bilhões até 2032 , com um CAGR de 8,3% durante o período previsto.
- O crescimento do mercado é impulsionado pela crescente adoção de tecnologias de automação e da Indústria 4.0 nos setores de manufatura, automotivo e logística, juntamente com avanços em IA e aprendizado profundo para processamento de imagens
- A crescente demanda por controle de qualidade de alta precisão, detecção de defeitos e monitoramento em tempo real em aplicações industriais está posicionando câmeras de visão computacional como componentes críticos em sistemas de automação modernos
Análise de mercado de câmeras de visão computacional
- Câmeras de visão computacional, que permitem captura e análise automatizadas de imagens, são essenciais para a automação industrial, garantia de qualidade e fabricação inteligente, oferecendo imagens de alta resolução, processamento em tempo real e integração com sistemas baseados em IA.
- A crescente demanda por câmeras de visão computacional é alimentada pela rápida expansão da automação industrial, pela crescente necessidade de inspeção de qualidade na fabricação e pelos avanços em tecnologias de sensores, como CMOS e imagens 3D.
- A América do Norte dominou o mercado de câmeras de visão computacional com a maior participação na receita de 38,5% em 2024, impulsionada pela adoção antecipada de tecnologias de automação, um setor de manufatura robusto e a presença de participantes importantes, com os EUA liderando em implantações para as indústrias automotiva e eletrônica.
- Prevê-se que a Ásia-Pacífico seja a região de crescimento mais rápido durante o período previsto, impulsionada pela rápida industrialização, pelo aumento dos investimentos em manufatura inteligente e pela crescente demanda em países como China e Japão.
- O segmento de câmeras de varredura de área deteve a maior participação de receita de mercado de 45,2% em 2024, impulsionado por sua versatilidade e amplo uso em aplicações de inspeção, controle de qualidade e identificação em setores como manufatura, automotivo e eletrônicos
Escopo do Relatório e Segmentação do Mercado de Câmeras de Visão de Máquina
|
Atributos |
Principais insights de mercado sobre câmeras de visão computacional |
|
Segmentos abrangidos |
|
|
Países abrangidos |
América do Norte
Europa
Ásia-Pacífico
Oriente Médio e África
Ámérica do Sul
|
|
Principais participantes do mercado |
|
|
Oportunidades de mercado |
|
|
Conjuntos de informações de dados de valor agregado |
Além dos insights sobre cenários de mercado, como valor de mercado, taxa de crescimento, segmentação, cobertura geográfica e principais participantes, os relatórios de mercado selecionados pela Data Bridge Market Research também incluem análises aprofundadas de especialistas, produção e capacidade de empresas representadas geograficamente, layouts de rede de distribuidores e parceiros, análises detalhadas e atualizadas de tendências de preços e análises de déficit da cadeia de suprimentos e demanda. |
Tendências do mercado de câmeras de visão computacional
“Aumento da integração de IA e análise de Big Data”
- O mercado global de câmeras de visão computacional está vivenciando uma tendência significativa em direção à integração da inteligência artificial, da Indústria 4.0 (IA) e da análise de big data.
- Essas tecnologias permitem processamento e análise avançados de imagens, fornecendo insights mais profundos sobre processos de fabricação, controle de qualidade e eficiência de automação.
- Soluções de visão de máquina com tecnologia de IA facilitam a detecção proativa de defeitos, identificando problemas potenciais nas linhas de produção antes que eles levem a paradas dispendiosas ou recalls de produtos.
- Por exemplo, as empresas estão a desenvolver plataformas baseadas em IA que analisam dados visuais para otimizar a orientação robótica, melhorar a inspeção de qualidade e melhorar o reconhecimento de padrões para aplicações como a fabricação de semicondutores e a montagem automóvel.
- Essa tendência está aprimorando a proposta de valor das câmeras de visão computacional, tornando-as mais atraentes para setores como o eletrônico, automotivo e farmacêutico.
- Os algoritmos de IA podem processar vastos conjuntos de dados de entradas de câmera, detectando padrões como defeitos de superfície, imprecisões dimensionais e erros de texto ou código de barras com alta precisão
Dinâmica do mercado de câmeras de visão computacional
Motorista
“Crescente demanda por soluções de automação e indústria 4.0”
- A crescente demanda por inspeção automatizada, orientação robótica e sistemas de fabricação inteligentes é um grande impulsionador do mercado global de câmeras de visão computacional
- Câmeras de visão computacional aumentam a eficiência da produção ao habilitar recursos como inspeção de qualidade em tempo real, medições precisas e identificação automatizada de objetos
- Os padrões e iniciativas da indústria, especialmente em regiões como a Europa e a Ásia-Pacífico, estão promovendo a adoção de sistemas de visão computacional para dar suporte à Indústria 4.0 e às estruturas de fábricas inteligentes.
- A proliferação da IoT e os avanços nos padrões de conectividade de alta velocidade, como o 5G, estão permitindo uma transmissão de dados mais rápida e menor latência, dando suporte a aplicações sofisticadas de visão computacional.
- Os fabricantes estão cada vez mais integrando câmeras de visão de máquina instaladas na fábrica como recursos padrão ou opcionais para atender às demandas da indústria por precisão e automação
Restrição/Desafio
“Alto custo de implementação e preocupações com a segurança de dados”
- O investimento inicial substancial necessário para hardware, software e integração de sistemas de câmeras de visão computacional pode ser uma barreira significativa à adoção, especialmente para pequenas e médias empresas em mercados emergentes.
- A integração de câmeras de visão computacional em linhas de produção existentes pode ser complexa e dispendiosa, exigindo conhecimentos especializados e atualizações de infraestrutura.
- As preocupações com a segurança e a privacidade dos dados representam um grande desafio, uma vez que as câmeras de visão computacional coletam e transmitem grandes volumes de dados operacionais e de produção sensíveis, aumentando os riscos de ataques cibernéticos e violações de dados.
- O cenário regulatório fragmentado entre os países em relação à coleta, armazenamento e uso de dados complica a conformidade para fabricantes e provedores de serviços globais
- Esses fatores podem desencorajar potenciais adotantes e limitar a expansão do mercado, especialmente em regiões com alta sensibilidade de custo ou regulamentações rigorosas de privacidade de dados.
Escopo de mercado de câmeras de visão computacional
O mercado é segmentado com base no produto, padrões de hardware, tipo de pixel, tipo de sensor, tipo de processo, tipo de espectro, detecção, tipo de lente, tipo de plataforma e aplicações.
- Por produto
Com base no produto, o mercado global de câmeras de visão computacional é segmentado em câmeras de varredura de linha, câmeras de varredura de área e câmeras 3D . O segmento de câmeras de varredura de área deteve a maior participação de mercado, com 45,2% da receita em 2024, impulsionado por sua versatilidade e ampla utilização em aplicações de inspeção, controle de qualidade e identificação em setores como manufatura, automotivo e eletrônico. Sua capacidade de capturar imagens bidimensionais em um único ciclo de exposição as torna ideais para uma ampla gama de aplicações.
Espera-se que o segmento de câmeras 3D apresente a maior taxa de crescimento, de 12,5%, entre 2025 e 2032, impulsionado pela crescente demanda por medições 3D precisas e reconhecimento de objetos em setores como automotivo, aeroespacial e robótica. Os avanços na tecnologia de detecção de profundidade e a crescente adoção de sistemas de visão 3D para aplicações complexas são os principais impulsionadores do crescimento.
