- Data wrangling is increasingly adopted across industries such as finance, healthcare, retail, and telecommunications to streamline data processing, enhance decision-making, and drive operational efficiency
- Advancements in AI, machine learning, and automation are revolutionizing data wrangling, enabling faster, more accurate data preparation for analytics, business intelligence, and predictive modeling
- Organizations are shifting from manual data cleaning to automated data wrangling solutions to handle growing data complexities and improve scalability in cloud and big data environments
- Real-time data wrangling tools provide actionable insights by integrating structured and unstructured data sources, empowering businesses with better forecasting, personalized services, and higher ROI on data-driven strategies
- North America is projected to dominate the data wrangling market during the forecast period owing to the rising adoption of data wrangling services and also the data collected on a daily basis has increased the demand for data wrangling at a large scale



