Relatório de Análise de Tamanho, Participação e Tendências do Mercado Global de MLOps – Visão Geral e Previsão do Setor até 2032

Pedido de resumo Pedido de TOC Fale com Analista Fale com o analista Relatório de amostra grátis Relatório de amostra grátis Consulte antes Comprar Consulte antes  Comprar agora Comprar agora

Relatório de Análise de Tamanho, Participação e Tendências do Mercado Global de MLOps – Visão Geral e Previsão do Setor até 2032

  • ICT
  • Upcoming Reports
  • Apr 2024
  • Global
  • 350 Páginas
  • Número de tabelas: 220
  • Número de figuras: 60
  • Author : Megha Gupta

Contorne os desafios das tarifas com uma consultoria ágil da cadeia de abastecimento

A análise do ecossistema da cadeia de abastecimento agora faz parte dos relatórios da DBMR

Global Mlops Market

Tamanho do mercado em biliões de dólares

CAGR :  % Diagram

Chart Image USD 2.19 Billion USD 34.21 Billion 2024 2032
Diagram Período de previsão
2025 –2032
Diagram Tamanho do mercado (ano base )
USD 2.19 Billion
Diagram Tamanho do mercado ( Ano de previsão)
USD 34.21 Billion
Diagram CAGR
%
Diagram Principais participantes do mercado
  • Databricks
  • Domino Data Lab
  • Kubeflow (by Google)
  • Amazon SageMaker
  • Paperspace Gradient

Segmentação do mercado global de MLOps, por componente (plataforma e serviço), modo de implantação (local, nuvem e híbrido), tamanho da organização (grandes empresas, pequenas e médias empresas (PMEs)), setores verticais (serviços financeiros (BFSI), manufatura, tecnologia da informação (TI) e telecomunicações, varejo e comércio eletrônico, saúde e outros) - tendências e previsões do setor até 2032

Mercado de MLOPs z

Tamanho do mercado de MLOps

  • O tamanho do mercado global de MLOps foi avaliado em US$ 2,19 bilhões em 2024  e deve atingir  US$ 34,21 bilhões até 2032 , com um CAGR de 41,00% durante o período previsto.
  • O crescimento do mercado é amplamente impulsionado pela crescente adoção de inteligência artificial (IA) e aprendizado de máquina (ML) em todos os setores, criando uma necessidade de implantação simplificada de modelos e gerenciamento do ciclo de vida
  • A crescente demanda por automação em fluxos de trabalho de ML, incluindo treinamento, monitoramento e retreinamento de modelos, está acelerando ainda mais a adoção de plataformas e ferramentas de MLOps

Análise de Mercado de MLOps

  • O mercado de MLOps está testemunhando um rápido crescimento à medida que as organizações buscam operacionalizar modelos de ML em escala, garantindo confiabilidade, reprodutibilidade e governança
  • As soluções MLOps baseadas em nuvem estão ganhando força devido à sua escalabilidade e integração com pipelines DevOps existentes, tornando-as atraentes tanto para grandes empresas quanto para PMEs
  • A América do Norte dominou o mercado de MLOps com a maior participação de receita de 41% em 2024, impulsionada pela forte adoção de inteligência artificial e aprendizado de máquina em empresas, bem como pela presença de grandes provedores de tecnologia e infraestrutura de nuvem avançada
  • Espera-se que a região da Ásia-Pacífico testemunhe a maior taxa de crescimento no mercado global de MLOps , impulsionada pela adoção em larga escala de tecnologias de IA, aumento dos investimentos em plataformas de nuvem, expansão dos serviços de TI e papel da região como um centro global para transformação digital e inovação
  • O segmento de plataformas deteve a maior fatia de mercado na receita em 2024, impulsionado pela crescente demanda por soluções integradas que agilizam a preparação de dados, o treinamento, a implantação e o monitoramento de modelos de aprendizado de máquina. Essas plataformas garantem escalabilidade, reprodutibilidade e conformidade, tornando-as a escolha preferida para adoção corporativa em larga escala.

