Global Modelops Market
Market Size in USD Billion
CAGR :
%
USD
5.31 Billion
USD
4.03 Billion
2024
2032
| 2025 –2032 | |
| USD 5.31 Billion | |
| USD 4.03 Billion | |
|
|
|
|
Global ModelOps Market Segmentation, By Offering (Platforms, Services), Deployment (Cloud and On-premises), Model (ML Models, Graph-Based Models, Rule & Heuristic Models, Linguistic Models, Agent-Based Models, and Others), Application (Customer Service and Virtual Assistants, Robotics and Automation, Healthcare, Financial Services, Security and Surveillance, Gaming and Entertainment, Marketing and Sales, Human Resources, Legal and Compliance, and Others), Vertical (BFSI, Retail & E-Commerce, Healthcare & Life Sciences, IT & Telecommunications, Energy & Utilities, Manufacturing, Transportation & Logistics, and Others) - Industry Trends and Forecast to 2032
What is the Global ModelOps Market Size and Growth Rate?
- The global ModelOps market size was valued at USD 5.31 billion in 2024 and is expected to reach USD 4.03 billion by 2032, at a CAGR of37.90% during the forecast period
- ModelOps has witnessed rising demand across sectors such as BFSI, healthcare, and manufacturing due to the growing need to scale AI/ML models in real-time, while ensuring governance and compliance
- The increasing complexity of AI models and the need for continuous monitoring, retraining, and version control are fueling the adoption of ModelOps solutions across enterprises worldwide
What are the Major Takeaways of ModelOps Market?
- The market is rapidly expanding due to the surge in AI deployment at scale, pushing enterprises to invest in platforms that ensure operational efficiency and model accountability
- ModelOps offers consistent performance, compliance readiness, and lifecycle management for ML models, making it indispensable for mission-critical applications across regulated industries
- The ongoing integration of cloud-native architectures and MLOps practices into enterprise strategies is elevating ModelOps as a core enabler of AI-driven decision-making, contributing to market momentum
- North America dominated the ModelOps market with the largest revenue share of 42.14% in 2024, driven by widespread adoption of AI/ML across BFSI, healthcare, and retail sectors. The region's early adoption of advanced analytics platforms and focus on MLOps maturity accelerates ModelOps implementation
- Asia-Pacific ModelOps market is expected to grow at the fastest CAGR of 12.52% from 2025 to 2032, fueled by increasing adoption of AI in customer service, fraud detection, and smart cities
- The platforms segment dominated the ModelOps market with the largest market revenue share of 62.7% in 2024, attributed to the growing need for integrated tools that manage the end-to-end lifecycle of AI/ML models
Report Scope and ModelOps Market Segmentation
|
Attributes |
ModelOps Key Market Insights |
|
Segments Covered |
|
|
Countries Covered |
North America
Europe
Asia-Pacific
Middle East and Africa
South America
|
|
Key Market Players |
|
|
Market Opportunities |
|
|
Value Added Data Infosets |
In addition to the insights on market scenarios such as market value, growth rate, segmentation, geographical coverage, and major players, the market reports curated by the Data Bridge Market Research also include in-depth expert analysis, pricing analysis, brand share analysis, consumer survey, demography analysis, supply chain analysis, value chain analysis, raw material/consumables overview, vendor selection criteria, PESTLE Analysis, Porter Analysis, and regulatory framework. |
What is the Key Trend in the ModelOps Market?
Streamlined AI Model Lifecycle through Automation and Continuous Governance
- A major trend reshaping the global ModelOps market is the shift toward automating AI/ML model deployment, monitoring, and retraining, ensuring operational efficiency and continuous value from AI investments
- Organizations are increasingly adopting ModelOps platforms integrated with MLOps, AIOps, and DevOps, enabling seamless coordination between data scientists, IT, and operations teams
- For instance, in March 2024, IBM launched new AI governance capabilities in its Watsonx platform to ensure responsible AI operations and regulatory compliance across global enterprises
- Businesses are also investing in real-time model performance tracking using telemetry data to detect drift and trigger automated retraining workflows
- This evolution supports scalable, trusted, and continuously learning AI systems across industries such as healthcare, finance, retail, and manufacturing
- The trend highlights a growing demand for intelligent automation, lifecycle monitoring, and compliance-driven model management—key to enterprise-wide AI scaling.=
What are the Key Drivers of ModelOps Market?
- The rise of AI-driven decision-making and the need for operationalizing AI models beyond pilot phases are driving the ModelOps market forward
- For instance, in May 2024, Google Cloud enhanced its Model Garden suite to help enterprises deploy, monitor, and manage AI models at scale with built-in explainability and traceability features
- ModelOps platforms help businesses ensure model accuracy, reduce bias, and comply with evolving AI regulations, which is critical in sectors such as BFSI, healthcare, and public services
- Growing volumes of enterprise data and increasing model complexity are encouraging organizations to adopt platforms that support automated deployment, scaling, and governance
- In addition, the emergence of hybrid and multi-cloud environments requires flexible ModelOps tools that can manage models across distributed infrastructure
- The push for ethical AI practices, cost control, and ROI tracking from AI implementations further boosts the adoption of robust ModelOps solutions
Which Factor is challenging the Growth of the ModelOps Market?
