Аналитический отчет по размеру, доле и тенденциям рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе — обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Аналитический отчет по размеру, доле и тенденциям рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе — обзор отрасли и прогноз до 2032 года

  • ICT
  • Upcoming Report
  • Nov 2021
  • Asia-Pacific
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60
  • Author : Megha Gupta

Обходите тарифные трудности с помощью гибкого консалтинга в области цепочки поставок

Анализ экосистемы цепочки поставок теперь является частью отчетов DBMR

Asia Pacific Deep Learning Neural Networks Dnns Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 35.66 Billion USD 300.33 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 35.66 Billion
Diagram Размер рынка (прогнозируемый год)
USD 300.33 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • LYUDA RESEARCH LLC
  • Alphabet Inc. (Google)
  • IBM
  • Micron Technologies Inc.
  • Neural Technologies Limited

Сегментация рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе по компонентам (оборудование, программное обеспечение и услуги), применению (распознавание изображений, обработка естественного языка, распознавание речи, интеллектуальный анализ данных), конечному пользователю (банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничная торговля, автомобилестроение, производство, аэрокосмическая и оборонная промышленность, безопасность и другие) — отраслевые тенденции и прогноз до 2032 года

Рынок нейронных сетей глубокого обучения (DNN)

Размер рынка нейронных сетей глубокого обучения (DNN)

  • Объем рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе оценивался в 35,66 млрд долларов США в 2024 году и, как ожидается ,  достигнет  300,33 млрд долларов США к 2032 году при среднегодовом темпе роста 30,52% в течение прогнозируемого периода.
  • Значительное расширение рынка обусловлено в первую очередь ускоренным внедрением искусственного интеллекта (ИИ) в различных секторах, включая технологии умного дома, здравоохранение, автомобилестроение и производство. Развитие подключенных устройств и инфраструктуры IoT также вносит значительный вклад в растущий спрос на DNN как в жилых, так и в коммерческих приложениях.
  • • Кроме того, растущая потребность в интеллектуальных, безопасных и автоматизированных системах делает нейронные сети глубокого обучения основополагающей технологией для предиктивной аналитики, распознавания образов и интеллектуального принятия решений. Эти факторы подталкивают DNN к массовому внедрению, подпитывая быструю цифровую трансформацию в Азиатско-Тихоокеанском регионе.

Анализ рынка нейронных сетей глубокого обучения (DNN)

  • Глубокие нейронные сети обучения (DNN) становятся неотъемлемой частью цифровой трансформации отраслей в Азиатско-Тихоокеанском регионе, особенно в области автоматизации умных домов, систем безопасности и интеллектуального наблюдения. Эти передовые алгоритмы позволяют машинам выполнять такие задачи, как распознавание изображений и речи, предиктивная аналитика и автономное принятие решений с точностью, близкой к человеческой.
  • Рынок DNN в Азиатско-Тихоокеанском регионе демонстрирует устойчивый рост из-за быстрого внедрения интеллектуальных технологий в жилых и коммерческих помещениях. Правительства и предприятия в таких странах, как Китай, Япония, Южная Корея и Индия, активно инвестируют в инфраструктуру на основе ИИ, тем самым ускоряя развертывание решений на основе DNN в городских и полугородских районах.
  • Растущий спрос потребителей на интеллектуальные, безопасные и удаленно доступные решения также стимулирует рынок DNN. В экосистемах умного дома DNN расширяют такие возможности, как распознавание лиц для контроля доступа, интеграция голосовых команд и мониторинг поведенческих моделей, предлагая новый уровень автоматизации, персонализации и удобства.
  • Более того, распространение устройств IoT, улучшение вычислительной мощности и расширение инфраструктуры 5G в Азиатско-Тихоокеанском регионе способствуют бесшовной интеграции DNN в повседневные приложения. Эти тенденции существенно меняют такие секторы, как здравоохранение, розничная торговля, финансы и транспорт, устанавливая DNN в качестве ядра цифровой экономики следующего поколения в Азиатско-Тихоокеанском регионе.
  • Китай является основным драйвером быстрого расширения рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе, внося значительный вклад в прогнозируемый среднегодовой темп роста региона в размере 33,12% в период с 2025 по 2032 год.
  • На сегмент оборудования пришлась наибольшая доля выручки рынка в 2024 году, что обусловлено растущим внедрением оборудования для высокопроизводительных вычислений (HPC), такого как графические процессоры, тензорные процессоры и ПЛИС, для обучения и вывода в моделях DNN.

