North America Deep Learning Neural Networks Dnns Market
Tamanho do mercado em biliões de dólares
CAGR :
%
USD
12.50 Billion
USD
38.77 Billion
2024
2032
| 2025 –2032 | |
| USD 12.50 Billion | |
| USD 38.77 Billion | |
|
|
|
|
Segmentação do mercado de redes neurais de aprendizado profundo (DNNs) da América do Norte por tipo de produto (plataformas de software, aceleradores de hardware, serviços), tecnologia (CNNs, RNNs, GANs, transformadores, outros), aplicação (diagnóstico de saúde, veículos autônomos, serviços financeiros, varejo, manufatura, outros), implantação (baseada em nuvem, no local), usuário final (empresas, provedores de saúde, fabricantes automotivos, instituições financeiras, agências governamentais, outros) – Tendências do setor e previsão até 2032
Tamanho do mercado de redes neurais de aprendizado profundo (DNNs)
- O tamanho do mercado de Redes Neurais de Aprendizado Profundo (DNNs) da América do Norte foi avaliado em US$ 12,50 bilhões em 2024 e deve atingir US$ 38,77 bilhões até 2032 , com um CAGR de 15,2% durante o período previsto.
- Esse crescimento substancial é impulsionado principalmente pela ampla adoção de tecnologias de inteligência artificial (IA), pelo aumento dos investimentos em infraestrutura de aprendizado de máquina e pela crescente demanda por análises avançadas de dados em setores como saúde, automotivo, financeiro e varejo. A proliferação do big data, aliada aos avanços em poder computacional, está acelerando ainda mais a expansão do mercado.
- A liderança da região em inovação tecnológica, apoiada por investimentos significativos em pesquisa e desenvolvimento (P&D), iniciativas governamentais que promovem a adoção da IA e uma forte presença de empresas líderes em tecnologia, é um fator fundamental para a trajetória ascendente do mercado. Além disso, a crescente integração de redes de domínio (DNNs) em sistemas autônomos, manufatura inteligente e serviços personalizados ao consumidor está gerando uma demanda significativa por soluções de aprendizado profundo na América do Norte.
Análise de mercado de redes neurais de aprendizado profundo (DNNs)
- Redes Neurais de Aprendizado Profundo (DNNs) são algoritmos avançados de IA projetados para imitar processos cerebrais humanos, permitindo que máquinas processem vastos conjuntos de dados, reconheçam padrões e tomem decisões baseadas em dados. Esses sistemas, incluindo plataformas de software, aceleradores de hardware como GPUs e TPUs, e serviços profissionais, são essenciais para aplicações em diagnósticos de saúde, veículos autônomos, modelagem financeira, personalização do varejo e automação da manufatura.
- The market is significantly fueled by North America’s dominance in AI innovation, with the region accounting for over 40% of global AI R&D spending in 2023, led by the United States. The rapid adoption of autonomous vehicles, with over 1.2 million self-driving cars projected to be on U.S. roads by 2027, drives demand for DNNs in real-time image and sensor data processing.
- Technological advancements, such as transformer-based models and generative AI, are enhancing DNN capabilities, enabling applications in natural language processing (NLP), computer vision, and predictive analytics. The U.S. government’s AI initiatives, such as the National AI Research Resource (NAIRR), are fostering innovation and supporting market growth.
- The United States dominates the market with a commanding 82.3% revenue share in 2024, valued at USD 10.29 billion, driven by its robust tech ecosystem, presence of key players like NVIDIA and Google, and significant investments in AI infrastructure. Canada is expected to witness the fastest growth rate, with a projected CAGR of 16.8% from 2025 to 2032, propelled by government support for AI research and growing adoption in healthcare and automotive sectors.
- Among product types, the software platforms segment held the largest market share of 48.7% in 2024, valued at USD 6.09 billion, attributed to the widespread use of deep learning frameworks like TensorFlow and PyTorch in enterprise and research applications.