- Por padrões de hardware
Com base nos padrões de hardware, o mercado global de câmeras de visão computacional é segmentado em Camera Link HS, Camera Link, GigE Vision, CoaXPress, USB3 Vision e outros. O segmento de GigE Vision dominou o mercado, com uma participação de receita de 38,7% em 2024, devido à sua alta velocidade de transferência de dados, custo-benefício e compatibilidade com sistemas baseados em Ethernet, tornando-o a escolha preferencial para automação industrial e aplicações de fábricas inteligentes.
Espera-se que o segmento de visão USB3 experimente a taxa de crescimento mais rápida de 14,2% de 2025 a 2032, impulsionado por sua funcionalidade plug-and-play, alta largura de banda e crescente adoção em aplicações que exigem transferência rápida e confiável de dados de imagem, como inspeção de qualidade e robótica.
- Por tipo de pixel
Com base no tipo de pixel, o mercado global de câmeras de visão computacional é segmentado em menos de 1 MP, 1 a 3 MP, 3 a 5 MP, 5 a 8 MP, 8 a 12 MP e 12 MP ou mais. O segmento de 5 a 8 MP deteve a maior participação de mercado, com 32,4% da receita em 2024, devido ao seu equilíbrio entre alta resolução e custo-benefício, tornando-o adequado para uma ampla gama de aplicações, incluindo inspeção e identificação em manufatura e eletrônica.
O segmento de 12 MP e acima deverá crescer na taxa mais rápida de 15,1% entre 2025 e 2032, impulsionado pela necessidade de imagens de ultra-alta resolução em aplicações avançadas, como inspeção de semicondutores, diagnósticos médicos e veículos autônomos, onde precisão e detalhes são essenciais.
- Por tipo de sensor
Com base no tipo de sensor, o mercado global de câmeras de visão computacional é segmentado em tecnologia de dispositivo de acoplamento carregado (CCD), tecnologia complementar de óxido metálico semicondutor (CMOS), tecnologia de sensor de porta interna modificada (MIG) e tecnologia de sensor de óxido metálico semicondutor tipo N (NMOS). O segmento de tecnologia complementar de óxido metálico semicondutor dominou, com uma participação de mercado de 60,8% na receita em 2024, devido ao seu menor consumo de energia, velocidades de leitura mais rápidas e custo-benefício em comparação com sensores de dispositivo de acoplamento carregado, tornando-o ideal para aplicações industriais de alto volume.
Espera-se que o segmento de tecnologia de sensores MIG testemunhe a taxa de crescimento mais rápida de 13,8% entre 2025 e 2032, impulsionado por sua maior sensibilidade e capacidade de capturar imagens de alta qualidade em condições de pouca luz, particularmente em aplicações de imagens hiperespectrais para fabricação e vigilância.
- Por tipo de processo
Com base no tipo de processo, o mercado global de câmeras de visão computacional é segmentado em sensores de imagem 1D, sensores de imagem 2D e sensores de imagem 3D. O segmento de sensores de imagem 2D deteve a maior participação de mercado, com 55,3% de receita em 2024, impulsionado por seu amplo uso em aplicações como leitura de código de barras, orientação de etiquetas e detecção de defeitos de superfície, especialmente em manufatura e logística.
Espera-se que o segmento de sensores de imagem 3D cresça na taxa mais rápida de 14,7% entre 2025 e 2032, impulsionado pela crescente adoção de sistemas de visão 3D em robótica, automotivo e aeroespacial para tarefas que exigem percepção de profundidade e medições precisas.
- Por tipo de espectro
Com base no tipo de espectro, o mercado global de câmeras de visão computacional é segmentado em espectro infravermelho, espectro de raios X, espectro de luz visível e outros. O segmento de espectro de luz visível representou a maior fatia da receita de mercado, 48,6% em 2024, devido à sua ampla aplicabilidade em tarefas padrão de inspeção, controle de qualidade e identificação em setores como o eletrônico e o automotivo.
Espera-se que o segmento do espectro infravermelho testemunhe a taxa de crescimento mais rápida de 13,4% entre 2025 e 2032, impulsionado pelos avanços em sensores infravermelhos de ondas curtas (SWIR) e pela crescente demanda por imagens em condições de pouca luz e identificação de materiais em setores como agricultura, mineração e vigilância.
- Por detecção
Com base na detecção, o mercado global de câmeras de visão computacional é segmentado em detecção de contornos, detecção de cores, detecção de texto/código de barras, entre outros. O segmento de detecção de texto/código de barras deteve a maior fatia de mercado, com 40,1% de receita em 2024, impulsionado por seu papel crítico em logística, varejo e manufatura, para identificação, classificação e gerenciamento de estoque de produtos.
O segmento de detecção de contornos deverá crescer na taxa mais rápida de 12,9% entre 2025 e 2032, impulsionado pelo seu uso crescente em aplicações de precisão, como automotiva e aeroespacial, onde a detecção precisa de formas e bordas é essencial para garantia de qualidade e verificação de montagem.
- Por tipo de lente
Com base no tipo de lente, o mercado global de câmeras de visão computacional é segmentado em lentes normais, teleobjetivas e grande angulares. O segmento de lentes grande angulares dominou, com uma participação de mercado de 39,4% na receita em 2024, impulsionado por sua capacidade de fornecer um amplo campo de visão e alta resolução, tornando-as ideais para aplicações como mapeamento móvel, inspeções baseadas em UAV e sistemas avançados de assistência ao motorista (ADAS).
Espera-se que o segmento de teleobjetivas testemunhe a taxa de crescimento mais rápida de 13,6% entre 2025 e 2032, impulsionado por seu uso em aplicações que exigem alta ampliação e imagens detalhadas, como inspeção de semicondutores e vigilância de longo alcance.
- Por tipo de plataforma
Com base no tipo de plataforma, o mercado global de câmeras de visão computacional é segmentado em câmeras sem fio, câmeras inteligentes/portáteis, câmeras para PC e câmeras vestíveis. O segmento de câmeras para PC deteve a maior participação de mercado, com 52,0% de receita em 2024, devido ao seu superior poder de processamento, escalabilidade e capacidade de lidar com algoritmos complexos para aplicações de manufatura sofisticadas.
Espera-se que o segmento de câmeras inteligentes/portáteis cresça na taxa mais rápida de 15,3% entre 2025 e 2032, impulsionado pelo tamanho compacto, facilidade de integração e crescente demanda por inspeção de qualidade em pequenas e médias empresas, especialmente em setores que adotam soluções de fabricação inteligentes.
- Por aplicações
Com base nas aplicações, o mercado global de câmeras de visão computacional é segmentado em orientação, inspeção, aferição, identificação e outros. O segmento de inspeção dominou, com uma participação de mercado de 42,3% na receita em 2024, impulsionado por seu papel fundamental em garantir a qualidade e a conformidade dos produtos em setores como manufatura, automotivo, eletrônico e farmacêutico.
Espera-se que o segmento de identificação testemunhe a taxa de crescimento mais rápida de 14,0% de 2025 a 2032, impulsionado pelo uso crescente de câmeras de visão de máquina para leitura de código de barras, reconhecimento de padrões e manutenção preditiva em iniciativas de logística, varejo e fábricas inteligentes.