Область применения отчета и сегментация рынка нейронных сетей глубокого обучения (DNN)

Атрибуты

Ключевые сведения о рынке нейронных сетей глубокого обучения (DNN)

Охваченные сегменты

  • По компонентам (оборудование, программное обеспечение и услуги)
  • По применению (распознавание изображений, обработка естественного языка, распознавание речи, интеллектуальный анализ данных)
  • По конечному пользователю (банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничная торговля, автомобилестроение, производство, аэрокосмическая и оборонная промышленность, безопасность, другие)

Страны, охваченные

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальная часть Азиатско-Тихоокеанского региона  

Ключевые игроки рынка

  • LYUDA RESEARCH, LLC (Соединенные Штаты Америки)
  • Alphabet Inc. (Google) (США)
  • IBM(США)
  • Micron Technologies, Inc. (США)
  • Neural Technologies Limited (Великобритания)
  • NEURODIMENSION, INC.(США)
  • NEURALWARE(США)
  • Корпорация NVIDIA (США)
  • Skymind Inc.(США)
  • Samsung(Южная Корея)
  • Qualcomm Technologies, Inc. (США)
  • Корпорация Intel (США)
  • Amazon Web Services, Inc. (США)
  • Microsoft(США)
  • GMDH LLC. (США)
  • Sensory Inc.(США)
  • Ward Systems Group, Inc. (США)
  • Xilinx Inc.(США)
  • Starmind(Швейцария)

Возможности рынка

  • Растущее применение DNN в прецизионном здравоохранении
  • Появление стартапов в области искусственного интеллекта и академических исследовательских центров

Информационные наборы данных с добавленной стоимостью

Помимо аналитических данных о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, анализ цен, анализ доли бренда, опрос потребителей, демографический анализ, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу.

Тенденции рынка нейронных сетей глубокого обучения (DNN)

« Ускорение интеграции ИИ и спрос на обработку данных в реальном времени »

  • Растущая интеграция искусственного интеллекта (ИИ) в различных секторах, таких как финансы, здравоохранение, розничная торговля и производство, значительно увеличивает спрос на нейронные сети глубокого обучения (DNN). Компании все чаще используют DNN для таких задач, как предиктивная аналитика, моделирование поведения клиентов, обнаружение мошенничества и персонализированные системы рекомендаций, которые требуют высокоточной интерпретации данных в реальном времени.
  • Например, в марте 2024 года IBM усовершенствовала свою платформу ИИ и данных Watsonx для поддержки более сложных моделей DNN для интеллектуальной автоматизации и взаимодействия с клиентами в секторе BFSI. Это усовершенствование позволяет финансовым учреждениям улучшить оценку рисков в реальном времени и улучшить качество обслуживания клиентов с помощью аналитических данных на основе ИИ.
  • Более того, способность DNN обрабатывать неструктурированные данные, такие как изображения, речь и видео в реальном времени, делает их незаменимыми в современных приложениях ИИ. Поскольку компании сосредотачиваются на цифровой трансформации, принятие масштабируемых, интегрированных в облако решений DNN становится необходимым для поддержания конкурентоспособности и достижения операционной эффективности.