Report Scope and Deep Learning Neural Networks (DNNs) Market Segmentation
|
Attributes |
Deep Learning Neural Networks (DNNs) Key Market Insights |
|
Segments Covered |
|
|
Countries Covered |
North America
|
|
Key Market Players |
|
|
Market Opportunities |
|
|
Value Added Data Infosets |
In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include in-depth expert analysis, pricing analysis, brand share analysis, consumer survey, demography analysis, supply chain analysis, value chain analysis, raw material/consumables overview, vendor selection criteria, PESTLE Analysis, Porter Analysis, and regulatory framework. |
Deep Learning Neural Networks (DNNs) Market Trends
“Generative AI, Transformer Models, Edge Computing, and Sustainable AI Solutions”
- The adoption of generative AI and transformer-based models is a prominent trend, with over 30% of new DNN deployments in 2024 leveraging these technologies for applications in NLP, image generation, and creative content production, enhancing user experiences in retail and media.
- The rise of edge computing, with 25% of new DNN solutions in 2024 designed for on-device processing, is gaining traction in autonomous vehicles and IoT applications, reducing latency and improving real-time decision-making.
- Increasing focus on sustainable AI solutions, with 15% of new hardware accelerators in 2024 certified for energy efficiency, aligning with North America’s green technology initiatives and reducing the environmental impact of AI computing.
- The adoption of cloud-based DNN platforms is growing rapidly, with a 20% increase in adoption rates in 2024, driven by scalable and flexible solutions offered by providers like AWS, Microsoft Azure, and Google Cloud.
- Integration of DNNs with IoT ecosystems, particularly in smart manufacturing and healthcare, is expanding, with 18% of new solutions in 2024 designed for real-time data analytics and automation in these sectors.
- Growing consumer demand for personalized AI-driven services, such as recommendation systems in retail and predictive diagnostics in healthcare, is driving innovation in DNN applications across North America.
Deep Learning Neural Networks (DNNs) Market Dynamics
Driver
“AI Adoption, Big Data Proliferation, Autonomous Systems, Government Support, and Technological Advancements”
- Widespread adoption of AI technologies across industries, with North America’s AI market projected to reach USD 200 billion by 2027, drives significant demand for DNNs in applications like healthcare diagnostics, autonomous driving, and financial modeling.
- The proliferation of big data, with North American enterprises generating over 2.5 exabytes of data daily in 2023, fuels the need for advanced DNNs to process and analyze complex datasets for actionable insights.
- The rapid expansion of autonomous vehicle development, with over 1.2 million self-driving cars projected to be on U.S. roads by 2027, increases demand for DNNs in real-time image processing, sensor fusion, and decision-making algorithms.
- Government initiatives, such as the U.S. National AI Initiative and Canada’s Pan-Canadian AI Strategy, provide substantial funding and regulatory support for AI research, fostering innovation and adoption of DNNs across industries.
- Advancements in hardware accelerators, such as NVIDIA’s A100 GPUs and Google’s TPUs, enhance DNN performance, enabling faster training and inference for complex models in data centers and edge devices.
- The growing demand for personalized consumer experiences, with 65% of North American retailers adopting AI-driven recommendation systems in 2023, drives the integration of DNNs in retail, e-commerce, and customer service applications.
Restraint/Challenge
“High Development Costs, Data Privacy Concerns, Skill Shortages, Energy Consumption, and Regulatory Complexities”
- The high cost of developing and deploying DNNs, particularly for custom hardware accelerators and large-scale AI models, poses a challenge to adoption among small and medium enterprises, limiting market scalability in cost-sensitive segments.
- Data privacy concerns, driven by regulations like the California Consumer Privacy Act (CCPA) and Canada’s Personal Information Protection and Electronic Documents Act (PIPEDA), increase compliance costs and complexity for DNN providers handling sensitive data.
