Global Natural Language Processing Nlp Healthcare Life Sciences Market
Tamanho do mercado em biliões de dólares
CAGR :
%
USD
2.11 Billion
USD
8.48 Billion
2023
2031
| 2024 –2031 | |
| USD 2.11 Billion | |
| USD 8.48 Billion | |
|
|
|
|
O mercado global de processamento de linguagem natural, PNL, ciências biológicas da saúde foi avaliado em 2,11 mil milhões de dólares em 2023. O tamanho do mercado deverá crescer a um CAGR de 19% e atingir 8,48 mil milhões de dólares até 2031.
Mercado global de processamento de linguagem natural NLP Healthcare Life Science – Visão geral da indústria
O setor da saúde e das ciências biológicas produz uma enorme quantidade de dados, incluindo registos eletrónicos de saúde, relatórios de ensaios clínicos, dados de investigação e relatórios de doentes. De acordo com o Fórum Económico Mundial, o setor da saúde gera mais de 30% dos dados gerados em todo o mundo, a maioria dos quais não é utilizada. A incorporação do Processamento de Linguagem Natural (PLN) no setor da saúde desempenha um papel importante no processamento de dados médicos, levando à inovação e a invenções que podem potencialmente tornar-se a base para a descoberta de tratamentos e terapias, medicamentos e fármacos que possam revelar-se ser eficazes. A PNL transformou completamente o setor da saúde e das ciências biológicas com a sua abordagem abrangente orientada para a análise de dados. Agora, não existem registos de saúde e ciências biológicas que não sejam utilizados com a análise dinâmica de dados não estruturados, análise de sentimentos, reconhecimento de entidades nomeadas e descoberta de medicamentos da PNL para extrair insights valiosos que ajudam a melhorar drasticamente o envolvimento dos doentes e, consequentemente, o mercado global de ciências biológicas e saúde da PNL.
O relatório de pesquisa de mercado do Data Bridge Market fornece detalhes sobre os desenvolvimentos recentes, regulamentos comerciais, quota de mercado, tendências de mercado com base nas suas segmentações e análises regionais, impacto dos participantes do mercado, análise de oportunidades em termos de bolsas de rendimento emergentes, regulamentos de mercado, análise de crescimento do mercado estratégico, dimensão do mercado, crescimento do mercado por categoria, nichos de aplicação e dominância, aprovações de produtos, lançamentos de produtos, expansões geográficas e inovações tecnológicas no mercado. Para mais informações sobre o mercado, contacte a equipa de analistas especialistas da Data Bridge Market Research. A nossa equipa irá ajudá-lo a tomar decisões de mercado informadas para alcançar o crescimento do negócio.
Tamanho do mercado global de processamento de linguagem natural PNL para ciências da vida na saúde
|
Detalhes das métricas do relatório de mercado de ciências da vida em saúde NLP |
|
|
Período de previsão |
2024-2031 |
|
Ano base |
2023 |
|
Ano Histórico |
2022 (Personalizável 2016-2021) |
|
Unidade de medida |
Mil milhões de dólares americanos |
|
Ponteiro de dados |
insights de mercado, valor de mercado, taxa de crescimento, segmentos de mercado, cobertura geográfica, participantes do mercado e cenário de mercado, análise aprofundada de especialistas, epidemiologia do paciente, análise de pipeline, análise de preços e estrutura regulamentar. |
A convergência da PNL com a área da saúde e das ciências biológicas trouxe evolução à medicina ao utilizar os dados em benefício do setor. O crescimento exponencial dos dados de cuidados de saúde está a acelerar a necessidade de soluções de PNL que possam ajudar a gerir este mar de dados não estruturados para extrair insights valiosos. As inovações contínuas em IA e aprendizagem automática estão a ajudar a desenvolver capacidades e a precisão das aplicações de PNL, incentivando ainda mais a adoção de tecnologias de PNL para capacitar a investigação e o desenvolvimento na área da saúde. A interligação da PNL e da assistência médica é uma bênção para os prestadores de serviços de assistência médica, uma vez que harmonizam os cuidados aos doentes e os serviços de assistência médica para impulsionar o crescimento do mercado. A Databridge Market Research aprofundou a análise abrangente do mercado e revelou que os mercados globais de processamento de linguagem natural, PNL e ciências biológicas na área da saúde estão a crescer a um CAGR de 3,64%. A dimensão do mercado está avaliada em 2,11 mil milhões de dólares em 2023 e deverá crescer para 8,48 mil milhões de dólares até 2031.