Escopo do relatório e segmentação do mercado de MLOps      

Atributos

Principais insights de mercado do MLOps

Segmentos abrangidos

  • Por componente: plataforma e serviço
  • Por modo de implantação: local, nuvem e híbrido
  • Por tamanho da organização: grandes empresas, pequenas e médias empresas (PMEs)
  • Por setores da indústria: Serviços financeiros (BFSI), manufatura, tecnologia da informação (TI) e telecomunicações, varejo e comércio eletrônico, saúde e outros

Países abrangidos

América do Norte

  • NÓS
  • Canadá
  • México

Europa

  • Alemanha
  • França
  • Reino Unido
  • Holanda
  • Suíça
  • Bélgica
  • Rússia
  • Itália
  • Espanha
  • Peru
  • Resto da Europa

Ásia-Pacífico

  • China
  • Japão
  • Índia
  • Coréia do Sul
  • Cingapura
  • Malásia
  • Austrália
  • Tailândia
  • Indonésia
  • Filipinas
  • Resto da Ásia-Pacífico

Oriente Médio e África

  • Arábia Saudita
  • Emirados Árabes Unidos
  • África do Sul
  • Egito
  • Israel
  • Resto do Oriente Médio e África

Ámérica do Sul

  • Brasil
  • Argentina
  • Resto da América do Sul

Principais participantes do mercado

Oportunidades de mercado

• Integração de MLOps com plataformas nativas da nuvem
• Adoção crescente de soluções de aprendizado de máquina automatizado (AutoML)

Conjuntos de informações de dados de valor agregado

Além de insights de mercado, como valor de mercado, taxa de crescimento, segmentos de mercado, cobertura geográfica, participantes do mercado e cenário de mercado, o relatório de mercado selecionado pela equipe de pesquisa de mercado da Data Bridge inclui análise aprofundada de especialistas, análise de importação/exportação, análise de preços, análise de consumo de produção e análise Pilstle.

Tendências de mercado de MLOps

Ascensão de operações de aprendizado de máquina automatizadas e escaláveis

• A crescente mudança para fluxos de trabalho automatizados em aprendizado de máquina (ML) está transformando o cenário de MLOps, permitindo a implantação, o monitoramento e a governança de modelos em tempo real. A escalabilidade e a velocidade dessas plataformas permitem que as empresas operacionalizem a IA em larga escala, levando a uma inovação mais rápida e a uma melhor tomada de decisões.

• A alta demanda por eficiência no gerenciamento de grandes volumes de modelos de ML está acelerando a adoção de soluções de MLOps nativas da nuvem e pipelines de DevOps integrados. Essas plataformas são particularmente eficazes para empresas onde o retreinamento e a implantação contínuos são essenciais, garantindo que os modelos permaneçam precisos e relevantes.

• A acessibilidade e o preço acessível das ferramentas de MLOps de código aberto as tornam atraentes para pequenas e médias empresas (PMEs), permitindo uma participação mais ampla na transformação impulsionada pela IA. Isso melhora a agilidade organizacional e reduz as barreiras técnicas e financeiras à implementação da IA.

• Por exemplo, em 2023, várias instituições financeiras na América do Norte implementaram pipelines MLOps automatizados para monitorar modelos de detecção de fraudes, reduzindo falsos positivos e melhorando a segurança das transações, ao mesmo tempo que cortavam custos operacionais.

• Embora a automação e a escalabilidade estejam acelerando a adoção de MLOps, seu impacto depende de inovação contínua, governança de dados robusta e integração com os sistemas de TI corporativos existentes. Os fornecedores devem se concentrar em interoperabilidade, segurança e soluções fáceis de usar para capitalizar essa demanda.

Dinâmica de mercado de MLOps

Motorista

Aumento da adoção empresarial de IA e demanda por gerenciamento do ciclo de vida do modelo

• A rápida adoção de inteligência artificial e aprendizado de máquina em todos os setores está levando as empresas a investir em MLOps para uma gestão eficiente do ciclo de vida dos modelos. Do treinamento à implantação, o MLOps garante confiabilidade, reprodutibilidade e conformidade, permitindo que as organizações escalem a IA de forma responsável e impulsionem a inovação com rapidez.