- Skill shortages in AI and deep learning expertise, with a projected deficit of 250,000 AI professionals in North America by 2026, pose challenges to implementation, maintenance, and innovation in DNN technologies.
- High energy consumption of DNN training and inference processes, with large-scale models consuming up to 500 MWh annually, raises concerns about sustainability and operational costs, particularly in data centers.
- Rapid technological obsolescence, driven by continuous advancements in AI algorithms and hardware, pressures companies to invest heavily in R&D, reducing profitability for smaller players and limiting long-term innovation.
- Regulatory complexities, such as varying AI governance frameworks across the U.S., Canada, and Mexico, create challenges for standardized DNN deployment and compliance, increasing operational overhead for providers.
Deep Learning Neural Networks (DNNs) Market Scope
The North America Deep Learning Neural Networks (DNNs) Market is segmented based on product type, technology, application, deployment, end-user to provide a comprehensive understanding of market dynamics and growth opportunities.
- By Product Type
Com base no tipo de produto, o mercado é segmentado em plataformas de software, aceleradores de hardware e serviços. O segmento de plataformas de software dominou, com uma participação de 48,7% na receita em 2024, avaliada em US$ 6,09 bilhões, impulsionada pelo amplo uso de frameworks como TensorFlow, PyTorch e Keras em aplicações empresariais e de pesquisa. O segmento de serviços deverá crescer a uma CAGR de 16,5%, a mais rápida, entre 2025 e 2032, impulsionado pela demanda por serviços de consultoria e implementação de IA.
Por Tecnologia
Com base na tecnologia, o mercado é segmentado em Redes Neurais Convolucionais (CNNs), Redes Neurais Recorrentes (RNNs), Redes Adversariais Generativas (GANs), Transformadores e outros. O segmento de CNNs detinha a maior participação, de 40,2%, em 2024, impulsionado por seu uso em reconhecimento de imagem e veículos autônomos. Espera-se que o segmento de Transformadores cresça a uma CAGR (taxa composta de crescimento anual) mais rápida, de 17,1%, de 2025 a 2032, impulsionado pelos avanços em PLN e IA generativa.
Por aplicação
Com base na aplicação, o mercado é segmentado em diagnósticos de saúde, veículos autônomos, serviços financeiros, varejo e e-commerce, automação industrial e outros. O segmento de diagnósticos de saúde foi responsável pela maior participação na receita, de 35,6% em 2024, impulsionado por imagens médicas e diagnósticos preditivos com tecnologia de IA. Espera-se que o segmento de veículos autônomos cresça a uma taxa composta de crescimento anual (CAGR) mais rápida, de 18,3%, entre 2025 e 2032, impulsionado pelo desenvolvimento de carros autônomos.
Por implantação
Com base na implantação, o mercado é segmentado em nuvem e on-premise. O segmento baseado em nuvem detinha uma participação significativa de 60,8% em 2024, impulsionado por soluções escaláveis oferecidas pela AWS, Azure e Google Cloud. Espera-se que o segmento baseado em nuvem cresça a uma CAGR (taxa composta de crescimento anual) mais rápida, de 16,9%, de 2025 a 2032, impulsionado pela demanda por implantação de IA flexível e econômica.
Por usuário final
Com base no Usuário Final, o mercado é segmentado em empresas, provedores de saúde, fabricantes de automóveis, instituições financeiras, agências governamentais e outros. O segmento corporativo dominou, com uma participação de 42,1% na receita em 2024, impulsionado pela adoção de IA em análises de negócios. O segmento de provedores de saúde deve crescer a uma CAGR (taxa composta de crescimento anual) mais rápida, de 17,4%, de 2025 a 2032, impulsionado por diagnósticos baseados em IA e medicina personalizada.