Dinâmica do mercado das ciências da vida em saúde e PNL
Condutores de crescimento do mercado de ciências biológicas em saúde e PNL
Organizando Registos Eletrónicos de Saúde (RSE) para Análises Futuras
Os registos de saúde eletrónicos (RSE) utilizados pelas organizações de saúde geram uma infinidade de dados relacionados com os pacientes que se tornam difíceis de estruturar, armazenar e analisar. Estes registos eletrónicos incluem frequentemente relatórios médicos, históricos de pacientes e outros tipos de dados. Não só organizar e examinar estes dados é importante, mas igualmente importante é o fácil acesso aos mesmos. As tecnologias de PNL que incluem documentação clínica, reconhecimento de fala, pesquisa de data mining e apoio à decisão clínica são altamente produtivas na extração e exame de dados médicos, além de garantirem a sua disponibilidade de acordo com a utilização. Ao tirar partido da PNL, os prestadores de cuidados de saúde podem analisar e interpretar de forma mais eficiente esta vasta gama de dados, o que leva a uma melhor tomada de decisões clínicas, a um atendimento personalizado ao paciente e a uma maior eficiência operacional, impulsionando assim o crescimento do mercado.
Análise preditiva baseada em inteligência artificial (IA) e aprendizagem automática (ML)
A PNL, sendo uma subdivisão da inteligência artificial , está dotada de modelos estatísticos e analíticos que têm um papel a desempenhar na identificação de tendências e padrões. Quando a PNL na área da saúde é alimentada com dados complexos, estrutura-os para realizar análises abrangentes nos registos dos doentes. Por outras palavras, executa análises preditivas nos dados relacionados com o paciente, o que revela as condições de saúde atuais e o nível de efeito no corpo, além de ajudar a prever doenças e enfermidades às quais o paciente é vulnerável. Estas tecnologias permitem extrair insights úteis, identificar padrões e prever resultados de conjuntos de dados muito grandes para decisões clínicas mais informadas e melhores resultados para os doentes. A conclusão desta análise preditiva é a melhoria dos cuidados ao doente e medidas avançadas de prevenção para evitar condições de saúde previstas. A análise preditiva através da PNL é um grande contribuidor para melhorar os serviços de atendimento ao paciente e promover o crescimento do mercado.
Automatizar registos e documentação de doentes reduz custos com assistência médica
A documentação clínica automatizada, alimentada pelo Processamento de Linguagem Natural (PLN), simplifica a gestão de registos de pacientes ao converter informações faladas ou escritas em dados estruturados e acionáveis. Esta automatização reduz a carga dos profissionais de saúde, minimiza os erros de introdução manual e garante que as informações dos pacientes são registadas de forma precisa e abrangente. Esta tecnologia de automatização é uma forma económica de facilitar que os profissionais de saúde dediquem mais tempo aos cuidados aos doentes em vez da administração, o que leva a uma maior precisão e, portanto, à eficiência global na manutenção de registos médicos. Com estas tarefas servis a tornarem-se automatizadas, os profissionais de saúde estão a desfrutar de eficiência de custos e, ao mesmo tempo, a melhorar a qualidade geral dos cuidados prestados aos doentes. A automatização permite também a unificação dos registos de saúde ao reunir todo o registo do paciente armazenado na base de dados de outros médicos ou centros de saúde. A saúde tornar-se mais económica devido à PNL é um estímulo para o crescimento global das ciências biológicas da saúde com PNL.