• As organizações estão cada vez mais conscientes dos riscos de modelos de ML não gerenciados, incluindo viés, desvio e não conformidade regulatória, o que destaca a necessidade de estruturas robustas de MLOps. Ao abordar esses desafios, o MLOps permite que as empresas mantenham o desempenho do modelo, protejam-se contra riscos de reputação e garantam a confiança nas decisões baseadas em IA.

• Iniciativas dos setores público e privado, como investimentos focados em IA, expansão da infraestrutura em nuvem e diretrizes regulatórias para IA responsável, estão fortalecendo o ecossistema de MLOps. Esses esforços não apenas incentivam as empresas a adotar as melhores práticas, mas também moldam padrões globais para implantação ética, transparente e segura de IA.

• Por exemplo, em 2022, o governo dos EUA anunciou um aumento no financiamento para infraestrutura e governança de IA, impulsionando a demanda por plataformas MLOps de nível empresarial em setores como saúde, defesa e finanças. Essa iniciativa reflete uma tendência global mais ampla de alinhar a inovação em IA com a responsabilidade e a competitividade a longo prazo.

• Embora a adoção esteja aumentando, o crescimento sustentado depende da abordagem de questões como padronização, segurança de dados e treinamento da força de trabalho para garantir o uso responsável e generalizado de soluções de MLOps. As empresas devem encontrar um equilíbrio entre implantação rápida e governança responsável para liberar todo o potencial transformador da IA.

Restrição/Desafio

Altos custos de implementação e escassez de talentos em MLOps

• O alto custo de implementação de plataformas MLOps de nível empresarial, especialmente aquelas que exigem infraestrutura de nuvem avançada e ferramentas de monitoramento, continua sendo uma barreira para pequenas empresas e mercados emergentes. Esses custos geralmente abrangem não apenas o software, mas também a integração, a conformidade e a manutenção contínua, limitando a acessibilidade mais ampla.

• Em muitas regiões, também há escassez de profissionais qualificados capazes de gerenciar pipelines complexos de MLOps, incluindo processos de implantação, monitoramento e conformidade de modelos. A escassez de talentos cria gargalos para empresas que buscam escalar a IA, forçando-as a depender de consultores externos ou de pessoal subqualificado.

• A penetração no mercado é ainda mais limitada por desafios de integração, visto que muitas empresas ainda operam sistemas de TI legados, sem compatibilidade com plataformas MLOps modernas. Essa lacuna resulta em prazos de implementação mais longos, aumento de despesas e atraso no ROI, desencorajando empresas menores a buscar a adoção de IA em larga escala.

• Por exemplo, em 2023, diversas empresas de manufatura na Ásia-Pacífico relataram dificuldades na adoção de MLOps devido à força de trabalho qualificada limitada e aos altos custos associados à migração para a nuvem e à integração de plataformas. Essas dificuldades destacam o ritmo desigual de adoção de MLOps entre mercados desenvolvidos e em desenvolvimento.

• Embora as tecnologias de MLOps continuem a avançar, a resolução dos desafios de custo, integração e talento continua essencial. Fornecedores e empresas devem priorizar soluções de baixo código, programas de treinamento e modelos de implantação híbridos para preencher lacunas, reduzir a complexidade e liberar todo o potencial do mercado global de MLOps.

Escopo de mercado de MLOps

O mercado é segmentado com base no componente, modo de implantação, tamanho da organização e setores verticais.

  • Por componente

Com base nos componentes, o mercado de MLOps é segmentado em plataforma e serviço. O segmento de plataforma deteve a maior participação de mercado na receita em 2024, impulsionado pela crescente demanda por soluções integradas que agilizam a preparação de dados, o treinamento, a implantação e o monitoramento de modelos de aprendizado de máquina. Essas plataformas garantem escalabilidade, reprodutibilidade e conformidade, tornando-as a escolha preferida para adoção corporativa em larga escala.

Espera-se que o segmento de serviços apresente a maior taxa de crescimento entre 2025 e 2032, impulsionado pela crescente dependência de consultoria, integração e serviços gerenciados. As empresas estão recorrendo cada vez mais a provedores de serviços para superar a escassez de habilidades e enfrentar desafios complexos de implantação, permitindo-lhes acelerar a adoção da IA ​​e, ao mesmo tempo, otimizar custos e eficiência operacional.

