Global Natural Language Processing NLP Healthcare Life Sciences Market Industry Overview and Forecast to 2031
Market Size in USD Billion
CAGR : %
Forecast Period |
2024 –2031 |
Market Size (Base Year) |
USD 2.11 Billion |
Market Size (Forecast Year) |
USD 8.48 Billion |
CAGR |
|
Major Markets Players |
|
The Global Natural Language Processing NLP Healthcare Life Sciences Market was valued at USD 2.11 billion in 2023. The market size is projected to grow at a CAGR of 19% and reach USD 8.48 billion by 2031.
Global Natural Language Processing NLP Healthcare Life Science Market – Industry Overview
The healthcare and life sciences sector produces humongous amount of data including electronic health records, clinical trial reports, research data, and patient reports. According to World Economic Forum, healthcare industry generates more than 30% of the data generated all over the world, most of which goes unused. The incorporation of Natural Language Processing (NLP) in the healthcare sector plays a huge role in processing the medical data leading to innovation and inventions that can potentially become the foundation for discovering treatment and therapies, drugs, and medications that can prove to be an effective cure for varied health conditions. NLP has completely transformed the healthcare and life sciences industry with its comprehensive data-analysis oriented approach. Now, there is no healthcare and life science records that goes unused with NLP’s dynamic analysis of unstructured data, sentiment analysis, named entity recognition, and drug discovery to extract valuable insights that help drastically improves patient engagement and resultantly, global NLP healthcare life science market is expanding.
Data Bridge Market research market report provides details of recent developments, trade regulations, market share, market trends on the basis of its segmentations and regional analysis, impact of market players, analysis of opportunities in terms of emerging revenue pockets, market regulations, strategic market growth analysis, market size, category wise market growths, application niches and dominance, product approvals, product launches, geographic expansions, and technological innovations in the market. To gain more info on the market, contact Data Bridge Market Research’s team of expert analysts. Our team will help you make informed market decisions to achieve business growth.
Global Natural Language Processing NLP Healthcare Life Sciences Market Size
NLP Healthcare Life Sciences Market Report Metrics Details |
|
Forecast Period |
2024-2031 |
Base Year |
2023 |
Historic Year |
2022 (Customizable 2016-2021) |
Measuring Unit |
USD Billion |
Data Pointer |
market insights market value, growth rate, market segments, geographical coverage, market players, and market scenario, in-depth expert analysis, patient epidemiology, pipeline analysis, pricing analysis, and regulatory framework. |
The convergence of NLP and healthcare and life science has brought evolution in the medicine by utilizing the data to the benefit of the sector. Exponential growth in the health care data is speeding up the need for NLP solutions that can help manage this sea of unstructured data to mine valuable insights. Ongoing innovations in AI and machine learning are helping develop capabilities and the accuracy of NLP applications further encouraging the adoption of NLP technologies to empower research and development in the healthcare. The interlinking of NLP and healthcare is a boon for healthcare service providers attuning patient care and healthcare services to deliver the market growth. Databridge Market Research took a dive into comprehensively analyzing the market and unveiled that the Global Natural Language Processing NLP Healthcare Life Sciences Markets increasing at a CAGR of 3.64%. The size of the market is valued at USD 2.11 billion in 2023 and is expected to grow up to USD 8.48 billion by 2031.
NLP Healthcare Life Sciences Market Dynamics
NLP Healthcare Life Sciences Market Growth Drivers
Organizing Electronic Health Records (EHRs) for Further Analysis
Electronic Health Records (EHRs) used by healthcare organizations generates plethora of patient related data that becomes difficult to structure, store and analyze. These electronic records usually include medical reports, patient histories, and other kinds of data. Not only organizing and examining this data is important, equally important is easy access to this data. NLP technologies that include clinical documentation, speech recognition, data mining research, and clinical decision support are highly productive in medical data extraction, examination, and ensuring its availability as per use. By leveraging NLP, healthcare providers can more effectively analyze and interpret this vast array of data, leading to enhanced clinical decision-making, personalized patient care, and greater operational efficiency, thereby fueling market growth.