Análise regional do mercado de câmeras de visão computacional
- A América do Norte domina o mercado de câmeras de visão computacional com a maior participação na receita de 38,5% em 2024, impulsionada pela adoção antecipada de tecnologias de automação, um setor de manufatura robusto e a presença de participantes importantes, com os EUA liderando em implantações para as indústrias automotiva e eletrônica
- Consumidores e indústrias priorizam câmeras de visão computacional para inspeção de precisão, detecção de defeitos e automação de processos, especialmente em aplicações de manufatura inteligente e Indústria 4.0. A necessidade de maior produtividade e redução de custos operacionais impulsiona a adoção em diversos setores.
- • O crescimento é apoiado por avanços em tecnologias de câmeras, como sensores CMOS, imagens 3D e integração de IA, juntamente com a crescente demanda em aplicações OEM e de reposição para usos industriais e não industriais
Visão geral do mercado de câmeras de visão computacional dos EUA
Os EUA dominam o mercado de câmeras de visão computacional na América do Norte, com a maior participação na receita, de 76,4% em 2024, impulsionado pela forte demanda nos setores automotivo, de semicondutores e de saúde. Os crescentes investimentos em automação e controle de qualidade, aliados à conscientização do consumidor sobre os benefícios da visão computacional para precisão e eficiência, impulsionam o crescimento do mercado. A tendência para fábricas inteligentes e marcos regulatórios favoráveis à manufatura avançada aceleram ainda mais a adoção.
Visão geral do mercado de câmeras de visão computacional na Europa
Espera-se que o mercado europeu de câmeras de visão computacional testemunhe um crescimento significativo, impulsionado pelo foco em engenharia de precisão e automação na manufatura. Países como Alemanha, França e Reino Unido demonstram forte adesão devido à crescente demanda por garantia de qualidade e inspeção nos setores automotivo e eletrônico. A ênfase regulatória em segurança e sustentabilidade ambiental, aliada aos avanços nas tecnologias de câmeras 3D e SWIR, impulsiona a expansão do mercado.
Visão geral do mercado de câmeras de visão computacional do Reino Unido
O mercado britânico de câmeras de visão computacional deverá apresentar rápido crescimento, impulsionado pela demanda por automação na manufatura e logística. Consumidores e indústrias buscam câmeras que aprimorem o controle de qualidade e a eficiência operacional, além de atender a rigorosos regulamentos de segurança. O aumento de iniciativas de manufatura inteligente e a crescente adoção em aplicações automotivas e farmacêuticas sustentam o crescimento sustentado do mercado.
Visão geral do mercado de câmeras de visão computacional na Alemanha
Espera-se que a Alemanha testemunhe a maior taxa de crescimento no mercado europeu de câmeras de visão computacional, impulsionada por seus avançados setores automotivo e de manufatura. A alta demanda do consumidor por soluções de inspeção de precisão e automação com eficiência energética impulsiona a adoção. A integração de tecnologias avançadas, como IA e câmeras CMOS de alta resolução em processos de fabricação premium, juntamente com a forte demanda do mercado de reposição, sustenta o crescimento robusto do mercado.
Visão do mercado de câmeras de visão computacional da Ásia-Pacífico
A região Ásia-Pacífico deverá apresentar a taxa de crescimento mais rápida, detendo uma participação de mercado dominante de 43,1% em 2023, impulsionada pela rápida industrialização e adoção da automação em países como China, Japão e Coreia do Sul. O aumento dos investimentos nas indústrias eletrônica, automotiva e de semicondutores, juntamente com iniciativas governamentais como o programa Made in China 2025 da China, impulsiona a demanda por câmeras de visão computacional. O foco crescente no controle de qualidade e na manufatura inteligente acelera ainda mais o crescimento.
Visão geral do mercado de câmeras de visão computacional do Japão
Espera-se que o mercado de câmeras de visão computacional do Japão testemunhe um rápido crescimento, impulsionado por sua liderança em engenharia de precisão e fabricação automotiva. A forte preferência do consumidor por câmeras de alta qualidade com integração de IA, que aprimoram a automação e a garantia de qualidade, impulsiona a expansão do mercado. A presença de grandes fabricantes e a crescente integração da visão computacional em aplicações OEM e de reposição contribuem para o crescimento sustentado.
Visão geral do mercado de câmeras de visão computacional da China
A China detém a maior fatia do mercado de câmeras de visão computacional da Ásia-Pacífico, impulsionada por sua extensa base fabril e rápida adoção de tecnologias de automação. O foco do país nas indústrias eletrônica, automotiva e de semicondutores, aliado ao apoio governamental à Indústria 4.0, impulsiona a demanda por câmeras de visão computacional avançadas. Preços competitivos e forte capacidade de produção nacional aumentam ainda mais a acessibilidade e o crescimento do mercado.
Participação no mercado de câmeras de visão computacional
O setor de câmeras de visão computacional é liderado principalmente por empresas bem estabelecidas, incluindo:
- Basler AG (Alemanha)
- Cognex Corporation (EUA)
- KEYENCE CORPORATION (Japão)
- NATIONAL INSTRUMENTS CORP (EUA)
- OMRON Corporation (Japão)
- Teledyne Digital Imaging Inc. (EUA)
- Sony Corporation (Japão)
- SICK AG (Alemanha)
- Hitachi Kokusai Electric America, Ltd. (EUA)
- Allied Vision Technologies GmbH (Alemanha)
- Hermary (Canadá)
- ISRA VISION AG (Alemanha)
- Omron Microscan Systems, Inc. (EUA)
- Toshiba Teli Corporation (Japão)
- Datalogic SpA (Itália)
Quais são os desenvolvimentos recentes no mercado global de câmeras de visão computacional?
- Em abril de 2024, a OMNIVISION lançou os sensores de imagem de obturador CMOS OV9281 e OV9282, projetados para aplicações de visão computacional, como robótica guiada por visão, inspeção de alta velocidade, leitura de códigos de barras para logística e sistemas de transporte inteligentes. Esses sensores de obturador global de alta velocidade oferecem resolução de 1 megapixel (1280 x 800) com a melhor eficiência quântica no infravermelho próximo (NIR) da categoria, garantindo baixa latência e excelente desempenho em condições de pouca luz. O OV9281 captura imagens a 120 quadros por segundo (fps), enquanto o OV9282 oferece um ângulo de raio principal (CRA) mais amplo, de 27 graus, reforçando a liderança da OMNIVISION em automação industrial.
- Em fevereiro de 2024, a Teledyne Imaging anunciou a aquisição da Adimec Holding BV, uma desenvolvedora holandesa de câmeras industriais e científicas de alto desempenho. Este movimento estratégico aprimora o portfólio de visão computacional da Teledyne, fortalecendo sua presença no mercado EMEA. A aquisição se alinha ao foco da Teledyne em saúde, defesa global e inspeção de semicondutores, integrando a expertise da Adimec em imagens de precisão.
- Em agosto de 2023, a Cognex Corporation anunciou a aquisição da Moritex Corporation por ¥ 40 bilhões (aproximadamente US$ 275 milhões). Este movimento estratégico expande a oferta de componentes ópticos da Cognex, fortalecendo sua presença no mercado de visão computacional de alto crescimento do Japão. A Moritex, líder global em componentes ópticos, possui 50 anos de experiência no fornecimento de soluções de alta precisão para fabricantes de equipamentos industriais. A aquisição aprimora a capacidade da Cognex de fornecer soluções integradas de visão computacional, combinando a expertise em óptica da Moritex com as tecnologias avançadas de imagem da Cognex.