  • Por modo de implantação

Com base no modo de implantação, o mercado de MLOps é segmentado em on-premise, nuvem e híbrido. O segmento de nuvem deteve a maior participação de mercado em 2024, impulsionado pela crescente adoção de infraestrutura de nuvem escalável, que permite às organizações treinar e implantar modelos de ML mais rapidamente, minimizando os custos iniciais. As soluções de MLOps baseadas em nuvem também se integram perfeitamente a pipelines de dados modernos, oferecendo flexibilidade e acessibilidade.

Espera-se que o segmento híbrido apresente a maior taxa de crescimento entre 2025 e 2032, impulsionado por empresas que buscam um equilíbrio entre a escalabilidade da nuvem e a segurança da infraestrutura local. Modelos de MLOps híbridos são cada vez mais adotados por setores altamente regulamentados, como bancos, defesa e saúde, onde o manuseio de dados confidenciais é essencial, mesmo que ainda se beneficie da inovação na nuvem.

  • Por tamanho da organização

Com base no porte da organização, o mercado de MLOps é segmentado em grandes empresas e pequenas e médias empresas (PMEs). As grandes empresas foram responsáveis ​​pela maior fatia da receita em 2024, pois foram pioneiras na adoção de soluções de IA de nível empresarial e têm recursos para investir em plataformas avançadas de MLOps. Essas organizações se beneficiam da capacidade de escalar iniciativas de IA em vários departamentos, aumentando a produtividade e a inovação.

Espera-se que o segmento de PMEs apresente a maior taxa de crescimento entre 2025 e 2032, impulsionado pela crescente acessibilidade de soluções de MLOps baseadas em nuvem e plataformas de baixo código. As PMEs estão adotando MLOps para aprimorar a tomada de decisões, otimizar operações e obter vantagem competitiva sem incorrer em altos custos de infraestrutura, democratizando ainda mais a adoção da IA ​​globalmente.

  • Por setores da indústria

Com base nos setores verticais, o mercado de MLOps é segmentado em serviços financeiros (BFSI), manufatura, tecnologia da informação (TI) e telecomunicações, varejo e e-commerce, saúde, entre outros. O segmento de BFSI dominou o mercado em 2024, impulsionado pelo uso crescente de IA para detecção de fraudes, avaliação de riscos e monitoramento de conformidade. A necessidade de governança de modelos robusta e monitoramento em tempo real fortalece ainda mais a demanda por MLOps neste setor.

Espera-se que o segmento de saúde apresente a maior taxa de crescimento entre 2025 e 2032, impulsionado pela crescente adoção de IA em imagens médicas, diagnósticos e tratamentos personalizados. As soluções de MLOps ajudam a garantir a precisão dos modelos, a conformidade regulatória e a segurança dos dados dos pacientes, tornando-as vitais para o dimensionamento de aplicações de IA na área da saúde. Outros setores, como manufatura e varejo, também estão integrando rapidamente o MLOps para melhorar a eficiência operacional, a gestão da cadeia de suprimentos e a experiência do cliente.

Análise regional do mercado de MLOps

• A América do Norte dominou o mercado de MLOps com a maior participação de receita de 41% em 2024, impulsionada pela forte adoção de inteligência artificial e aprendizado de máquina em empresas, bem como pela presença de grandes provedores de tecnologia e infraestrutura de nuvem avançada.

• As empresas da região valorizam os recursos de confiabilidade, escalabilidade e conformidade das plataformas MLOps, garantindo um gerenciamento seguro e eficiente do ciclo de vida do modelo de IA.

• Essa liderança é ainda apoiada por altos investimentos em inovação de IA, políticas governamentais favoráveis ​​e forte demanda de setores como finanças, saúde e TI, consolidando a América do Norte como um centro líder para adoção de MLOps.