Artificial Intelligence (AI) and Machine Learning (ML) Based Predictive Analysis
NLP being a sub-division of artificial intelligence in equipped with statistic and analytical models that have a part to play in identifying trends and patterns. When NLP in healthcare is fed with complex data, it structures it to perform comprehensive analysis on patients’ records. In other terms, it runs predictive analysis on the patient related data which bring forth the current health conditions and the level of effect on the body as well as helps foresee ailments and diseases a patient is vulnerable to. These technologies allow extracting useful insights, identifying patterns, and outcome forecasting from very large data sets for more informed clinical decisions and better patient outcomes. The conclusion of this predictive analysis is improved patient care and advanced prevention measures to prevent predicted health condition. Predictive analysis through NLP is a major contributor to enhancing patient care services and furthering the market growth.
Automating Patient Records and Documentation Reduces Healthcare Cost
Automated clinical documentation, powered by Natural Language Processing (NLP), streamlines management of patient records by converting spoken or written information into structured, actionable data. This automation reduces the burden on healthcare professionals, minimizes manual entry errors, and ensures that patient information is accurately and comprehensively recorded. This automation technology is a cost-effective way, making it easier for healthcare professionals to spend more time on patient care rather than administration, leading to improved accuracy and therefore, general efficiency in keeping medical records. With these menial tasks becoming automated, healthcare professionals are enjoying cost efficiency while enhancing overall quality of patient care. Automation also enables unification of health records by collating the entire patient record stored on the database of other doctors or healthcare centers. Healthcare turning cost-effective due to NLP is a stimulus for the growth Global NLP Healthcare Life Sciences.
NLP Healthcare Life Science Market Growth Opportunities
Customized Treatment Plan
NLP plays a key role in preparing an individualized and focused treatment plan. NLP’s ability to extract and unify patients’ data from various sources like electronic health records, clinical notes, and medical histories, which enables easy processing and identification of particular needs of patients, genetic factors, and health conditions. This helps healthcare providers prepare a treatment plan to suit patients’ needs. Devising a personalized treatment plan is an opportunity for doctors to create the most effective course of treatment of their patients and thereby, expand their patient base. For instance, NLP can highlight the patterns in patient history so that one could determine the drugs most likely to be effective or even identify possible side effects in a case similar to others. As such, NLP is supportive of precision medicine, where interventions will be more focused and more effective, hence improving treatment efficiency and patient outcome.
Integrating IOT in Wearables
Wearables incorporated with NLP powered by IoT enables capturing of real-time patient data. It helps monitor patients’ health remotely all throughout the day and allows healthcare professionals to record any complications and variations so that they can act immediately to prepare an action plan to prevent any such complexity in future.
Collaboration with Pharmaceutical and Biotech Companies
Collaborating with pharmaceutical and biotechnology companies to integrate Natural Language Processing (NLP) into drug discovery, clinical trials management, and pharmacovigilance processes drives efficiency and accelerates innovation in life sciences. NLP enhances the efficiency of clinical trials by automating data extraction from medical records and patient reports, facilitating faster recruitment and analysis of trial data.
NLP Healthcare Life Science Market Size Growth Challenges
NLP in healthcare and health sciences are usually fed with specific group of terms that might not apply to any other command. Since human language keeps on evolving, the predefined group of terms might inaccurately structure the data. This usually happens when an NLP program has a built-in group of terms which might not match the unstructured data being examined. This challenge is easy to overcome with a certain level of human involvement.
NLP is capable of organizing and categorizing unstructured data. However, the tool can turn less-efficient faced by the complexity of human language. It might not be able to cope up with complicated language, dialect, and reference points. This, as a result, raises the chances of false positives and negatives.