Динамика рынка нейронных сетей глубокого обучения (DNN)

Водитель

«Расширение экосистем интеллектуальных устройств и Интернета вещей»

  • Распространение устройств Интернета вещей (IoT) и растущее использование интеллектуальной инфраструктуры ускоряют развертывание DNN на периферии. DNN позволяют принимать решения в реальном времени в подключенных устройствах, таких как автономные транспортные средства, системы умного дома и установки промышленной автоматизации, за счет сокращения задержек и обеспечения локализованной обработки.
  • Например, в апреле 2024 года компания Qualcomm Technologies, Inc. запустила платформу периферийных вычислений на базе искусственного интеллекта, интегрированную с передовыми моделями DNN для повышения оперативности работы приложений умного города, таких как управление дорожным движением и управление энергопотреблением.
  • Ожидается, что конвергенция глубоких нейронных сетей с Интернетом вещей и периферийными вычислениями будет способствовать устойчивому спросу в различных секторах, особенно в регионах с крупными инвестициями в интеллектуальную инфраструктуру, таких как Азиатско-Тихоокеанский регион, США и некоторые части Европы.

Сдержанность/Вызов

« Высокие вычислительные затраты и потребление энергии »

  • Основной проблемой, с которой сталкивается рынок нейронных сетей глубокого обучения (DNN), является значительная вычислительная мощность и энергия, необходимые для обучения и развертывания сложных моделей. Эти требования часто требуют использования высокопроизводительных графических процессоров, крупномасштабного хранения данных и современных систем охлаждения, что приводит к увеличению эксплуатационных расходов.
  • Это создает барьер для малых и средних предприятий (МСП), особенно в развивающихся странах, где доступ к инфраструктуре и финансированию может быть ограничен. Кроме того, поскольку экологическая устойчивость становится глобальным приоритетом, высокий углеродный след, связанный с обучением больших DNN, привлекает внимание регулирующих органов и заинтересованных сторон.
  • В результате отрасль сталкивается с необходимостью разработки более эффективных алгоритмов и маломощного оборудования ИИ, чтобы сделать внедрение DNN более устойчивым и доступным во всех экономических слоях.

Масштаб рынка нейронных сетей глубокого обучения (DNN)

Рынок сегментирован по компонентному признаку, области применения и конечному пользователю.

  • По компоненту

На основе компонентов рынок нейронных сетей глубокого обучения (DNN) сегментируется на оборудование, программное обеспечение и услуги. На сегмент оборудования пришлась наибольшая доля выручки рынка в 2024 году, что обусловлено растущим развертыванием оборудования для высокопроизводительных вычислений (HPC), такого как GPU, TPU и FPGA, для обучения и вывода в моделях DNN. Растущая потребность в масштабируемой инфраструктуре в рабочих нагрузках глубокого обучения на предприятиях и в исследовательских институтах еще больше увеличивает спрос на оборудование, специфичное для ИИ.

Прогнозируется, что сегмент программного обеспечения будет наблюдать самый быстрый CAGR с 2025 по 2032 год благодаря достижениям в области фреймворков глубокого обучения (таких как TensorFlow, PyTorch и MXNet) и более широкому использованию предварительно обученных моделей и библиотек для обработки естественного языка, компьютерного зрения и систем рекомендаций. Облачные платформы ИИ также подпитывают этот рост за счет упрощенной разработки и развертывания моделей.

  • По применению

На основе применения рынок нейронных сетей глубокого обучения (DNN) сегментируется на распознавание изображений, распознавание речи, обработку естественного языка (NLP) и интеллектуальный анализ данных. Сегмент распознавания изображений занимал самую большую долю рынка в 2024 году, чему способствовало широкое внедрение в автономные транспортные средства, диагностику здравоохранения, распознавание лиц и системы наблюдения. Растущее использование сверточных нейронных сетей (CNN) для визуального анализа данных и обработки изображений в реальном времени значительно стимулирует рост в этом сегменте.