Visão do mercado de MLOps dos EUA

O mercado de MLOps dos EUA capturou a maior fatia da receita em 2024 na América do Norte, impulsionado pela rápida transformação digital, pelo aumento da implantação de soluções de IA baseadas em nuvem e pela alta demanda empresarial por automação. As empresas estão cada vez mais utilizando MLOps para otimizar fluxos de trabalho de IA, reduzir riscos operacionais e garantir a conformidade com as regulamentações de dados em constante evolução. Além disso, a integração de MLOps com ecossistemas de nuvem avançados, como AWS, Microsoft Azure e Google Cloud, continua impulsionando o crescimento em setores como BFSI, varejo e saúde.

Visão do mercado de MLOps na Europa

Espera-se que o mercado europeu de MLOps apresente a maior taxa de crescimento entre 2025 e 2032, impulsionado principalmente por regulamentações rigorosas de proteção de dados, como o GDPR, e pela crescente necessidade de modelos de IA seguros e explicáveis. A crescente adoção de IA nos setores de serviços financeiros, manufatura e governo está impulsionando a demanda por plataformas de MLOps escaláveis. As empresas europeias também enfatizam a implantação responsável de IA, a sustentabilidade e práticas éticas de IA, incentivando a ampla integração de MLOps nos setores público e privado.

Visão do mercado de MLOps do Reino Unido

Espera-se que o mercado de MLOps do Reino Unido apresente a maior taxa de crescimento entre 2025 e 2032, apoiado por investimentos robustos em pesquisa de IA, inovação em fintechs e estratégias de negócios com foco no digital. O foco crescente em conformidade regulatória, transparência de modelos e gerenciamento seguro de dados está impulsionando a demanda por soluções de MLOps de nível empresarial. Além disso, o próspero setor de serviços de TI do Reino Unido e a ampla adoção da infraestrutura de nuvem híbrida estão acelerando ainda mais o crescimento do mercado.

Visão do mercado de MLOps na Alemanha

Espera-se que o mercado de MLOps na Alemanha apresente a maior taxa de crescimento entre 2025 e 2032, impulsionado pela ênfase do país na Indústria 4.0, manufatura inteligente e automação. As empresas alemãs estão cada vez mais integrando MLOps em seus pipelines de IA para aprimorar a eficiência operacional, a análise preditiva e a otimização da cadeia de suprimentos. O foco em sustentabilidade, conformidade e segurança de dados também está moldando a demanda por soluções de MLOps, especialmente em aplicações industriais, automotivas e de saúde.

Visão do mercado de MLOps da Ásia-Pacífico

Espera-se que o mercado de MLOps da Ásia-Pacífico apresente a maior taxa de crescimento entre 2025 e 2032, impulsionado pela rápida digitalização, pelo aumento da adoção da nuvem e pela expansão dos investimentos em IA em países como China, Japão e Índia. As empresas da região estão adotando cada vez mais MLOps para gerenciar aplicações baseadas em dados em larga escala, otimizar implantações de IA e melhorar a escalabilidade. Com a APAC emergindo como consumidora e produtora de tecnologias de IA, espera-se que a acessibilidade e o preço acessível das plataformas de MLOps acelerem a adoção tanto em PMEs quanto em grandes empresas.

Visão do mercado de MLOps do Japão

Espera-se que o mercado japonês de MLOps apresente a maior taxa de crescimento entre 2025 e 2032, devido ao foco do país em automação, robótica e inovação de alta tecnologia. As empresas japonesas estão utilizando MLOps para aplicações em manufatura, varejo e saúde, com forte ênfase em eficiência, precisão e segurança. A integração de MLOps com IoT e projetos de infraestrutura inteligente também está impulsionando a adoção. Além disso, o envelhecimento da força de trabalho japonesa está pressionando as empresas a adotar a automação orientada por IA, aumentando assim a demanda por plataformas de MLOps.

Visão do mercado de MLOps da China

O mercado chinês de MLOps foi responsável pela maior fatia da receita de mercado na Ásia-Pacífico em 2024, apoiado por enormes investimentos governamentais em IA, expansão da infraestrutura em nuvem e rápida adoção em setores como e-commerce, finanças e manufatura. A China está emergindo como líder global em inovação em IA, com os MLOps atuando como uma espinha dorsal crítica para o dimensionamento e a implantação de aplicativos de aprendizado de máquina. A ascensão das cidades inteligentes, aliada a fortes provedores nacionais de tecnologia, está impulsionando ainda mais a adoção de MLOps, tornando a China um player fundamental no mercado global.