Análise regional do mercado de redes neurais de aprendizado profundo (DNNs)
Visão do mercado de redes neurais de aprendizado profundo (DNNs) dos EUA
Os Estados Unidos lideraram o mercado com uma participação de 82,3% na receita em 2024, avaliada em US$ 10,29 bilhões, impulsionada por seu robusto ecossistema de tecnologia, pela presença de players importantes como NVIDIA, Google e Microsoft, e por investimentos significativos em infraestrutura de IA. A liderança do país em veículos autônomos, IA para a área da saúde e serviços financeiros, aliada ao apoio governamental por meio da Iniciativa Nacional de IA, consolida sua posição dominante.
Visão do mercado de redes neurais de aprendizado profundo (DNNs) do Canadá
O Canadá está prestes a crescer a uma taxa composta de crescimento anual (CAGR) de 16,8% entre 2025 e 2032, impulsionado por iniciativas governamentais como a Estratégia Pan-Canadense de IA, que apoia a pesquisa e a adoção de IA nos setores de saúde, automotivo e manufatura. O Canadá representava 12,1% do mercado em 2024, com crescente adoção de redes digitais descentralizadas (DNNs) em cidades inteligentes e diagnósticos médicos.
Visão do mercado de redes neurais de aprendizado profundo (DNNs) no México
O México detinha uma participação de mercado de 5,6% em 2024, impulsionada pelos crescentes setores automotivo e de manufatura, que estão adotando cada vez mais a IA para automação e controle de qualidade. Os esforços do governo para promover a Indústria 4.0 e as parcerias com empresas de tecnologia sediadas nos EUA apoiam o crescimento do mercado mexicano.
Participação de mercado de redes neurais de aprendizado profundo (DNNs)
- O setor de Redes Neurais de Aprendizado Profundo (DNNs) é liderado principalmente por empresas bem estabelecidas, incluindo:
- NVIDIA Corporation (Estados Unidos)
- Google LLC (Estados Unidos)
- Microsoft Corporation (Estados Unidos)
- Amazon Web Services, Inc. (Estados Unidos)
- Intel Corporation (Estados Unidos)
- IBM Corporation (Estados Unidos)
- Advanced Micro Devices, Inc. (AMD) (Estados Unidos)
- Meta AI (Estados Unidos)
- Qualcomm Incorporated (Estados Unidos)
- Oracle Corporation (Estados Unidos)
- SAS Institute Inc. (Estados Unidos)
- Palantir Technologies Inc. (Estados Unidos)
- H2O.ai (Estados Unidos)
- DataRobot, Inc. (Estados Unidos)
- Cerebras Systems Inc. (Estados Unidos)
- xAI (Estados Unidos)
Últimos desenvolvimentos no mercado de redes neurais de aprendizado profundo (DNNs) na América do Norte
- Em outubro de 2023, a NVIDIA revelou a GPU H200 Tensor Core, seu processador de última geração projetado para acelerar o treinamento e a inferência de redes neurais profundas (DNN). O H200 oferece desempenho até 20% melhor para cargas de trabalho de IA generativa em comparação com seus antecessores. Ele é otimizado para modelos de IA em larga escala, como transformadores e modelos de difusão, cruciais para aplicações em PLN e visão computacional. Grandes provedores de nuvem, incluindo AWS e Azure, já adotaram o H200 para alimentar suas plataformas de IA, aprimorando recursos em ambientes corporativos e de pesquisa.
- Em janeiro de 2024, o Google Cloud lançou o Vertex AI Vision, uma nova adição à sua plataforma Vertex AI, voltada para análise de imagens e vídeos em tempo real usando aprendizado profundo. Essa solução baseada em nuvem oferece suporte a casos de uso no varejo (por exemplo, checkout inteligente, controle de estoque) e na indústria (por exemplo, detecção de defeitos). Ela oferece uma melhoria de 15% na velocidade de processamento, impulsionada pela implantação otimizada de modelos e desempenho de inferência. O Vertex AI Vision integra-se facilmente aos serviços existentes do Google Cloud, ajudando os desenvolvedores a escalar aplicações de visão computacional com mais rapidez e eficiência.