- A key challenge in the ModelOps market is the lack of standardization in tools and workflows across AI/ML lifecycle stages, causing integration complexities
- For instance, in February 2023, a survey by Forrester revealed that over 60% of enterprises struggle to unify data science, IT, and business teams due to fragmented model operations environments
- In addition, the steep learning curve and shortage of skilled professionals with both AI and operational knowledge hinder the effective implementation of ModelOps
- Many organizations also face difficulty measuring model performance in production environments, limiting confidence in full-scale automation
- Budget constraints, especially in small and mid-sized firms, make it challenging to invest in comprehensive ModelOps platforms and AI governance tools
- Addressing these issues through open standards, unified platforms, and low-code/no-code ModelOps solutions will be essential to unlock widespread market potential
How is the ModelOps Market Segmented?
The market is segmented on the basis of offering, deployment, model, application, and vertical.
- By Offering
On the basis of offering, the ModelOps market is segmented into platforms and services. The platforms segment dominated the ModelOps market with the largest market revenue share of 62.7% in 2024, attributed to the growing need for integrated tools that manage the end-to-end lifecycle of AI/ML models. These platforms enable faster deployment, monitoring, and governance of models across various business operations, particularly in data-centric enterprises. Their ability to centralize operations and ensure compliance has made them a crucial investment in AI-driven industries.
The services segment is projected to witness a notable CAGR from 2025 to 2032, owing to the rising demand for consulting, integration, and managed services to support enterprises with limited internal AI expertise.
- By Deployment
On the basis of deployment, the ModelOps market is segmented into cloud and on-premises. The cloud segment held the largest revenue share of 69.3% in 2024, supported by the increasing adoption of scalable and flexible infrastructure solutions across enterprises. Cloud-based ModelOps offers seamless integration, cost-effectiveness, and remote accessibility, making it a preferred choice, especially among SMEs and tech startups.
On-premises deployment is still relevant in sectors such as BFSI and government, where data sovereignty, security, and compliance remain top priorities.
- By Model
On the basis of model, the ModelOps market is segmented into ML models, graph-based models, rule & heuristic models, linguistic models, agent-based models, and others. The ML models segment dominated the market with the highest share of 47.8% in 2024, driven by their widespread usage in automation, predictive analytics, and real-time decision-making across industries. ML models are foundational to most AI workflows, requiring efficient management and continuous optimization that ModelOps platforms are designed to offer.
The graph-based models segment is expected to experience the fastest growth, supported by increasing adoption in fraud detection, recommendation systems, and knowledge graphs.
- By Application
On the basis of application, the market is segmented into customer service and virtual assistants, robotics and automation, healthcare, financial services, security and surveillance, gaming and entertainment, marketing and sales, human resources, legal and compliance, and others. The customer service and virtual assistants segment accounted for the largest market share of 24.6% in 2024, propelled by the rising use of AI chatbots and automated support tools in banking, retail, and telecom. These applications require continuous model updates, real-time performance tracking, and version control—key capabilities delivered through ModelOps.
Healthcare is expected to be the fastest-growing segment, fueled by the demand for AI-based diagnostic tools, patient monitoring systems, and personalized treatment solutions.
- By Vertical
On the basis of vertical, the ModelOps market is segmented into BFSI, retail & e-commerce, healthcare & life sciences, IT & telecommunications, energy & utilities, manufacturing, transportation & logistics, and others. The BFSI segment dominated with the largest revenue share of 21.9% in 2024, as banks and financial institutions increasingly deploy ModelOps to manage fraud detection, credit scoring models, and risk assessment tools. Strict regulatory compliance in the sector further drives the need for robust model governance.
The retail & e-commerce vertical is projected to register strong growth, driven by the need for real-time personalization, dynamic pricing, and demand forecasting powered by AI models.
Which Region Holds the Largest Share of the ModelOps Market?
- North America dominated the ModelOps market with the largest revenue share of 42.14% in 2024, driven by widespread adoption of AI/ML across BFSI, healthcare, and retail sectors. The region's early adoption of advanced analytics platforms and focus on MLOps maturity accelerates ModelOps implementation
- A strong presence of AI innovators, coupled with increased investment in responsible AI and regulatory compliance, contributes to market leadership in model governance and lifecycle management
- Moreover, the existence of major ModelOps solution providers and growing demand for cloud-native AI infrastructure strengthens North America's position as the global leader in ModelOps adoption
U.S. ModelOps Market Insight
The U.S. ModelOps market accounted for the largest revenue share in North America in 2024, fueled by large-scale enterprise digitization, regulatory mandates for explainable AI, and rapid model proliferation in banking, insurance, and healthcare. Strategic alliances between tech giants and startups, as well as investments in secure, scalable deployment of AI models, are accelerating demand for robust ModelOps frameworks.