Participação de mercado de MLOps

O setor de MLOps é liderado principalmente por empresas bem estabelecidas, incluindo:

  • Databricks (EUA)
  • Domino Data Lab (EUA)
  • Kubeflow (do Google) (EUA)
  • Amazon SageMaker (EUA)
  • Gradiente de espaço de papel (EUA)
  • Fiddler AI (EUA)
  • MLflow (da Databricks) (EUA)
  • Valohai (Finlândia)
  • Paquiderme (EUA)
  • ZenML (Alemanha)

Últimos desenvolvimentos no mercado global de MLOps

  • Em março de 2025, a Hewlett Packard Enterprise (HPE), em colaboração com a NVIDIA, lançou novas soluções de IA empresarial no portfólio NVIDIA AI Computing by HPE, incluindo a HPE Private Cloud AI integrada à NVIDIA AI Data Platform. Com a arquitetura Blackwell da NVIDIA, as ofertas oferecem desempenho aprimorado, segurança e ferramentas de observabilidade, além de permitir o rápido desenvolvimento e implantação de IA. Esta iniciativa visa acelerar a adoção empresarial de IA generativa e agêntica, reduzindo o tempo de retorno do investimento e fomentando a inovação, impulsionando assim a competitividade de ambas as empresas no cenário de IA e MLOps.
  • Em julho de 2024, a Microsoft apresentou a estrutura arquitetônica MLOps v2 para o Azure, uma solução completa projetada para otimizar as operações de aprendizado de máquina em cargas de trabalho clássicas de ML, visão computacional e processamento de linguagem natural. Essa estrutura integra as melhores práticas do setor, oferecendo componentes modulares para gerenciamento de dados, desenvolvimento de modelos, implantação e monitoramento. Ao garantir fluxos de trabalho de IA repetíveis, seguros e prontos para produção, o lançamento permite que as empresas acelerem suas iniciativas de IA com maior escalabilidade e eficiência, fortalecendo a posição do Azure no mercado global de MLOps.
  • Em maio de 2021, o Google Cloud lançou o Vertex AI, uma plataforma gerenciada de aprendizado de máquina que unifica diversos serviços para construção, treinamento e implantação de modelos de ML. A plataforma foi projetada para simplificar o ciclo de vida da IA, reduzir a complexidade operacional e acelerar o desenvolvimento de modelos. Ao capacitar organizações com uma adoção de IA mais fácil, rápida e escalável, o Vertex AI desempenhou um papel significativo no fortalecimento da presença do Google no mercado corporativo de IA e MLOps.


SKU-

Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo

  • Painel interativo de análise de dados
  • Painel de análise da empresa para oportunidades de elevado potencial de crescimento
  • Acesso de analista de pesquisa para personalização e customização. consultas
  • Análise da concorrência com painel interativo
  • Últimas notícias, atualizações e atualizações Análise de tendências
  • Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Pedido de demonstração

Metodologia de Investigação

A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados ​​e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.

A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis ​​de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.

Personalização disponível

A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

Perguntas frequentes

O mercado é segmentado com base em Segmentação do mercado global de MLOps, por componente (plataforma e serviço), modo de implantação (local, nuvem e híbrido), tamanho da organização (grandes empresas, pequenas e médias empresas (PMEs)), setores verticais (serviços financeiros (BFSI), manufatura, tecnologia da informação (TI) e telecomunicações, varejo e comércio eletrônico, saúde e outros) - tendências e previsões do setor até 2032 .
O tamanho do Relatório de Análise de Tamanho, Participação e Tendências do Mercado foi avaliado em USD 2.19 USD Billion no ano de 2024.
O Relatório de Análise de Tamanho, Participação e Tendências do Mercado está projetado para crescer a um CAGR de 41% durante o período de previsão de 2025 a 2032.
Os principais players do mercado incluem Databricks, Domino Data Lab, Kubeflow (by Google), Amazon SageMaker, Paperspace Gradient .
Testimonial