- Em julho de 2023, a Basler AG fortaleceu sua presença no mercado de visão computacional da China por meio de uma parceria com a Beijing Sanbao Xingye (MVLZ) Image Tech. Co., Ltd.. Essa colaboração aprimora a rede de distribuição da Basler, garantindo maior acessibilidade às suas soluções de câmeras industriais e de manufatura. A parceria integra a expertise da MVLZ em componentes de processamento de imagem, otimizando a eficiência da cadeia de suprimentos e o suporte ao cliente. Ao expandir sua presença na região de crescimento estratégico da Ásia, a Basler visa fornecer tecnologia de visão computacional de ponta, adaptada às necessidades da indústria local.
- Em maio de 2023, a Zivid lançou a série de câmeras coloridas 3D Zivid Two+, projetada para aplicações de automação robótica, como despaletização, coleta de lixo e montagem. Essas câmeras contam com tecnologia de luz estruturada de alta velocidade, proporcionando precisão de profundidade excepcional e imagens em cores vibrantes. A série Zivid Two+ R aprimora os recursos de visão computacional, permitindo o reconhecimento preciso de objetos mesmo em ambientes desafiadores. Com opções de campo de visão otimizadas, a série atende a diversas necessidades de automação industrial, reforçando a liderança da Zivid em tecnologia de visão 3D.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Índice
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL MACHINE VISION CAMERA MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL MACHINE VISION CAMERA MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMPANY POSITIONING GRID
2.2.5 MULTIVARIATE MODELLING
2.2.6 STANDARDS OF MEASUREMENT
2.2.7 TOP TO BOTTOM ANALYSIS
2.2.8 VENDOR SHARE ANALYSIS
2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL MACHINE VISION CAMERA MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 INDUSTRY ANALYSIS & FUTURISTIC SCENARIO
5.2 PENETRATION AND GROWTH POSPECT MAPPING
5.3 COMPETITOR KEY PRICING STRATEGIES
5.4 TECHNOLOGY ANALYSIS
5.4.1 KEY TECHNOLOGIES
5.4.2 COMPLEMENTARY TECHNOLOGIES
5.4.3 ADJACENT TECHNOLOGIES
FIGURE 1 TECHNOLOGY MATRIX
Company Product/Service offered
5.5 COMPANY COMPETITIVE ANALYSIS
5.5.1 STRATEGIC DEVELOPMENT
5.5.2 TECHNOLOGY IMPLEMENTATION PROCESS
5.5.2.1. CHALLENGES
5.5.2.2. INHOUSE IMPLEMENTATION/OUTSOURCED (THIRD PARTY) IMPLEMENTATION
5.5.3 TECHNOLOGY SPEND OF COMPANY
5.5.4 CUSTOMER BASE
5.5.5 SERVICE POSITIONING
5.5.6 CUSTOMER FEEDBACK/RATING (B2B OR B2C)
5.5.7 APPLICATION REACH
5.5.8 SERVICE PLATFORM MATRIX
FIGURE 2 COMPANY COMPARATIVE ANALYSIS
Parameters Company A
Market Share
Growth (%)
Target Audience
Price Structure
Market Strategies
Customer Feedback
Service Positioning
Customer Feedback/Rating
Strategic Development
Acquisitions & its value (USD Million)
Application Reach
FIGURE 3 COMPANY SERVICE PLATFORM MATRIX
5.6 FUNDING DETAILS—INVESTOR DETAILS , REASON OF INVESTMENT FROM INVESTOR
5.7 USED CASES & ITS ANALYSIS
FIGURE 4 USED CASE ANALYSIS
Company Product/Service offered
6 GLOBAL MACHINE VISION CAMERA MARKET,BY TYPE
6.1 OVERVIEW
6.2 AREA SCAN
6.2.1 PIXEL TYPE
6.2.1.1. LESS THAN 1MP
6.2.1.2. 1 TO 3 MP
6.2.1.3. 3 TO 5 MP
6.2.1.4. 5 TO 10 MP
6.2.1.5. MORE THAN 10 MP
6.2.1.6. OTHERS
6.3 LINE SCAN
6.3.1 PIXEL TYPE
6.3.1.1. LESS THAN 1MP
6.3.1.2. 1 TO 3 MP
6.3.1.3. 3 TO 5 MP
6.3.1.4. 5 TO 8 MP
6.3.1.5. 8 TO 12 MP
6.3.1.6. 12 MP
6.3.1.7. OTHERS
6.4 SHORT-WAVE INFRARED
6.4.1 PIXEL TYPE
6.4.1.1. LESS THAN 1MP
6.4.1.2. 1 TO 3 MP
6.4.1.3. 3 TO 5 MP
6.4.1.4. 5 TO 8 MP
6.4.1.5. 8 TO 12 MP