Ожидается, что сегмент обработки естественного языка (NLP) будет демонстрировать самый быстрый рост в период с 2025 по 2032 год, что обусловлено быстрыми достижениями в области генеративного ИИ, виртуальных помощников, чат-ботов, инструментов анализа настроений и услуг перевода на базе ИИ. Растущая полезность NLP в обслуживании клиентов, образовании и автоматизации предприятий продолжает стимулировать движение рынка.

  • Конечным пользователем

На основе конечного пользователя рынок нейронных сетей глубокого обучения (DNN) сегментируется на банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничную торговлю, автомобилестроение, производство, аэрокосмическую и оборонную промышленность, безопасность и другие. Сегмент ИТ и телекоммуникаций доминировал на рынке в 2024 году, что обусловлено потребностью в оптимизации сетей в реальном времени, обнаружении аномалий и предиктивном обслуживании. Операторы связи используют DNN для улучшения качества обслуживания клиентов и автоматизации предоставления услуг с помощью интеллектуальных виртуальных агентов и аналитики данных.

Ожидается, что сегмент здравоохранения будет расти самыми быстрыми темпами CAGR в 2025–2032 годах, что обусловлено растущим внедрением DNN в медицинской визуализации, разработке лекарств, диагностике и оценке риска для пациентов. Способность моделей глубокого обучения обрабатывать большие объемы неструктурированных медицинских данных революционизирует персонализированную медицину и ускоряет рабочие процессы НИОКР.

Региональный анализ рынка нейронных сетей глубокого обучения (DNN)

  • Китай является основным драйвером быстрого расширения рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе, внося значительный вклад в прогнозируемый среднегодовой темп роста региона в размере 33,12% в период с 2025 по 2032 год.
  • Рост страны обусловлен значительными государственными инвестициями в искусственный интеллект в рамках таких национальных стратегий, как «План развития искусственного интеллекта следующего поколения», способствующих широкой интеграции глубоких нейронных сетей во все отрасли.
  • Огромная потребительская база Китая и инициативы «умных городов» стимулируют распространение решений на базе DNN в области распознавания лиц, интеллектуального наблюдения, автономных транспортных средств и персонализированного опыта электронной коммерции.
  • Кроме того, такие сильные отечественные игроки, как Baidu, Alibaba, Tencent и Huawei, активно разрабатывают чипсеты ИИ, облачные платформы и фреймворки глубокого обучения, способствуя более быстрому локализованному развертыванию приложений DNN.
  • Экосистема производства дешевой электроники в стране в сочетании с широкомасштабным развертыванием инфраструктуры 5G также снижает барьеры для входа и способствует внедрению систем на основе DNN как на городских, так и на сельских рынках.
  • Поскольку Китай позиционирует себя как мировую сверхдержаву в области искусственного интеллекта, местный рынок нейронных сетей глубокого обучения (DNN) выигрывает от агрессивных инноваций, благоприятных политических рамок и растущего сотрудничества предприятий и правительств, что еще больше укрепляет его лидерство в Азиатско-Тихоокеанском регионе.

Обзор рынка нейронных сетей глубокого обучения (DNN) в Японии

Рынок нейронных сетей глубокого обучения (DNN) в Японии переживает существенный рост, обусловленный передовым технологическим ландшафтом, растущим спросом на автоматизацию и высокоурбанизированным обществом. Сильный акцент страны на робототехнике и системах на основе ИИ дополняет растущее внедрение DNN в аналитику в реальном времени, диагностику здравоохранения, автомобильные системы и приложения для умного дома. Старение населения Японии также создает возможности для вспомогательных технологий на основе ИИ, которые полагаются на алгоритмы DNN для повышения безопасности, удобства и качества ухода.

Обзор рынка нейронных сетей глубокого обучения (DNN) в Индии

Прогнозируется, что рынок нейронных сетей глубокого обучения (DNN) в Индии будет быстро расти из-за расширяющейся цифровой экосистемы, бурно развивающейся среды технологических стартапов и растущего внимания правительства к ИИ посредством таких инициатив, как Национальная стратегия ИИ и Цифровая Индия. Поскольку такие отрасли, как здравоохранение, BFSI и электронная коммерция, быстро цифровизуются, спрос на инструменты на основе DNN для обнаружения мошенничества, аналитики клиентов и персонализированных рекомендаций стремительно растет. Более того, чувствительный к затратам рынок Индии выигрывает от роста облачных и открытых фреймворков DNN, способствуя широкому экспериментированию и внедрению.

