Global Predictive Maintenance Market
Tamanho do mercado em biliões de dólares
CAGR :
%

![]() |
2024 –2031 |
![]() | USD 6.72 Billion |
![]() | USD 63.09 Billion |
![]() |
|
![]() |
|
>Segmentação do mercado global de manutenção preditiva, por componentes (solução e serviços), modo de implantação (cloud e local), dimensão da organização (grandes empresas e pequenas e médias empresas), vertical (fabrico, energia e serviços públicos, transportes, governo , Saúde, Aeroespacial e Defesa, e Outros), Stakeholder (MRO, OEM/ODM e Integradores de Tecnologia) – Tendências e Previsão do Setor até 2031
Análise de mercado de manutenção preditiva
A manutenção preditiva surgiu como uma abordagem transformadora nas operações industriais, aproveitando os avanços na análise de dados, IoT e IA para melhorar a fiabilidade dos equipamentos e reduzir o tempo de inatividade. Ao contrário da manutenção preventiva tradicional, que segue cronogramas definidos, a manutenção preditiva depende de dados em tempo real para avaliar a saúde do equipamento e prever possíveis avarias. Esta mudança permite que as empresas atuem apenas quando necessário, otimizando os recursos e prolongando a vida útil dos ativos. Os avanços nos sensores IoT e nos algoritmos de aprendizagem automática são cruciais para o sucesso da manutenção preditiva, permitindo a monitorização contínua dos equipamentos e a deteção precoce de anomalias de desempenho. Os sensores recolhem dados em tempo real sobre parâmetros como temperatura, vibração e pressão, que são depois analisados utilizando a aprendizagem automática para identificar padrões que indiquem desgaste ou avarias. A computação em nuvem melhora ainda mais este processo, permitindo que os dados sejam agregados, processados e analisados em escala, fornecendo insights valiosos em grandes frotas de ativos. Indústrias que vão desde a manufatura e energia aos transportes adotaram a manutenção preditiva, observando uma redução dos custos de manutenção e uma maior eficiência operacional. À medida que as tecnologias continuam a evoluir, espera-se que a manutenção preditiva se torne mais precisa, escalável e acessível, abrindo caminho para uma gestão de ativos mais inteligente e orientada por dados em diversos setores.
Tamanho do mercado de manutenção preditiva
O tamanho do mercado global de manutenção preditiva foi avaliado em 6,72 mil milhões de dólares em 2023 e está projetado para atingir 63,09 mil milhões de dólares até 2031, com um CAGR de 32,30% durante o período previsto de 2024 a 2031. Além dos insights de mercado, tais como o valor de mercado , taxa de crescimento, segmentos de mercado, cobertura geográfica, participantes do mercado e cenário de mercado, o relatório de mercado com curadoria da equipa de pesquisa de mercado da Data Bridge inclui uma análise aprofundada de especialistas , análise de importação/exportação, análise de preços, análise de consumo de produção e análise Pilstle .
Tendências do mercado de manutenção preditiva
“Ascensão das soluções de manutenção preditiva baseadas na cloud”
O mercado de manutenção preditiva está a registar um rápido crescimento, impulsionado pela integração de IoT, IA e análise de big data para melhorar o desempenho dos ativos e reduzir o tempo de inatividade. Uma tendência importante que molda este mercado é o surgimento de soluções de manutenção preditiva baseadas na cloud. Estas soluções permitem às empresas recolher e analisar grandes quantidades de dados de equipamentos em tempo real, geralmente a partir de locais remotos, facilitando a previsão de avarias antes que estas ocorram. Por exemplo, a General Electric integrou a manutenção preditiva baseada na cloud nos seus equipamentos industriais, permitindo aos clientes monitorizar a saúde das máquinas continuamente e tomar decisões de manutenção baseadas em dados. Esta abordagem melhora a eficiência operacional e reduz os custos de manutenção. À medida que os setores continuam a adotar plataformas baseadas na cloud, espera-se que o mercado de manutenção preditiva se expanda, com as empresas a procurarem soluções escaláveis flexíveis para impulsionar a produtividade e prolongar a vida útil dos ativos.