6.4.1.6. 12 MP
6.4.1.7. OTHERS
6.5 TIME-OF-FLIGHT
6.5.1 PIXEL TYPE
6.5.1.1. LESS THAN 1MP
6.5.1.2. 1 TO 3 MP
6.5.1.3. 3 TO 5 MP
6.5.1.4. 5 TO 8 MP
6.5.1.5. 8 TO 12 MP
6.5.1.6. 12 MP
6.5.1.7. OTHERS
7 GLOBAL MACHINE VISION CAMERA MARKET,BY PRODUCT TYPE
7.1 OVERVIEW
7.2 PC-BASED
7.3 SMART CAMERAS
7.4 OTHERS
8 GLOBAL MACHINE VISION CAMERA MARKET,BY PROCESS TYPE
8.1 OVERVIEW
8.2 1D
8.3 2D
8.4 3D
9 GLOBAL MACHINE VISION CAMERA MARKET,BY COMPONENTS
9.1 OVERVIEW
9.2 CAMERAS
9.3 SENSORS
9.4 PROCESSORS
10 GLOBAL MACHINE VISION CAMERA MARKET, BY LENS TYPE
10.1 OVERVIEW
10.2 TELECENTRIC LENSES
10.3 MACRO LENSES
10.4 FIXED FOCAL LENGTH LENSES
10.5 LARGE FORMAT AND LINE SCAN LENSES
10.6 OTHERS
11 GLOBAL MACHINE VISION CAMERA MARKET, BY DETECTION
11.1 OVERVIEW
11.2 BARCODE/CHARACTER RECOGNITION
11.3 SPOT DETECTION
11.4 COLOUR DETECTION
11.5 OTHERS
12 GLOBAL MACHINE VISION CAMERA MARKET, BY APPLICATION
12.1 OVERVIEW
12.2 MEASUREMENT
12.3 IDENTIFICATION
12.4 POSITIONING
12.5 GUIDANCE
12.6 OTHERS
13 GLOBAL MACHINE VISION CAMERA MARKET,BY END USER
14 OVERVIEW
14.1 OVERVIEW
14.2 AUTOMOTIVE
14.2.1 TYPE
14.2.1.1. AREA SCAN
14.2.1.1.1. PIXEL TYPE
14.2.1.1.1.1 LESS THAN 1MP
14.2.1.1.1.2 1 TO 3 MP
14.2.1.1.1.3 3 TO 5 MP
14.2.1.1.1.4 5 TO 10 MP
14.2.1.1.1.5 MORE THAN 10 MP
14.2.1.2. LINE SCAN
14.2.1.2.1. PIXEL TYPE
14.2.1.2.1.1 LESS THAN 1MP
14.2.1.2.1.2 1 TO 3 MP
14.2.1.2.1.3 3 TO 5 MP
14.2.1.2.1.4 5 TO 8 MP
14.2.1.2.1.5 8 TO 12 MP
14.2.1.2.1.6 12 MP
14.2.1.3. SHORT-WAVE INFRARED
14.2.1.3.1. PIXEL TYPE
14.2.1.3.1.1 LESS THAN 1MP
14.2.1.3.1.2 1 TO 3 MP
14.2.1.3.1.3 3 TO 5 MP
14.2.1.3.1.4 5 TO 8 MP
14.2.1.3.1.5 8 TO 12 MP
14.2.1.3.1.6 12 MP
14.2.1.4. TIME-OF-FLIGHT
14.2.1.4.1. PIXEL TYPE
14.2.1.4.1.1 LESS THAN 1MP
14.2.1.4.1.2 1 TO 3 MP
14.2.1.4.1.3 3 TO 5 MP
14.2.1.4.1.4 5 TO 8 MP
14.2.1.4.1.5 8 TO 12 MP
14.2.1.4.1.6 12 MP
14.3 CONSUMER APPLICATION
14.3.1 TYPE
14.3.1.1. AREA SCAN
14.3.1.1.1. PIXEL TYPE
14.3.1.1.1.1 LESS THAN 1MP
14.3.1.1.1.2 1 TO 3 MP
14.3.1.1.1.3 3 TO 5 MP
14.3.1.1.1.4 5 TO 10 MP
14.3.1.1.1.5 MORE THAN 10 MP
14.3.1.2. LINE SCAN
14.3.1.2.1. PIXEL TYPE
14.3.1.2.1.1 LESS THAN 1MP
14.3.1.2.1.2 1 TO 3 MP
14.3.1.2.1.3 3 TO 5 MP
14.3.1.2.1.4 5 TO 8 MP
14.3.1.2.1.5 8 TO 12 MP
14.3.1.2.1.6 12 MP
14.3.1.3. SHORT-WAVE INFRARED
14.3.1.3.1. PIXEL TYPE
14.3.1.3.1.1 LESS THAN 1MP
14.3.1.3.1.2 1 TO 3 MP
14.3.1.3.1.3 3 TO 5 MP
14.3.1.3.1.4 5 TO 8 MP
14.3.1.3.1.5 8 TO 12 MP
14.3.1.3.1.6 12 MP
14.3.1.4. TIME-OF-FLIGHT
14.3.1.4.1. PIXEL TYPE
14.3.1.4.1.1 LESS THAN 1MP
14.3.1.4.1.2 1 TO 3 MP
14.3.1.4.1.3 3 TO 5 MP
14.3.1.4.1.4 5 TO 8 MP
14.3.1.4.1.5 8 TO 12 MP
14.3.1.4.1.6 12 MP
14.4 ELECTRONICES & SEMICONDUCTOR
14.4.1 TYPE
14.4.1.1. AREA SCAN
14.4.1.1.1. PIXEL TYPE
14.4.1.1.1.1 LESS THAN 1MP
14.4.1.1.1.2 1 TO 3 MP
14.4.1.1.1.3 3 TO 5 MP
14.4.1.1.1.4 5 TO 10 MP
14.4.1.1.1.5 MORE THAN 10 MP
14.4.1.2. LINE SCAN
14.4.1.2.1. PIXEL TYPE
14.4.1.2.1.1 LESS THAN 1MP
14.4.1.2.1.2 1 TO 3 MP
14.4.1.2.1.3 3 TO 5 MP
14.4.1.2.1.4 5 TO 8 MP
14.4.1.2.1.5 8 TO 12 MP
14.4.1.2.1.6 12 MP
14.4.1.3. SHORT-WAVE INFRARED
14.4.1.3.1. PIXEL TYPE
14.4.1.3.1.1 LESS THAN 1MP
14.4.1.3.1.2 1 TO 3 MP
14.4.1.3.1.3 3 TO 5 MP
14.4.1.3.1.4 5 TO 8 MP
14.4.1.3.1.5 8 TO 12 MP
14.4.1.3.1.6 12 MP
14.4.1.4. TIME-OF-FLIGHT
14.4.1.4.1. PIXEL TYPE
14.4.1.4.1.1 LESS THAN 1MP
14.4.1.4.1.2 1 TO 3 MP
14.4.1.4.1.3 3 TO 5 MP
14.4.1.4.1.4 5 TO 8 MP
14.4.1.4.1.5 8 TO 12 MP
14.4.1.4.1.6 12 MP
14.5 GLASS
14.5.1 TYPE
14.5.1.1. AREA SCAN
14.5.1.1.1. PIXEL TYPE
14.5.1.1.1.1 LESS THAN 1MP
14.5.1.1.1.2 1 TO 3 MP