Europe ModelOps Market Insight
The Europe ModelOps market is projected to grow steadily during the forecast period, driven by rising demand for ethical AI and GDPR-compliant model governance. The region’s financial institutions and public sector organizations are increasingly adopting ModelOps to operationalize AI responsibly. In addition, emphasis on model auditability and data privacy fosters market adoption across manufacturing, legal, and government sectors.
U.K. ModelOps Market Insight
The U.K. ModelOps market is expected to grow at a promising CAGR, supported by rising AI investments in fintech, healthcare, and legal tech. Increasing focus on transparency, fairness, and model monitoring, along with government-backed AI frameworks, are pushing organizations toward scalable and automated ModelOps platforms. The U.K.’s strong AI research community further contributes to innovation in model lifecycle management.
Germany ModelOps Market Insight
The Germany ModelOps market is expanding rapidly, driven by growing integration of AI in manufacturing, automotive, and industrial automation. Germany’s emphasis on precision, engineering excellence, and data quality supports the deployment of highly governed AI models. Industry 4.0 initiatives and smart factory evolution are further enhancing demand for end-to-end ModelOps solutions.
Which Region is the Fastest Growing Region in the ModelOps Market?
Asia-Pacific ModelOps market is expected to grow at the fastest CAGR of 12.52% from 2025 to 2032, fueled by increasing adoption of AI in customer service, fraud detection, and smart cities. Government-led digital transformation programs in China, India, and ASEAN countries, combined with the need for scalable AI deployment, are propelling market growth. Expansion of cloud services and local AI talent is also making ModelOps solutions more accessible in the region.
Japan ModelOps Market Insight
The Japan ModelOps market is witnessing strong traction in robotics, smart manufacturing, and financial services. Japan’s prioritization of automation and AI ethics is creating demand for explainable, reliable, and continuously monitored models. ModelOps is becoming a critical tool in Japan’s journey toward autonomous systems and precision-based AI applications.
China ModelOps Market Insight
The China ModelOps market held the largest revenue share in Asia-Pacific in 2024, bolstered by rapid digitization, strong AI policy support, and widespread deployment in e-commerce, finance, and government sectors. Domestic tech leaders are aggressively investing in AI lifecycle tools to scale production models. China's focus on AI sovereignty and regulatory frameworks is further boosting ModelOps adoption across sectors.
Which are the Top Companies in ModelOps Market?
The ModelOps industry is primarily led by well-established companies, including:
- IBM (U.S.)
- Google (U.S.)
- Oracle (U.S.)
- SAS Institute (U.S.)
- AWS (U.S.)
- Teradata (U.S.)
- Palantir (U.S.)
- Veritone (U.S.)
- Altair (U.S.)
- c3.ai (U.S.)
- TIBCO (U.S.)
- Databricks (U.S.)
- Giggso (U.S.)
- Verta (U.S.)
- ModelOp (U.S.)
- Comet ML (U.S.)
- Superwise (Israel)
- Evidently AI (U.S.)
- Minitab (U.S.)
- Seldon (U.K.)
- Innominds (U.S.)
- Datatron (U.S.)
- Domino Data Lab (U.S.)
- Arthur (U.S.)
- Weights & Biases (U.S.)
- Xenonstack (U.S.)
- Cnvrg.io (Israel)
- DataKitchen (U.S.)
- Haisten AI (U.S.)
- Sparkling Logic (U.S.)
- LeewayHertz (U.S.)
What are the Recent Developments in Global ModelOps Market?
- In July 2024, Teradata, a leading provider of cloud analytics platforms, collaborated with DataRobot, Inc., a prominent open AI platform provider, to integrate DataRobot’s AI Platform with Teradata’s ClearScape Analytics and VantageCloud. This integration is designed to empower enterprises with greater flexibility and enhanced capabilities for developing and scaling secure, efficient AI models. This partnership is expected to accelerate AI-driven decision-making and operational efficiency across industries
- In May 2024, Microsoft introduced GPT-4o, OpenAI’s latest multimodal model, on Azure AI, incorporating text, image, and audio capabilities for advanced generative and conversational AI. This new model became available in preview via the Azure OpenAI Service, offering support for both text and image inputs. This launch enhances Microsoft’s AI offerings and makes cutting-edge generative AI more accessible to developers and enterprises.
- In May 2024, Google Cloud unveiled its Generative AI Ops service, designed to help organizations transition their generative AI prototypes into production-grade solutions. Available through Google Cloud Consulting and its partner ecosystem, this service supports critical aspects such as security, model tuning, feedback integration, and performance optimization. This initiative underscores Google Cloud’s commitment to supporting enterprises in scaling AI innovations responsibly and effectively
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Research Methodology
Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.
The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.
Customization Available
Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.