- In March 2024, Microsoft expanded its collaboration with OpenAI by embedding advanced transformer-based models into the Azure AI platform. This integration significantly enhances natural language processing (NLP) capabilities for enterprise users. Applications include automated customer service, language translation, content generation, and document summarization. Over 100 companies in the U.S. have already adopted these capabilities, leveraging Azure’s infrastructure to implement intelligent automation at scale.
- In April 2024, Elon Musk’s xAI introduced an enhanced version of its Grok platform, integrating more advanced DNNs to deliver improved analytical reasoning and data interpretation. The updated Grok system is designed for enterprise applications in areas such as predictive modeling, business intelligence, and strategic forecasting. With a focus on real-time insights and better performance, Grok now serves as a powerful tool for data-driven decision-making and enterprise-level AI deployment.
- In June 2024, Intel launched the Gaudi 3 AI accelerator, engineered to deliver energy-efficient, high-throughput DNN training. Compared to its predecessor, the Gaudi 3 reduces power consumption by 25%, while enhancing memory bandwidth and compute performance. The chip is positioned as a cost-effective solution for AI training and inference in large-scale data center environments. Adoption has already begun among major data infrastructure providers across North America.
SKU-
Obtenha acesso online ao relatório sobre a primeira nuvem de inteligência de mercado do mundo
- Painel interativo de análise de dados
- Painel de análise da empresa para oportunidades de elevado potencial de crescimento
- Acesso de analista de pesquisa para personalização e customização. consultas
- Análise da concorrência com painel interativo
- Últimas notícias, atualizações e atualizações Análise de tendências
- Aproveite o poder da análise de benchmark para um rastreio abrangente da concorrência
Metodologia de Investigação
A recolha de dados e a análise do ano base são feitas através de módulos de recolha de dados com amostras grandes. A etapa inclui a obtenção de informações de mercado ou dados relacionados através de diversas fontes e estratégias. Inclui examinar e planear antecipadamente todos os dados adquiridos no passado. Da mesma forma, envolve o exame de inconsistências de informação observadas em diferentes fontes de informação. Os dados de mercado são analisados e estimados utilizando modelos estatísticos e coerentes de mercado. Além disso, a análise da quota de mercado e a análise das principais tendências são os principais fatores de sucesso no relatório de mercado. Para saber mais, solicite uma chamada de analista ou abra a sua consulta.
A principal metodologia de investigação utilizada pela equipa de investigação do DBMR é a triangulação de dados que envolve a mineração de dados, a análise do impacto das variáveis de dados no mercado e a validação primária (especialista do setor). Os modelos de dados incluem grelha de posicionamento de fornecedores, análise da linha de tempo do mercado, visão geral e guia de mercado, grelha de posicionamento da empresa, análise de patentes, análise de preços, análise da quota de mercado da empresa, normas de medição, análise global versus regional e de participação dos fornecedores. Para saber mais sobre a metodologia de investigação, faça uma consulta para falar com os nossos especialistas do setor.
Personalização disponível
A Data Bridge Market Research é líder em investigação formativa avançada. Orgulhamo-nos de servir os nossos clientes novos e existentes com dados e análises que correspondem e atendem aos seus objetivos. O relatório pode ser personalizado para incluir análise de tendências de preços de marcas-alvo, compreensão do mercado para países adicionais (solicite a lista de países), dados de resultados de ensaios clínicos, revisão de literatura, mercado remodelado e análise de base de produtos . A análise de mercado dos concorrentes-alvo pode ser analisada desde análises baseadas em tecnologia até estratégias de carteira de mercado. Podemos adicionar quantos concorrentes necessitar de dados no formato e estilo de dados que procura. A nossa equipa de analistas também pode fornecer dados em tabelas dinâmicas de ficheiros Excel em bruto (livro de factos) ou pode ajudá-lo a criar apresentações a partir dos conjuntos de dados disponíveis no relatório.