NLP Healthcare Life Science Market Size Growth Restraints
Data Privacy and security concerns
In the application of NLP solutions, processing of sensitive patient information will give rise to drastic concerns about privacy laws and data security breaches. While healthcare providers are already exploring every opportunity to implement NLP technologies to the fullest, they will have to wade through rigid data protection laws under HIPAA in the US and the GDPR in Europe—both enacted for the purpose of maintaining the confidentiality of patients and stemming possible unauthorized access to personal health information. To accomplish all this, NLP systems should be fully security enabled. It should be guaranteed that this requirement is met by the application of robust methods for the encryption of data at rest and in transit, very strict access controls that limit access of data to only authorized users, and anonymization techniques to help guard against undesired exposure of the patient's identity. Aggregation of these security protocols can guarantee
Integration Complexity of NLP Systems
Integrating natural language processing (NLP) systems with existing healthcare IT infrastructure, including EHRs and clinical systems, can be complex and time-consuming. Healthcare organizations face challenges such as interoperability issues, data standardization, and compatibility with legacy systems when deploying NLP solutions. The integration process requires careful planning, customization, and coordination with IT teams to ensure seamless connectivity and functionality across different platforms. Moreover, training healthcare staff to effectively utilize NLP tools and interpret the insights generated poses additional implementation challenges.
NLP Healthcare Life Science Market Scope and Trends
NLP Healthcare Life Science Market Segmentations Overview |
|||
Segments Type |
Sub-Segments |
||
Component |
Standalone Solutions and Services |
||
NLP Type |
Rule-Based NLP, Statistical NLP, Hybrid NLP |
||
Deployment Mode |
On-Premises, Cloud |
||
Organization Size |
Large Enterprises, Small and Medium Enterprises |
||
|
|
||
End-User |
NLP for Physicians, NLP for Researchers, NLP for Patients, NLP for Clinical Operators |
Key Insight
- In the recent years, with the emergence of AI potential as a game changer in healthcare, by employing machine learning and NLP techniques to the effective processing of growing volumes of data boosts one of the most impressive applications known as automated clinical coding that streamlines the administration and management of clinical records in a hospital and medical research setting.
- There has been a surge of articles for automated clinical coding with deep learning (as the current mainstream approach of AI) in the last few years, as reviewed in recent surveys.
- Though the concerns are addressed and safety and efficacy of chat bots are pointed out, human aspects of healthcare cannot be replaced. In this way, chat bots can only become an integral part of the clinical practice to work in tandem with healthcare professionals, decreasing cost, enhancing workflow efficiencies, and thus improvising on outcomes for better results.
NLP Healthcare Life Science Market Regional Analysis – Market Trends
NLP Healthcare Life Science Market Regional Overview |
|
Regions |
Countries |
Europe |
Germany, France, U.K., Netherlands, Switzerland, Belgium, Russia, Italy, Spain, Turkey, Rest of Europe |
APAC |
China, Japan, India, South Korea, Singapore, Malaysia, Australia, Thailand, Indonesia, Philippines, Rest of Asia-Pacific |
North America |
U.S., Canada, and Mexico |
MEA |
Saudi Arabia, U.A.E., South Africa, Egypt, Israel, Rest of Middle East, and Africa |
South America |
Brazil, Argentina, and Rest of South America |
Key Insights
- North America is expected to dominate the market due to increasing demand for NLP solutions and substantial investments in robotics and NLP-related research and development initiatives. The region's advanced healthcare infrastructure and strong presence of key technology giants facilitate the rapid adoption of NLP technologies across various applications, including clinical documentation, patient interaction analysis, and data analytics.
- Asia-Pacific is expected to witness significant growth due to widespread adoption of advanced technologies aimed at optimizing business operations. Increasing investments in healthcare IT infrastructure and rising awareness about the benefits of NLP in improving clinical decision-making processes and patient engagement are key factors driving this growth.
- The Netherlands Organization for Scientific Research (NWO) is involved with projects applying NLP for the analysis of scientific data obtained from biomedical research studies. The goal is to develop new treatments and improve understanding of disease biology.