Oportunidades de crescimento do mercado das ciências da vida em saúde e PNL
Plano de tratamento personalizado
A PNL desempenha um papel fundamental na preparação de um plano de tratamento individualizado e focado. A capacidade da PNL de extrair e unificar dados de pacientes de várias fontes, como registos de saúde eletrónicos, notas clínicas e históricos médicos, permite um fácil processamento e identificação de necessidades específicas dos pacientes, fatores genéticos e condições de saúde. Isto ajuda os profissionais de saúde a preparar um plano de tratamento adequado às necessidades dos doentes. Elaborar um plano de tratamento personalizado é uma oportunidade para os médicos criarem o tratamento mais eficaz para os seus pacientes e, assim, expandirem a sua base de pacientes. Por exemplo, a PNL pode destacar os padrões no historial do paciente para que seja possível determinar os medicamentos com maior probabilidade de serem eficazes ou até mesmo identificar possíveis efeitos secundários num caso semelhante a outros. Desta forma, a PNL apoia a medicina de precisão, onde as intervenções serão mais focadas e eficazes, melhorando assim a eficiência do tratamento e o resultado do paciente.
Integrando a IoT em Wearables
Os dispositivos wearable incorporados com PNL alimentados por IoT permitem a captura de dados de pacientes em tempo real. Ajuda a monitorizar a saúde dos doentes remotamente durante todo o dia e permite aos profissionais de saúde registar quaisquer complicações e variações para que possam agir imediatamente e preparar um plano de ação para evitar qualquer complexidade deste tipo no futuro.
Colaboração com empresas farmacêuticas e de biotecnologia
A colaboração com empresas farmacêuticas e de biotecnologia para integrar o Processamento de Linguagem Natural (PLN) nos processos de descoberta de medicamentos, gestão de ensaios clínicos e farmacovigilância impulsiona a eficiência e acelera a inovação nas ciências biológicas. A PNL aumenta a eficiência dos ensaios clínicos ao automatizar a extração de dados dos registos médicos e dos relatórios dos doentes, facilitando o recrutamento e a análise mais rápida dos dados dos ensaios.
Desafios de crescimento do tamanho do mercado das ciências biológicas em saúde e PNL
A PNL na área da saúde e das ciências da saúde é geralmente alimentada com grupos específicos de termos que podem não se aplicar a qualquer outro comando. Como a linguagem humana continua a evoluir, o grupo predefinido de termos pode estruturar os dados de forma imprecisa. Isto acontece normalmente quando um programa de PNL tem um grupo interno de termos que podem não corresponder aos dados não estruturados que estão a ser examinados. Este desafio é fácil de ultrapassar com um certo nível de envolvimento humano.
A PNL é capaz de organizar e categorizar dados não estruturados. No entanto, a ferramenta pode tornar-se menos eficiente face à complexidade da linguagem humana. Pode não ser capaz de lidar com linguagem, dialeto e pontos de referência complicados. Isto, como resultado, aumenta as probabilidades de falsos positivos e negativos.