Âmbito do Relatório e Segmentação do Mercado de Manutenção Preditiva
Atributos |
Principais insights de mercado sobre a manutenção preditiva |
Segmentos abrangidos |
|
Países abrangidos |
EUA, Canadá e México na América do Norte, Alemanha, França, Reino Unido, Holanda, Suíça, Bélgica, Rússia, Itália, Espanha, Turquia, Resto da Europa na Europa, China, Japão, Índia, Coreia do Sul, Singapura, Malásia , Austrália, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico (APAC) na Ásia-Pacífico (APAC), Arábia Saudita, Emirados Árabes Unidos, África do Sul, Egito, Israel, Resto do Médio Oriente e África (MEA) como parte do Médio Oriente e África (MEA), Brasil, Argentina e Resto da América do Sul como parte da América do Sul |
Principais participantes do mercado |
Microsoft (EUA), IBM (EUA), SAP (Alemanha), SAS Institute Inc. (EUA), Software GmbH (Alemanha), Cloud Software Group, Inc. (EUA), Hewlett Packard Enterprise Development LP (EUA), Altair Engineering Inc. (EUA), Splunk LLC (EUA), Oracle (EUA), Google (EUA), Amazon Web Services, Inc. (EUA), General Electric Company (EUA), Schneider Electric (França), Hitachi, Ltd. ( Japão), PTC (EUA) e DINGO Software Pty. Ltd (Austrália) |
Oportunidades de Mercado |
|
Conjuntos de informações de dados de valor acrescentado |
Além dos insights de mercado, tais como o valor de mercado, a taxa de crescimento, os segmentos de mercado, a cobertura geográfica, os participantes do mercado e o cenário de mercado, o relatório de mercado com curadoria da equipa de pesquisa de mercado da Data Bridge inclui uma análise aprofundada de especialistas , análise de importação/exportação, análise de preços, análise de consumo de produção e análise Pilstle. |
Definição de Mercado de Manutenção Preditiva
Os sistemas de software de manutenção preditiva são utilizados para monitorizar o desempenho e a condição de equipamentos ou máquinas durante a operação. Este software utiliza técnicas avançadas para programar a manutenção antes que ocorra qualquer falha, garantindo a fiabilidade do equipamento. O software de manutenção preditiva tem aplicações em vários campos, incluindo a deteção de desequilíbrios de energia trifásica devido à distorção harmónica, a identificação de picos de capacitância do motor e a identificação de problemas de sobreaquecimento devido a rolamentos defeituosos.
Dinâmica do mercado de manutenção preditiva
Motoristas
- Adoção crescente de tecnologias emergentes para extrair insights valiosos
Os avanços contínuos em big data , comunicação máquina a máquina (M2M) e inteligência artificial (IA) estão a impulsionar um crescimento significativo no mercado de manutenção preditiva, permitindo insights mais profundos de grandes quantidades de dados gerados por dispositivos IoT. Estes dispositivos recolhem enormes quantidades de dados de sensores, câmaras e outras fontes conectadas, que devem ser transformados em informações acionáveis para terem valor real. As técnicas de processamento de big data e visualização de dados capacitam os utilizadores para obter insights através de processamento em batch e análise offline, enquanto a interpretação de dados em tempo real depende cada vez mais da automatização para a escalabilidade. A IA desempenha um papel fundamental na análise dos enormes volumes de dados gerados no ecossistema IoT, convertendo-os em insights valiosos que as organizações podem utilizar para tomar decisões oportunas. Ao integrar a IA nos seus modelos de análise, as empresas podem automatizar a interpretação de dados e obter insights acionáveis em tempo real a partir de fluxos de dados IoT, criando um poderoso impulsionador para soluções de manutenção preditiva em todos os setores.
- Número crescente de indústrias em todo o mundo impulsiona maior procura e oferta
O número crescente de indústrias em todo o mundo está a gerar maior procura e oferta, principalmente nos países emergentes, onde a industrialização está a acelerar rapidamente. À medida que países como a Índia, a China e o Brasil continuam a expandir os seus setores de fabrico e tecnologia, cresce a necessidade de soluções avançadas, como a manutenção preditiva. Por exemplo, na Índia, as indústrias automóvel e transformadora estão a adoptar tecnologias de manutenção preditiva para melhorar a eficiência operacional e reduzir o tempo de inactividade, aumentando assim a procura por tais soluções. Este aumento da atividade industrial nos países emergentes é um importante impulsionador de mercado, uma vez que as empresas procuram ferramentas escaláveis e económicas para gerir a crescente infraestrutura e garantir operações fiáveis. A expansão da base industrial nestas regiões está a conduzir ao aumento da procura de software e serviços de manutenção preditiva, criando uma oportunidade substancial para os fornecedores satisfazerem esta necessidade crescente.