- The European Union-funded European Health Data Space (EHDS) project is focused on developing NLP tools capable of handling multiple European languages. The initiative aims to create standardized NLP solutions that can process health data across various languages and dialects throughout Europe.
- NHS Digital in the UK is focusing on integrating NLP technologies into EHR systems to enhance clinical documentation and information retrieval. Such integration tries to achieve an enhanced level of data accuracy for patients, which in another sense will allow for the proper conduction of right clinical decisions due to the fact that it automates data extraction and analysis processes from medical recording.
- In South Africa, Data Science Africa develops NLP models that are built to support a number of local languages, from Afrikaans and Zulu to others, to be placed in a position to meet multilingual requirements within a regionally based healthcare system.
NLP Healthcare Life Science Market Leading Players
- 3M (U.S.)
- Cerner Corporation (U.S.)
- Nuance Communications Inc. (U.S.)
- Dolby Systems Inc. (U.S.)
- Microsoft (U.S.)
- IBM (U.S.)
- Google LLC (Alphabet Inc.) (U.S.)
- Amazon Web Services Inc. (U.S.)
- Apixio Inc. (U.S.)
- Averbis (Germany)
- Clinithink (U.S.)
- Lexalytics (U.S.)
- Narrative Science (U.S.)
- JohnSnow Labs (U.S.)
- BenevolentAI (U.K.)
NLP Healthcare Life Science Market Recent Developments
- In February 2024, Persistent Systems collaborated with Microsoft to release a new PHM solution that is powered by generative AI. Developed to underpin value-based care models, this advanced solution uses SDOH to measure non-clinical patient needs. As a result, it bolsters the accuracy of predictive analytics in healthcare expenditure on several clinical conditions.
- In June 2023, Apixio, a leader in artificial intelligence solutions for value-based healthcare, completed its merger with ClaimLogiq, a technology company known for its expertise in enhancing pre-payment claim accuracy for health plans. The newly combined entity will go by the Apixio name and immediately become one of the largest, most dominant players in the healthcare data and analytics space. The strategic merger brings together the advanced AI of Apixio with the precision of ClaimLogiq in claims processing, creating a powerful platform for delivery of comprehensive insights and solutions. The new Apixio looks to revolutionize healthcare management by improving the accuracy of data, bringing optimality in cost predictions, and driving more effective value-based care strategies—a new standard in the healthcare analytics industry.
DBMR’s market report on the Natural Language Processing NLP Healthcare Life Science market takes you through valuable insights that can contribute to making several important business decisions. Based on our reports and research expertise you can create realistic growth strategies for your business.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Interactive Data Analysis Dashboard
- Company Analysis Dashboard for high growth potential opportunities
- Research Analyst Access for customization & queries
- Competitor Analysis with Interactive dashboard
- Latest News, Updates & Trend analysis
- Harness the Power of Benchmark Analysis for Comprehensive Competitor Tracking
Research Methodology
Data collection and base year analysis are done using data collection modules with large sample sizes. The stage includes obtaining market information or related data through various sources and strategies. It includes examining and planning all the data acquired from the past in advance. It likewise envelops the examination of information inconsistencies seen across different information sources. The market data is analysed and estimated using market statistical and coherent models. Also, market share analysis and key trend analysis are the major success factors in the market report. To know more, please request an analyst call or drop down your inquiry.
The key research methodology used by DBMR research team is data triangulation which involves data mining, analysis of the impact of data variables on the market and primary (industry expert) validation. Data models include Vendor Positioning Grid, Market Time Line Analysis, Market Overview and Guide, Company Positioning Grid, Patent Analysis, Pricing Analysis, Company Market Share Analysis, Standards of Measurement, Global versus Regional and Vendor Share Analysis. To know more about the research methodology, drop in an inquiry to speak to our industry experts.
Customization Available
Data Bridge Market Research is a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customized to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analyzed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Fact book) or can assist you in creating presentations from the data sets available in the report.