Restrições de crescimento do tamanho do mercado das ciências biológicas na saúde e PNL
Preocupações com a privacidade e segurança dos dados
Na aplicação de soluções de PNL, o processamento de informações confidenciais de pacientes dará origem a preocupações drásticas sobre as leis de privacidade e violações de segurança de dados. Embora os prestadores de cuidados de saúde já estejam a explorar todas as oportunidades para implementar tecnologias de PNL ao máximo, terão de passar por leis rigorosas de proteção de dados ao abrigo da HIPAA nos EUA e do RGPD na Europa - ambas promulgadas com o propósito de manter a confidencialidade dos doentes e impedir um possível acesso não autorizado a informações pessoais de saúde. Para conseguir tudo isto, os sistemas de PNL devem ter a segurança totalmente ativada. Deve ser garantido que este requisito é cumprido através da aplicação de métodos robustos para a encriptação de dados em repouso e em trânsito, controlos de acesso muito rigorosos que limitem o acesso aos dados apenas a utilizadores autorizados e técnicas de anonimização para ajudar a proteger contra a exposição indesejada de dados. A agregação destes protocolos de segurança pode garantir
Complexidade de integração dos sistemas de PNL
Integrar os sistemas de processamento de linguagem natural (PLN) com a infraestrutura de TI de saúde existente, incluindo registos de saúde eletrónicos e sistemas clínicos, pode ser complexo e demorado. As organizações de saúde enfrentam desafios como problemas de interoperabilidade, normalização de dados e compatibilidade com sistemas legados ao implementar soluções de PNL. O processo de integração exige um planeamento cuidadoso, personalização e coordenação com as equipas de TI para garantir uma conectividade e funcionalidade perfeitas em diferentes plataformas. Além disso, a formação da equipa de saúde para utilizar eficazmente as ferramentas de PNL e interpretar os insights gerados traz desafios adicionais de implementação.
Âmbito e tendências do mercado de ciências da vida em saúde NLP
|
Visão geral das segmentações do mercado das ciências biológicas na saúde e PNL |
|||
|
Tipo de Segmentos |
Sub-segmentos |
||
|
Componente |
Soluções e serviços autónomos |
||
|
Tipo de PNL |
PNL Baseada em Regras, PNL Estatística, PNL Híbrida |
||
|
Modo de Implantação |
No local, na nuvem |
||
|
Tamanho da organização |
Grandes Empresas, Pequenas e Médias Empresas |
||
|
|
||
|
Utilizador final |
PNL para médicos, PNL para investigadores, PNL para doentes, PNL para operadores clínicos |
||
Visão-chave
- Nos últimos anos, com o surgimento do potencial da IA como um divisor de águas na área da saúde, ao empregar técnicas de aprendizagem automática e PNL para o processamento eficaz de volumes crescentes de dados, impulsiona uma das aplicações mais impressionantes, conhecida como a codificação clínica automatizada, que agiliza a administração e gestão de registos clínicos num hospital e ambiente de investigação médica.
- Tem havido um aumento de artigos sobre codificação clínica automatizada com aprendizagem profunda (como a abordagem atual da IA) nos últimos anos, conforme revisto em pesquisas recentes.
- Embora as preocupações sejam abordadas e a segurança e a eficácia dos bots de chat sejam apontadas, os aspetos humanos da assistência médica não podem ser substituídos. Desta forma, os chatbots podem tornar-se parte integrante da prática clínica para trabalhar em conjunto com os profissionais de saúde, diminuindo os custos, melhorando a eficiência do fluxo de trabalho e, assim, melhorando os resultados para obter melhores resultados.
Análise regional do mercado de ciências da vida em saúde NLP – Tendências de mercado
|
Visão regional do mercado das ciências biológicas na saúde e PNL |
|
|
Regiões |
Países |
|
Europa |
Alemanha, França, Reino Unido, Holanda, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, Resto da Europa |
|
Ásia-Pacífico |
China, Japão, Índia, Coreia do Sul, Singapura, Malásia, Austrália, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico |
|
América do Norte |
EUA, Canadá e México |
|
MEA |
Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, Resto do Médio Oriente e África |
|
Ámérica do Sul |
Brasil, Argentina e Resto da América do Sul |
Principais Insights
- Espera-se que a América do Norte domine o mercado devido à crescente procura de soluções de PNL e aos investimentos substanciais em robótica e iniciativas de investigação e desenvolvimento relacionadas com a PNL. A infraestrutura de saúde avançada da região e a forte presença de gigantes tecnológicos facilitam a rápida adoção de tecnologias de PNL em diversas aplicações, incluindo documentação clínica, análise de interação com pacientes e análise de dados.