Oportunidades
- Aumento da integração da Internet das Coisas (IoT)
A integração da Internet das Coisas (IoT) em soluções de manutenção preditiva expandiu significativamente as oportunidades de mercado ao permitir a monitorização contínua e em tempo real de equipamentos e máquinas. Os dispositivos IoT, como sensores e contadores inteligentes, recolhem grandes quantidades de dados sobre parâmetros como temperatura, vibração, pressão e humidade. Estes dados são depois analisados através de algoritmos avançados e modelos de aprendizagem automática para prever possíveis falhas de equipamentos antes que ocorram. Por exemplo, na indústria transformadora, os sistemas de manutenção preditiva habilitados para IoT podem detetar vibrações anormais nas máquinas, alertando as equipas de manutenção para realizarem reparações antes que uma falha interrompa a produção. A crescente adoção da IoT em setores como o automóvel, a energia e a indústria criou um mercado crescente para soluções de manutenção preditiva baseadas na IoT. Esta procura é ainda amplificada pela capacidade da IoT de reduzir o tempo de inatividade não planeado, prolongar a vida útil dos equipamentos e minimizar os custos de reparação, posicionando a IoT como um dos principais impulsionadores do mercado de manutenção preditiva. À medida que mais empresas adotam dispositivos IoT e sistemas conectados, a necessidade de soluções de manutenção preditiva robustas e escaláveis continuará a aumentar, representando uma oportunidade de crescimento lucrativa para os fornecedores de tecnologia do setor.
- Ênfase crescente na redução de custos
A manutenção preditiva apresenta uma oportunidade de redução de custos atraente para as empresas ao minimizar falhas inesperadas de equipamentos, otimizar os stocks de peças de substituição e reduzir os custos de mão-de-obra. Ao utilizar insights baseados em dados para antecipar e prevenir avarias de equipamentos, as empresas podem evitar paragens dispendiosas e reparações dispendiosas, geralmente associadas a falhas inesperadas. Por exemplo, no setor dos transportes, os sistemas de manutenção preditiva podem prever quando as peças do motor de um veículo se irão desgastar, permitindo às empresas programar reparações num momento conveniente e evitar avarias dispendiosas e prejudiciais. Da mesma forma, no fabrico, a manutenção preditiva ajuda a otimizar o stock de peças de substituição, garantindo que as peças são encomendadas apenas quando necessário, evitando o stock excessivo ou insuficiente. Além disso, reduz a necessidade de equipas de reparação de emergência e de horas de trabalho extra, uma vez que a manutenção pode ser programada em horários de menor movimento, poupando assim nos custos operacionais. Este potencial de poupança de custos é uma oportunidade de mercado significativa, uma vez que as empresas de todos os setores procuram cada vez mais formas de reduzir as despesas operacionais, mantendo elevados níveis de eficiência e desempenho. Com estes benefícios financeiros, a procura por soluções de manutenção preditiva continua a aumentar, apresentando uma forte oportunidade de crescimento para os fornecedores de soluções no mercado.
Restrições/Desafios
- Falta de mão-de-obra qualificada
A implementação de tecnologias IoT baseadas em IA e sistemas de software avançados requer trabalhadores qualificados e treinados para operar e gerir estes sistemas novos e atualizados. No entanto, as indústrias estão a enfrentar uma escassez de profissionais altamente treinados e com a experiência necessária. À medida que os fabricantes globais adotam sistemas de manutenção preditiva, a procura de mão-de-obra qualificada está a crescer. As empresas precisam de desenvolver experiência em áreas como a cibersegurança , redes e operações para utilizar eficazmente os dados da IoT para prever problemas, prevenir falhas, otimizar as operações e melhorar o desenvolvimento de produtos. Além disso, espera-se que a integração da IA e da aprendizagem automática (ML) nos sistemas IoT desempenhe um papel fundamental na redução dos custos operacionais. À medida que a IA for incorporada na IoT, haverá uma necessidade crescente de equipas de analistas de dados especializados em lidar e interpretar as grandes quantidades de dados gerados pelos dispositivos IoT para fornecer insights acionáveis.