14.5.1.1.1.3 3 TO 5 MP
14.5.1.1.1.4 5 TO 10 MP
14.5.1.1.1.5 MORE THAN 10 MP
14.5.1.2. LINE SCAN
14.5.1.2.1. PIXEL TYPE
14.5.1.2.1.1 LESS THAN 1MP
14.5.1.2.1.2 1 TO 3 MP
14.5.1.2.1.3 3 TO 5 MP
14.5.1.2.1.4 5 TO 8 MP
14.5.1.2.1.5 8 TO 12 MP
14.5.1.2.1.6 12 MP
14.5.1.3. SHORT-WAVE INFRARED
14.5.1.3.1. PIXEL TYPE
14.5.1.3.1.1 LESS THAN 1MP
14.5.1.3.1.2 1 TO 3 MP
14.5.1.3.1.3 3 TO 5 MP
14.5.1.3.1.4 5 TO 8 MP
14.5.1.3.1.5 8 TO 12 MP
14.5.1.3.1.6 12 MP
14.5.1.4. TIME-OF-FLIGHT
14.5.1.4.1. PIXEL TYPE
14.5.1.4.1.1 LESS THAN 1MP
14.5.1.4.1.2 1 TO 3 MP
14.5.1.4.1.3 3 TO 5 MP
14.5.1.4.1.4 5 TO 8 MP
14.5.1.4.1.5 8 TO 12 MP
14.5.1.4.1.6 12 MP
14.6 METAL
14.6.1 TYPE
14.6.1.1. AREA SCAN
14.6.1.1.1. PIXEL TYPE
14.6.1.1.1.1 LESS THAN 1MP
14.6.1.1.1.2 1 TO 3 MP
14.6.1.1.1.3 3 TO 5 MP
14.6.1.1.1.4 5 TO 10 MP
14.6.1.1.1.5 MORE THAN 10 MP
14.6.1.2. LINE SCAN
14.6.1.2.1. PIXEL TYPE
14.6.1.2.1.1 LESS THAN 1MP
14.6.1.2.1.2 1 TO 3 MP
14.6.1.2.1.3 3 TO 5 MP
14.6.1.2.1.4 5 TO 8 MP
14.6.1.2.1.5 8 TO 12 MP
14.6.1.2.1.6 12 MP
14.6.1.3. SHORT-WAVE INFRARED
14.6.1.3.1. PIXEL TYPE
14.6.1.3.1.1 LESS THAN 1MP
14.6.1.3.1.2 1 TO 3 MP
14.6.1.3.1.3 3 TO 5 MP
14.6.1.3.1.4 5 TO 8 MP
14.6.1.3.1.5 8 TO 12 MP
14.6.1.3.1.6 12 MP
14.6.1.4. TIME-OF-FLIGHT
14.6.1.4.1. PIXEL TYPE
14.6.1.4.1.1 LESS THAN 1MP
14.6.1.4.1.2 1 TO 3 MP
14.6.1.4.1.3 3 TO 5 MP
14.6.1.4.1.4 5 TO 8 MP
14.6.1.4.1.5 8 TO 12 MP
14.6.1.4.1.6 12 MP
14.7 WOOD & PAPER
14.7.1 TYPE
14.7.1.1. AREA SCAN
14.7.1.1.1. PIXEL TYPE
14.7.1.1.1.1 LESS THAN 1MP
14.7.1.1.1.2 1 TO 3 MP
14.7.1.1.1.3 3 TO 5 MP
14.7.1.1.1.4 5 TO 10 MP
14.7.1.1.1.5 MORE THAN 10 MP
14.7.1.2. LINE SCAN
14.7.1.2.1. PIXEL TYPE
14.7.1.2.1.1 LESS THAN 1MP
14.7.1.2.1.2 1 TO 3 MP
14.7.1.2.1.3 3 TO 5 MP
14.7.1.2.1.4 5 TO 8 MP
14.7.1.2.1.5 8 TO 12 MP
14.7.1.2.1.6 12 MP
14.7.1.3. SHORT-WAVE INFRARED
14.7.1.3.1. PIXEL TYPE
14.7.1.3.1.1 LESS THAN 1MP
14.7.1.3.1.2 1 TO 3 MP
14.7.1.3.1.3 3 TO 5 MP
14.7.1.3.1.4 5 TO 8 MP
14.7.1.3.1.5 8 TO 12 MP
14.7.1.3.1.6 12 MP
14.7.1.4. TIME-OF-FLIGHT
14.7.1.4.1. PIXEL TYPE
14.7.1.4.1.1 LESS THAN 1MP
14.7.1.4.1.2 1 TO 3 MP
14.7.1.4.1.3 3 TO 5 MP
14.7.1.4.1.4 5 TO 8 MP
14.7.1.4.1.5 8 TO 12 MP
14.7.1.4.1.6 12 MP
14.8 PHARMACEUTICLAS
14.8.1 TYPE
14.8.1.1. AREA SCAN
14.8.1.1.1. PIXEL TYPE
14.8.1.1.1.1 LESS THAN 1MP
14.8.1.1.1.2 1 TO 3 MP
14.8.1.1.1.3 3 TO 5 MP
14.8.1.1.1.4 5 TO 10 MP
14.8.1.1.1.5 MORE THAN 10 MP
14.8.1.2. LINE SCAN
14.8.1.2.1. PIXEL TYPE
14.8.1.2.1.1 LESS THAN 1MP
14.8.1.2.1.2 1 TO 3 MP
14.8.1.2.1.3 3 TO 5 MP
14.8.1.2.1.4 5 TO 8 MP
14.8.1.2.1.5 8 TO 12 MP
14.8.1.2.1.6 12 MP
14.8.1.3. SHORT-WAVE INFRARED
14.8.1.3.1. PIXEL TYPE
14.8.1.3.1.1 LESS THAN 1MP
14.8.1.3.1.2 1 TO 3 MP
14.8.1.3.1.3 3 TO 5 MP
14.8.1.3.1.4 5 TO 8 MP
14.8.1.3.1.5 8 TO 12 MP
14.8.1.3.1.6 12 MP
14.8.1.4. TIME-OF-FLIGHT
14.8.1.4.1. PIXEL TYPE
14.8.1.4.1.1 LESS THAN 1MP
14.8.1.4.1.2 1 TO 3 MP
14.8.1.4.1.3 3 TO 5 MP
14.8.1.4.1.4 5 TO 8 MP
14.8.1.4.1.5 8 TO 12 MP
14.8.1.4.1.6 12 MP
14.9 FOOD & BEVERAGES
14.9.1 TYPE
14.9.1.1. AREA SCAN
14.9.1.1.1. PIXEL TYPE
14.9.1.1.1.1 LESS THAN 1MP
14.9.1.1.1.2 1 TO 3 MP
14.9.1.1.1.3 3 TO 5 MP
14.9.1.1.1.4 5 TO 10 MP
14.9.1.1.1.5 MORE THAN 10 MP
14.9.1.2. LINE SCAN
14.9.1.2.1. PIXEL TYPE
14.9.1.2.1.1 LESS THAN 1MP
14.9.1.2.1.2 1 TO 3 MP
14.9.1.2.1.3 3 TO 5 MP
14.9.1.2.1.4 5 TO 8 MP
14.9.1.2.1.5 8 TO 12 MP
14.9.1.2.1.6 12 MP
14.9.1.3. SHORT-WAVE INFRARED
14.9.1.3.1. PIXEL TYPE
14.9.1.3.1.1 LESS THAN 1MP
14.9.1.3.1.2 1 TO 3 MP
14.9.1.3.1.3 3 TO 5 MP
14.9.1.3.1.4 5 TO 8 MP
14.9.1.3.1.5 8 TO 12 MP
14.9.1.3.1.6 12 MP
