Middle East and Africa Deep Learning Neural Networks (DNNs) Market, By Component (Hardware , Software, and Services), Application (Image Recognition, Natural Language Processing ,Speech Recognition, Data Mining), End-User(Banking, Financial Services and Insurance (BFSI), IT and Telecommunication, Healthcare, Retail, Automotive, Manufacturing, Aerospace and Defence, Security and others), Country (U.A.E, Saudi Arabia, Egypt, South Africa, Israel, Rest of Middle East and Africa) Industry Trends and Forecast to 2028
Market Analysis and Insights: Middle East and Africa Deep Learning Neural Networks (DNNs) Market
The deep learning neural networks (DNNs) market is expected to witness market growth at a rate of 21.30% in the forecast period of 2021 to 2028, and is expected to reach the value of USD 750 million by 2028. Data Bridge Market Research report on deep learning neural networks (DNNs) market provides analysis and insights regarding the various factors expected to be prevalent throughout the forecast period while providing their impacts on the market’s growth. The increase in demand for the product for various industrial applications is escalating the growth of deep learning neural networks (DNNs) market.
The deep learning neural networks (DNNs) refers to machine learning based technology that is widely deployed for diagnosis solving prediction, and decision making, among others on a well-defined computational architecture. These technologies are adopted in the various applications such as speech recognition, computer security, and image and video recognition to medical diagnostics, industrial fault detection, and finance.
The rise in popularity of Artificial intelligence (AI) across the region acts as one of the major factors driving the growth of deep learning neural networks (DNNs) market. The high adoption of the technology owning to the enhanced processing power, learning ability, and speed of neural networks, and increase in the collection of data from users by various organizations accelerate the market growth. The quick adoption of newer Components, especially AI among consumers and end-user industries as it assists them in making their life easier and taking informed and sound decisions, and surge in demand for detection of complex nonlinear relationships between variables and recognize patterns in big data further influence the market. Additionally, surge in investments, rapid digitization, growth and development in the Artificial Intelligence and high demand to train large volumes of data sets with low supervision positively affect the deep learning neural networks (DNNs) market. Furthermore, innovations in the existing product extend profitable opportunities to the market players in the forecast period of 2021 to 2028.
On the other hand, complexities while implementing algorithms and integrating hardware and lack of awareness about the component are expected to obstruct the market growth. Lack of skilled professionals is projected to challenge the deep learning neural networks (DNNs) market in the forecast period of 2021-2028.
This deep learning neural networks (DNNs) market report provides details of new recent developments, trade regulations, import export analysis, production analysis, value chain optimization, market share, impact of domestic and localized market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, strategic market growth analysis, market size, category market growths, application niches and dominance, product approvals, product launches, geographic expansions, technological innovations in the market. To gain more info on deep learning neural networks (DNNs) market contact Data Bridge Market Research for an Analyst Brief, our team will help you take an informed market decision to achieve market growth.
Middle East and Africa Deep Learning Neural Networks (DNNs) Market Scope and Market Size
The deep learning neural networks (DNNs) market is segmented on the basis of component, application and end-user. The growth among segments helps you analyze niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
- On the basis of component, the deep learning neural networks (DNNs) market is segmented into hardware, software and services.
- On the basis of application, the deep learning neural networks (DNNs) market is segmented into image recognition, speech recognition, natural language processing, and data mining.
- On the basis of end-user, the deep learning neural networks (DNNs) market is segmented into banking, financial services and insurance (BFSI), it and telecommunication, healthcare, retail, automotive, manufacturing, aerospace and defence, security and others.
Middle East and Africa Deep Learning Neural Networks (DNNs) Market Country Level Analysis
The deep learning neural networks (DNNs) market is analyzed and market size insights and trends are provided by country, component, application and end-user as referenced above.
The countries covered in the Middle East-Africa deep learning neural networks (DNNs) market report are Saudi Arabia, U.A.E, Israel, Egypt, South Africa, Rest of Middle East and Africa (MEA) as a part of Middle East and Africa (MEA).
Saudi Arabia dominates the Middle East-Africa deep learning neural networks (DNNs) market due to the usage in the various industries.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as consumption volumes, production sites and volumes, import export analysis, price trend analysis, cost of raw materials, down-stream and upstream value chain analysis are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Competitive Landscape and Middle East and Africa Deep Learning Neural Networks (DNNs) Market Share Analysis
The deep learning neural networks (DNNs) market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies’ focus related to deep learning neural networks (DNNs) market.
The major players covered in the deep learning neural networks (DNNs) market report are LYUDA RESEARCH, LLC, ALPHABET INC. (google), IBM, Micron Technologies, Inc., Neural Technologies Limited, NEURODIMENSION, INC., NEURALWARE, NVIDIA CORPORATION, SKYMIND INC, SAMSUNG, Qualcomm Technologies, Inc., Intel Corporation, Amazon Web Services, Inc., Microsoft, GMDH LLC., Sensory Inc., Ward Systems Group, Inc., Xilinx Inc., and Starmind among others.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.