- Necessidade de manutenção regular e atualizações do sistema
Os custos e os requisitos de investimento elevados representam um desafio considerável no mercado da Manutenção Preditiva, uma vez que as organizações enfrentam frequentemente barreiras financeiras significativas ao implementar soluções avançadas de Manutenção Preditiva. A integração de tecnologias sofisticadas, como sistemas biométricos e inteligência artificial , pode implicar investimentos iniciais substanciais tanto em software como em hardware. Por exemplo, implementar um sistema abrangente de Manutenção Preditiva numa organização pode custar centenas de milhares de dólares, o que pode ser proibitivo para empresas mais pequenas ou para aquelas que operam com orçamentos apertados. Além disso, a manutenção e as atualizações contínuas destes sistemas podem aumentar a carga financeira, tornando difícil para as empresas alocar recursos de forma eficaz. Como resultado, os elevados custos associados às tecnologias de Manutenção Preditiva representam um desafio de mercado significativo que os prestadores devem superar para facilitar uma adoção mais ampla em diversos setores.
Este relatório de mercado fornece detalhes de novos desenvolvimentos recentes, regulamentos comerciais, análise de importação e exportação, análise de produção, otimização da cadeia de valor, quota de mercado, impacto dos participantes do mercado doméstico e localizado, analisa as oportunidades em termos de bolsas de receitas emergentes, alterações nas regulamentações do mercado, análise estratégica do crescimento do mercado, tamanho do mercado, crescimento do mercado das categorias, nichos de aplicação e dominância, aprovações de produtos, lançamentos de produtos, expansões geográficas, inovações tecnológicas no mercado. Para mais informações sobre o mercado, contacte a Data Bridge Market Research para obter um briefing de analista.
Âmbito de mercado de manutenção preditiva
O mercado é segmentado com base no componente, modo de implementação, tamanho da organização, vertical e stakeholders. O crescimento entre estes segmentos irá ajudá-lo a analisar segmentos de baixo crescimento nos setores e fornecerá aos utilizadores uma visão geral e informações valiosas do mercado para os ajudar a tomar decisões estratégicas para identificar as principais aplicações do mercado.
Componente
- Soluções
- Integrado
- Autônomo
- Serviço
- Serviços Gerenciados
- Serviços profissionais
- Integração de sistemas
- Suporte e Manutenção
- Consultoria
Integração de sistemas
- Suporte e Manutenção
- Consultoria
Modo de Implantação
- No local
- Nuvem
- Nuvem Pública
- Nuvem privada
- Nuvem Híbrida
Tamanho da organização
- Grandes Empresas
- Pequenas e Médias Empresas (PME)
Vertical
- Governo e Defesa
- Fabricação
- Energia e Serviços Públicos
- Transporte e Logística
- Saúde e Ciências da Vida
Parte interessada
- MRO
- OEM/ODM
- Integradores de Tecnologia
Análise regional do mercado de manutenção preditiva
O mercado é analisado e são fornecidos insights e tendências sobre o tamanho do mercado por componente, modo de implantação, tamanho da organização, vertical e stakeholder, como referenciado acima.
Os países abrangidos no relatório de mercado são os EUA, Canadá, México na América do Norte, Alemanha, Suécia, Polónia, Dinamarca, Itália, Reino Unido, França, Espanha, Países Baixos, Bélgica, Suíça, Turquia, Rússia, Resto da Europa na Europa , Japão , China, Índia, Coreia do Sul, Nova Zelândia, Vietname, Austrália, Singapura, Malásia, Tailândia, Indonésia, Filipinas, Resto da Ásia-Pacífico (APAC) na Ásia-Pacífico (APAC), Brasil, Argentina, Resto da América do Sul como uma parte da América do Sul, Emirados Árabes Unidos, Arábia Saudita, Omã, Qatar, Kuwait, África do Sul, Resto do Médio Oriente e África (MEA) como parte do Médio Oriente e África (MEA).
Espera-se que a América do Norte domine o mercado de manutenção preditiva, impulsionada por avanços tecnológicos significativos na região. O número crescente de empresas que oferecem soluções de manutenção preditiva também deverá contribuir para o crescimento do mercado. À medida que mais empresas adotarem estas soluções, a procura por tecnologias de manutenção preditiva aumentará, impulsionando ainda mais o mercado. Além disso, a presença de empresas líderes e as inovações contínuas na região apoiarão a expansão contínua do mercado.