Доля рынка нейронных сетей глубокого обучения (DNN)

Индустрия нейронных сетей глубокого обучения (DNN) в основном представлена ​​хорошо зарекомендовавшими себя компаниями, среди которых:

  • LYUDA RESEARCH, LLC (Соединенные Штаты Америки)
  • Alphabet Inc. (Google) (США)
  • IBM(США)
  • Micron Technologies, Inc. (США)
  • Neural Technologies Limited (Великобритания)
  • NEURODIMENSION, INC.(США)
  • NEURALWARE(США)
  • Корпорация NVIDIA (США)
  • Skymind Inc.(США)
  • Samsung(Южная Корея)
  • Qualcomm Technologies, Inc. (США)
  • Корпорация Intel (США)
  • Amazon Web Services, Inc. (США)
  • Microsoft(США)
  • GMDH LLC. (США)
  • Sensory Inc.(США)
  • Ward Systems Group, Inc. (США)
  • Xilinx Inc.(США)
  • Starmind(Швейцария)

Последние разработки на рынке нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе

  • В феврале 2025 года NDRC и полупроводниковые компании Китая представили знаковые реформы регулирования для поддержки моделей DNN с открытым исходным кодом, ориентированных на домен. Эта инициатива направлена ​​на демократизацию разработки передового ИИ путем предоставления возможности обучения на доступных установках GPU, продвижения местных инноваций и снижения зависимости от иностранной инфраструктуры.
  • В 2024 году Huawei полностью переработала свою среду глубокого обучения с открытым исходным кодом MindSpore (v2.3), оптимизированную для NPU на базе ARM на чипах HarmonyOS и Ascend. Это обновление повышает производительность DNN на устройствах в смартфонах, устройствах IoT и платформах периферийных вычислений в Азиатско-Тихоокеанском регионе
  • В феврале 2025 года журнал Nature сообщил об ускорении конкуренции между китайскими и западными моделями искусственного интеллекта, при этом китайские мелкомасштабные DNN сокращают разрыв в производительности. Это отражает зрелую экосистему высококачественных, локально разработанных моделей нейронных сетей в Азиатско-Тихоокеанском регионе
  • В начале 2025 года Origin Quantum объединилась с Phoenix, чтобы использовать свои сверхпроводящие квантовые чипы «Wukong» в обучении DNN. Это передовое сотрудничество в Китае свидетельствует о растущем интересе к интеграции квантовых вычислений с рабочими процессами нейронных сетей
  • В июне 2025 года в Сямыне (Китай) прошла конференция MLANN 2025, объединившая ведущих исследователей и практиков отрасли в области машинного обучения и нейронных сетей. На мероприятии были представлены новые архитектуры, методы оптимизации и реальные приложения DNN в здравоохранении, робототехнике и интеллектуальном производстве.


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе по компонентам (оборудование, программное обеспечение и услуги), применению (распознавание изображений, обработка естественного языка, распознавание речи, интеллектуальный анализ данных), конечному пользователю (банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничная торговля, автомобилестроение, производство, аэрокосмическая и оборонная промышленность, безопасность и другие) — отраслевые тенденции и прогноз до 2032 года .
Размер Аналитический отчет по размеру, доле и тенденциям рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе — обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 35.66 USD Billion долларов США.
Ожидается, что Аналитический отчет по размеру, доле и тенденциям рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе — обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 30.52% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают LYUDA RESEARCH LLC, Alphabet Inc. (Google), IBM, Micron Technologies Inc., Neural Technologies Limited.
Testimonial