14.9.1.4. TIME-OF-FLIGHT
14.9.1.4.1. PIXEL TYPE
14.9.1.4.1.1 LESS THAN 1MP
14.9.1.4.1.2 1 TO 3 MP
14.9.1.4.1.3 3 TO 5 MP
14.9.1.4.1.4 5 TO 8 MP
14.9.1.4.1.5 8 TO 12 MP
14.9.1.4.1.6 12 MP
14.1 RUBBER & PLASTIC
14.10.1 TYPE
14.10.1.1. AREA SCAN
14.10.1.1.1. PIXEL TYPE
14.10.1.1.1.1 LESS THAN 1MP
14.10.1.1.1.2 1 TO 3 MP
14.10.1.1.1.3 3 TO 5 MP
14.10.1.1.1.4 5 TO 10 MP
14.10.1.1.1.5 MORE THAN 10 MP
14.10.1.2. LINE SCAN
14.10.1.2.1. PIXEL TYPE
14.10.1.2.1.1 LESS THAN 1MP
14.10.1.2.1.2 1 TO 3 MP
14.10.1.2.1.3 3 TO 5 MP
14.10.1.2.1.4 5 TO 8 MP
14.10.1.2.1.5 8 TO 12 MP
14.10.1.2.1.6 12 MP
14.10.1.3. SHORT-WAVE INFRARED
14.10.1.3.1. PIXEL TYPE
14.10.1.3.1.1 LESS THAN 1MP
14.10.1.3.1.2 1 TO 3 MP
14.10.1.3.1.3 3 TO 5 MP
14.10.1.3.1.4 5 TO 8 MP
14.10.1.3.1.5 8 TO 12 MP
14.10.1.3.1.6 12 MP
14.10.1.4. TIME-OF-FLIGHT
14.10.1.4.1. PIXEL TYPE
14.10.1.4.1.1 LESS THAN 1MP
14.10.1.4.1.2 1 TO 3 MP
14.10.1.4.1.3 3 TO 5 MP
14.10.1.4.1.4 5 TO 8 MP
14.10.1.4.1.5 8 TO 12 MP
14.10.1.4.1.6 12 MP
14.11 PRITING
14.11.1 TYPE
14.11.1.1. AREA SCAN
14.11.1.1.1. PIXEL TYPE
14.11.1.1.1.1 LESS THAN 1MP
14.11.1.1.1.2 1 TO 3 MP
14.11.1.1.1.3 3 TO 5 MP
14.11.1.1.1.4 5 TO 10 MP
14.11.1.1.1.5 MORE THAN 10 MP
14.11.1.2. LINE SCAN
14.11.1.2.1. PIXEL TYPE
14.11.1.2.1.1 LESS THAN 1MP
14.11.1.2.1.2 1 TO 3 MP
14.11.1.2.1.3 3 TO 5 MP
14.11.1.2.1.4 5 TO 8 MP
14.11.1.2.1.5 8 TO 12 MP
14.11.1.2.1.6 12 MP
14.11.1.3. SHORT-WAVE INFRARED
14.11.1.3.1. PIXEL TYPE
14.11.1.3.1.1 LESS THAN 1MP
14.11.1.3.1.2 1 TO 3 MP
14.11.1.3.1.3 3 TO 5 MP
14.11.1.3.1.4 5 TO 8 MP
14.11.1.3.1.5 8 TO 12 MP
14.11.1.3.1.6 12 MP
14.11.1.4. TIME-OF-FLIGHT
14.11.1.4.1. PIXEL TYPE
14.11.1.4.1.1 LESS THAN 1MP
14.11.1.4.1.2 1 TO 3 MP
14.11.1.4.1.3 3 TO 5 MP
14.11.1.4.1.4 5 TO 8 MP
14.11.1.4.1.5 8 TO 12 MP
14.11.1.4.1.6 12 MP
14.12 MACHINERY
14.12.1 TYPE
14.12.1.1. AREA SCAN
14.12.1.1.1. PIXEL TYPE
14.12.1.1.1.1 LESS THAN 1MP
14.12.1.1.1.2 1 TO 3 MP
14.12.1.1.1.3 3 TO 5 MP
14.12.1.1.1.4 5 TO 10 MP
14.12.1.1.1.5 MORE THAN 10 MP
14.12.1.2. LINE SCAN
14.12.1.2.1. PIXEL TYPE
14.12.1.2.1.1 LESS THAN 1MP
14.12.1.2.1.2 1 TO 3 MP
14.12.1.2.1.3 3 TO 5 MP
14.12.1.2.1.4 5 TO 8 MP
14.12.1.2.1.5 8 TO 12 MP
14.12.1.2.1.6 12 MP
14.12.1.3. SHORT-WAVE INFRARED
14.12.1.3.1. PIXEL TYPE
14.12.1.3.1.1 LESS THAN 1MP
14.12.1.3.1.2 1 TO 3 MP
14.12.1.3.1.3 3 TO 5 MP
14.12.1.3.1.4 5 TO 8 MP
14.12.1.3.1.5 8 TO 12 MP
14.12.1.3.1.6 12 MP
14.12.1.4. TIME-OF-FLIGHT
14.12.1.4.1. PIXEL TYPE
14.12.1.4.1.1 LESS THAN 1MP
14.12.1.4.1.2 1 TO 3 MP
14.12.1.4.1.3 3 TO 5 MP
14.12.1.4.1.4 5 TO 8 MP
14.12.1.4.1.5 8 TO 12 MP
14.12.1.4.1.6 12 MP
14.13 TEXTLES
14.13.1 TYPE
14.13.1.1. AREA SCAN
14.13.1.1.1. PIXEL TYPE
14.13.1.1.1.1 LESS THAN 1MP
14.13.1.1.1.2 1 TO 3 MP
14.13.1.1.1.3 3 TO 5 MP
14.13.1.1.1.4 5 TO 10 MP
14.13.1.1.1.5 MORE THAN 10 MP
14.13.1.2. LINE SCAN
14.13.1.2.1. PIXEL TYPE
14.13.1.2.1.1 LESS THAN 1MP
14.13.1.2.1.2 1 TO 3 MP
14.13.1.2.1.3 3 TO 5 MP
14.13.1.2.1.4 5 TO 8 MP
14.13.1.2.1.5 8 TO 12 MP
14.13.1.2.1.6 12 MP
14.13.1.3. SHORT-WAVE INFRARED
14.13.1.3.1. PIXEL TYPE
14.13.1.3.1.1 LESS THAN 1MP
14.13.1.3.1.2 1 TO 3 MP
14.13.1.3.1.3 3 TO 5 MP
14.13.1.3.1.4 5 TO 8 MP
14.13.1.3.1.5 8 TO 12 MP
14.13.1.3.1.6 12 MP
14.13.1.4. TIME-OF-FLIGHT
14.13.1.4.1. PIXEL TYPE
14.13.1.4.1.1 LESS THAN 1MP
14.13.1.4.1.2 1 TO 3 MP
14.13.1.4.1.3 3 TO 5 MP
14.13.1.4.1.4 5 TO 8 MP
14.13.1.4.1.5 8 TO 12 MP
14.13.1.4.1.6 12 MP
14.14 OTHERS
15
16 GLOBAL MACHINE VISION CAMERA MARKET, BY REGION
GLOBAL MACHINE VISION CAMERA MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