A projeção é que a Ásia-Pacífico experimente um crescimento constante na adoção da manutenção preditiva, impulsionado pelas economias emergentes da região. Os avanços tecnológicos e a necessidade cada vez maior das empresas de otimizar o desempenho dos ativos através de estratégias de manutenção eficientes são fatores-chave que impulsionam este crescimento. À medida que as indústrias se esforçam para aumentar a produtividade e reduzir o tempo de inatividade, as tecnologias de manutenção preditiva estão a tornar-se essenciais. Além disso, o foco da região na adoção de inovações de ponta irá acelerar ainda mais a integração de soluções de manutenção preditiva.
A secção de países do relatório também fornece fatores individuais que impactam o mercado e alterações na regulamentação do mercado que impactam as tendências atuais e futuras do mercado. Pontos de dados como a análise da cadeia de valor a montante e a jusante, tendências técnicas e análise das cinco forças de Porter, estudos de caso são alguns dos indicadores utilizados para prever o cenário de mercado para países individuais. Além disso, a presença e a disponibilidade de marcas globais e os seus desafios enfrentados devido à grande ou escassa concorrência de marcas locais e nacionais, ao impacto de tarifas domésticas e rotas comerciais são considerados ao fornecer uma análise de previsão dos dados do país.
Quota de mercado de manutenção preditiva
O cenário competitivo do mercado fornece detalhes por concorrente. Os detalhes incluídos são a visão geral da empresa, finanças da empresa, receitas geradas, potencial de mercado, investimento em investigação e desenvolvimento, novas iniciativas de mercado, presença global, localizações e instalações de produção, capacidades de produção, pontos fortes e fracos da empresa , lançamento do produto, amplitude e abrangência do produto, aplicação domínio. Os pontos de dados fornecidos acima estão apenas relacionados com o foco das empresas em relação ao mercado.
Os líderes de mercado de manutenção preditiva que operam no mercado são:
- Microsoft (EUA)
- IBM (EUA)
- SAP (Alemanha)
- SAS Institute Inc. (EUA)
- Software GmbH (Alemanha)
- Cloud Software Group, Inc. (EUA)
- Hewlett Packard Enterprise Development LP (EUA)
- Altair Engineering Inc. (EUA)
- Splunk LLC (EUA)
- Oracle (EUA)
- Google (EUA)
- Amazon Web Services, Inc. (EUA)
- General Electric Company (EUA)
- Schneider Electric (França)
- Hitachi, Ltd. (Japão)
- PTC (EUA)
- DINGO Software Pty. Ltd (Austrália)
Últimos desenvolvimentos no mercado da manutenção preditiva
- Em agosto de 2023, a Honeywell, uma empresa sediada nos EUA, lançou os seus transmissores Versatilis, uma solução concebida para a monitorização baseada em condições de equipamentos rotativos em vários setores
- Em junho de 2023, a Accenture adquiriu a Nextira, um parceiro importante da Amazon Web Services (AWS), para melhorar as suas capacidades de engenharia no Accenture Cloud First. Esta aquisição permitirá à Accenture fornecer análises preditivas, inovações nativas da cloud e experiências imersivas aos clientes, aproveitando as soluções da AWS para fornecer recursos abrangentes de cloud
- Em maio de 2023, a Cisco Systems e a NTT, um fornecedor de serviços de infraestrutura de telecomunicações, estabeleceram uma parceria para desenvolver soluções que fornecem insights de dados em tempo real, melhor tomada de decisões e segurança melhorada. A sua colaboração centra-se na manutenção preditiva, gestão da cadeia de abastecimento e rastreamento de ativos
- Em junho de 2022, a Siemens, sediada no Reino Unido, adquiriu a Senseye para reforçar o seu portefólio em manutenção preditiva e inteligência de ativos
- Em junho de 2022, a Microsoft, sediada nos EUA, estabeleceu uma parceria com a Schneider Electric, sediada em França, para introduzir soluções de manutenção avançadas que melhoram a gestão de energia, o desempenho dos ativos e a eficiência operacional
- Em julho de 2021, a Schneider Electric lançou o EcoStruxure TriconexTM Safety View, um software pioneiro para a gestão de alarmes e bypass com dupla certificação para segurança e cibersegurança. Esta solução permite aos operadores monitorizar o estado do bypass e os alarmes críticos para manter as operações seguras em condições de alto risco
- Em maio de 2021, o SAS Institute lançou o SAS Viya, a sua poderosa plataforma nativa da cloud para gestão e análise de dados, com o objetivo de capacitar o sucesso baseado em dados através de novas soluções integradas para operações de dados
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.