- Espera-se que a Ásia-Pacífico testemunhe um crescimento significativo devido à ampla adoção de tecnologias avançadas destinadas a otimizar as operações comerciais. O aumento dos investimentos em infraestruturas de TI na área da saúde e a sensibilização para os benefícios da PNL na melhoria dos processos de tomada de decisão clínica e no envolvimento dos doentes são fatores-chave que impulsionam este crescimento.
- A Organização Holandesa para a Investigação Científica (NWO) está envolvida em projetos que aplicam a PNL para a análise de dados científicos obtidos a partir de estudos de investigação biomédica. O objetivo é desenvolver novos tratamentos e melhorar a compreensão da biologia das doenças.
- O projeto European Health Data Space (EHDS), financiado pela União Europeia, centra-se no desenvolvimento de ferramentas de PNL capazes de lidar com várias línguas europeias. A iniciativa visa criar soluções de PNL padronizadas que possam processar dados de saúde em várias línguas e dialetos em toda a Europa.
- O NHS Digital no Reino Unido está a concentrar-se na integração de tecnologias de PNL em sistemas de EHR para melhorar a documentação clínica e a recuperação de informação. Esta integração tenta atingir um maior nível de precisão dos dados para os pacientes, o que, por outro lado, permitirá a condução adequada de decisões clínicas corretas, uma vez que automatiza os processos de extração e análise de dados dos registos médicos.
- Na África do Sul, a Data Science Africa desenvolve modelos de PNL que são criados para suportar vários idiomas locais, desde o africâner e o zulu a outros, para serem colocados numa posição que permita satisfazer os requisitos multilingues dentro de um sistema de saúde regional .
Principais players do mercado de ciências biológicas em saúde e PNL
- 3M (EUA)
- Cerner Corporation (EUA)
- Nuance Communications Inc. (EUA)
- Dolby Systems Inc. (EUA)
- Microsoft (EUA)
- IBM (EUA)
- Google LLC (Alphabet Inc.) (EUA)
- Amazon Web Services Inc. (EUA)
- Apixio Inc. (EUA)
- Averbis (Alemanha)
- Clinithink (EUA)
- Lexalytics (EUA)
- Ciência Narrativa (EUA)
- JohnSnow Labs (EUA)
- BenevolentAI (Reino Unido)
Desenvolvimentos recentes do mercado de ciências da vida em saúde NLP
- Em fevereiro de 2024, a Persistent Systems colaborou com a Microsoft para lançar uma nova solução PHM alimentada por IA generativa. Desenvolvida para sustentar modelos de cuidados baseados no valor, esta solução avançada utiliza SDOH para medir as necessidades não clínicas dos doentes. Como resultado, reforça a precisão da análise preditiva nos gastos em saúde em diversas condições clínicas.
- Em junho de 2023, a Apixio, líder em soluções de inteligência artificial para cuidados de saúde baseados no valor, concluiu a sua fusão com a ClaimLogiq, uma empresa de tecnologia conhecida pela sua experiência em melhorar a precisão das reclamações de pré-pagamento para planos de saúde . A entidade recém-combinada dará pelo nome Apixio e tornar-se-á imediatamente um dos maiores e mais dominantes participantes no setor de dados e análises de saúde. A fusão estratégica reúne a IA avançada da Apixio com a precisão da ClaimLogiq no processamento de reclamações, criando uma plataforma poderosa para a entrega de insights e soluções abrangentes. O novo Apixio procura revolucionar a gestão da saúde ao melhorar a precisão dos dados, trazer otimização nas previsões de custos e impulsionar estratégias de cuidados baseadas em valor mais eficazes — um novo padrão no setor da análise de saúde.
O relatório de mercado do DBMR sobre o mercado de Processamento de Linguagem Natural (PLN) em Ciências da Vida na Saúde fornece informações valiosas que podem contribuir para a tomada de diversas decisões empresariais importantes. Com base nos nossos relatórios e experiência em investigação, pode criar estratégias de crescimento realistas para o seu negócio.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