16.1 NORTH AMERICA
16.1.1 U.S.
16.1.2 CANADA
16.1.3 MEXICO
16.2 EUROPE
16.2.1 GERMANY
16.2.2 U.K.
16.2.3 FRANCE
16.2.4 ITALY
16.2.5 SPAIN
16.2.6 THE NETHERLANDS
16.2.7 SWITZERLAND
16.2.8 TURKEY
16.2.9 BELGIUM
16.2.10 RUSSIA
16.2.11 SWEDEN
16.2.12 FINLAND
16.2.13 DENMARK
16.2.14 NORWAY
16.2.15 POLAND
16.2.16 REST OF EUROPE
16.3 ASIA-PACIFIC
16.3.1 CHINA
16.3.2 JAPAN
16.3.3 SOUTH KOREA
16.3.4 INDIA
16.3.5 SINGAPORE
16.3.6 AUSTRALIA AND NEW ZEALAND
16.3.7 MALAYSIA
16.3.8 PHILIPPINES
16.3.9 THAILAND
16.3.10 INDONESIA
16.3.11 REST OF ASIA-PACIFIC
16.4 SOUTH AMERICA
16.4.1 BRAZIL
16.4.2 ARGENTINA
16.4.3 REST OF SOUTH AMERICA
16.5 MIDDLE EAST AND AFRICA
16.5.1 SOUTH AFRICA
16.5.2 EGYPT
16.5.3 SAUDI ARABIA
16.5.4 U.A.E
16.5.5 ISRAEL
16.5.6 REST OF MIDDLE EAST AND AFRICA
16.6 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
17 GLOBAL MACHINE VISION CAMERA MARKET,COMPANY LANDSCAPE
17.1 COMPANY SHARE ANALYSIS: GLOBAL
17.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
17.3 COMPANY SHARE ANALYSIS: EUROPE
17.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
17.5 MERGERS & ACQUISITIONS
17.6 NEW PRODUCT DEVELOPMENT & APPROVALS
17.7 EXPANSIONS
17.8 REGULATORY CHANGES
17.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
18 GLOBAL MACHINE VISION CAMERA MARKET, SWOT AND DBMR ANALYSIS
19 GLOBAL MACHINE VISION CAMERA MARKET, COMPANY PROFILE
19.1 BASLER AG
19.1.1 COMPANY SNAPSHOT
19.1.2 REVENUE ANALYSIS
19.1.3 GEOGRAPHIC PRESENCE
19.1.4 PRODUCT PORTFOLIO
19.1.5 RECENT DEVELOPMENTS
19.2 COGNEX CORPORATION
19.2.1 COMPANY SNAPSHOT
19.2.2 REVENUE ANALYSIS
19.2.3 GEOGRAPHIC PRESENCE
19.2.4 PRODUCT PORTFOLIO
19.2.5 RECENT DEVELOPMENTS
19.3 KEYENCE CORPORATION
19.3.1 COMPANY SNAPSHOT
19.3.2 REVENUE ANALYSIS
19.3.3 GEOGRAPHIC PRESENCE
19.3.4 PRODUCT PORTFOLIO
19.3.5 RECENT DEVELOPMENTS
19.4 NATIONAL INSTRUMENTS CORP
19.4.1 COMPANY SNAPSHOT
19.4.2 REVENUE ANALYSIS
19.4.3 GEOGRAPHIC PRESENCE
19.4.4 PRODUCT PORTFOLIO
19.4.5 RECENT DEVELOPMENTS
19.5 OMRON CORPORATION
19.5.1 COMPANY SNAPSHOT
19.5.2 REVENUE ANALYSIS
19.5.3 GEOGRAPHIC PRESENCE
19.5.4 PRODUCT PORTFOLIO
19.5.5 RECENT DEVELOPMENTS
19.6 TELEDYNE TECHNOLOGIES INC.
19.6.1 COMPANY SNAPSHOT
19.6.2 REVENUE ANALYSIS
19.6.3 GEOGRAPHIC PRESENCE
19.6.4 PRODUCT PORTFOLIO
19.6.5 RECENT DEVELOPMENTS
19.7 SONY CORPORATION
19.7.1 COMPANY SNAPSHOT
19.7.2 REVENUE ANALYSIS
19.7.3 GEOGRAPHIC PRESENCE
19.7.4 PRODUCT PORTFOLIO
19.7.5 RECENT DEVELOPMENTS
19.8 SICK AG
19.8.1 COMPANY SNAPSHOT
19.8.2 REVENUE ANALYSIS
19.8.3 GEOGRAPHIC PRESENCE
19.8.4 PRODUCT PORTFOLIO
19.8.5 RECENT DEVELOPMENTS
19.9 HITACHI KOKUSAI ELECTRIC AMERICA, LTD.
19.9.1 COMPANY SNAPSHOT
19.9.2 REVENUE ANALYSIS
19.9.3 GEOGRAPHIC PRESENCE
19.9.4 PRODUCT PORTFOLIO
19.9.5 RECENT DEVELOPMENTS
19.1 ALLIED VISION TECHNOLOGIES GMBH
19.10.1 COMPANY SNAPSHOT
19.10.2 REVENUE ANALYSIS
19.10.3 GEOGRAPHIC PRESENCE
19.10.4 PRODUCT PORTFOLIO
19.10.5 RECENT DEVELOPMENTS
19.11 HERMARY.
19.11.1 COMPANY SNAPSHOT
19.11.2 REVENUE ANALYSIS
19.11.3 GEOGRAPHIC PRESENCE
19.11.4 PRODUCT PORTFOLIO
19.11.5 RECENT DEVELOPMENTS
19.12 ISRA VISION AG
19.12.1 COMPANY SNAPSHOT
19.12.2 REVENUE ANALYSIS
19.12.3 GEOGRAPHIC PRESENCE
19.12.4 PRODUCT PORTFOLIO
19.12.5 RECENT DEVELOPMENTS
19.13 OMRON MICROSCAN SYSTEMS, INC.
19.13.1 COMPANY SNAPSHOT
19.13.2 REVENUE ANALYSIS
19.13.3 GEOGRAPHIC PRESENCE
19.13.4 PRODUCT PORTFOLIO
19.13.5 RECENT DEVELOPMENTS
19.14 TOSHIBA TELI CORPORATION,
19.14.1 COMPANY SNAPSHOT
19.14.2 REVENUE ANALYSIS
19.14.3 GEOGRAPHIC PRESENCE
19.14.4 PRODUCT PORTFOLIO
19.14.5 RECENT DEVELOPMENTS
19.15 DATASENSING S.P.A.
19.15.1 COMPANY SNAPSHOT
19.15.2 REVENUE ANALYSIS
19.15.3 GEOGRAPHIC PRESENCE
19.15.4 PRODUCT PORTFOLIO
19.15.5 RECENT DEVELOPMENTS
19.16 LMI TECHNOLOGIES INC.
19.16.1 COMPANY SNAPSHOT
19.16.2 REVENUE ANALYSIS
19.16.3 GEOGRAPHIC PRESENCE
19.16.4 PRODUCT PORTFOLIO
19.16.5 RECENT DEVELOPMENTS
19.17 MVTEC SOFTWARE GMBH
19.17.1 COMPANY SNAPSHOT
19.17.2 REVENUE ANALYSIS
19.17.3 GEOGRAPHIC PRESENCE
19.17.4 PRODUCT PORTFOLIO
19.17.5 RECENT DEVELOPMENTS
19.18 CANON U.S.A., INC
19.18.1 COMPANY SNAPSHOT
19.18.2 REVENUE ANALYSIS
19.18.3 GEOGRAPHIC PRESENCE
19.18.4 PRODUCT PORTFOLIO
19.18.5 RECENT DEVELOPMENTS
19.19 NIKON CORPORATION
19.19.1 COMPANY SNAPSHOT
19.19.2 REVENUE ANALYSIS
19.19.3 GEOGRAPHIC PRESENCE
19.19.4 PRODUCT PORTFOLIO
19.19.5 RECENT DEVELOPMENTS
19.2 JAI A/S
19.20.1 COMPANY SNAPSHOT
19.20.2 REVENUE ANALYSIS
19.20.3 GEOGRAPHIC PRESENCE
19.20.4 PRODUCT PORTFOLIO
19.20.5 RECENT DEVELOPMENTS
19.21 TELEDYNE LIMITED
19.21.1 COMPANY SNAPSHOT
19.21.2 REVENUE ANALYSIS
19.21.3 GEOGRAPHIC PRESENCE
19.21.4 PRODUCT PORTFOLIO
19.21.5 RECENT DEVELOPMENTS
19.22 BAUMER
19.22.1 COMPANY SNAPSHOT
19.22.2 REVENUE ANALYSIS
19.22.3 GEOGRAPHIC PRESENCE
19.22.4 PRODUCT PORTFOLIO
19.22.5 RECENT DEVELOPMENTS
19.23 TELEDYNE FLIR LLC
19.23.1 COMPANY SNAPSHOT
19.23.2 REVENUE ANALYSIS
19.23.3 GEOGRAPHIC PRESENCE
19.23.4 PRODUCT PORTFOLIO
19.23.5 RECENT DEVELOPMENTS
19.24 VIEWORKS CO., LTD
19.24.1 COMPANY SNAPSHOT
19.24.2 REVENUE ANALYSIS
19.24.3 GEOGRAPHIC PRESENCE
19.24.4 PRODUCT PORTFOLIO
19.24.5 RECENT DEVELOPMENTS
19.25 IDS IMAGING DEVELOPMENT SYSTEMS GMBH
19.25.1 COMPANY SNAPSHOT
19.25.2 REVENUE ANALYSIS
19.25.3 GEOGRAPHIC PRESENCE
19.25.4 PRODUCT PORTFOLIO
19.25.5 RECENT DEVELOPMENTS
20 CONCLUSION
21 QUESTIONNAIRE
22 RELATED REPORTS
23 ABOUT DATA BRIDGE MARKET RESEARCH
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

