Asia Pacific Deep Learning Neural Networks Dnns Market
Размер рынка в млрд долларов США
CAGR :
%
USD
35.66 Billion
USD
300.33 Billion
2024
2032
| 2025 –2032 | |
| USD 35.66 Billion | |
| USD 300.33 Billion | |
|
|
|
|
Сегментация рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе по компонентам (оборудование, программное обеспечение и услуги), применению (распознавание изображений, обработка естественного языка, распознавание речи, интеллектуальный анализ данных), конечному пользователю (банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничная торговля, автомобилестроение, производство, аэрокосмическая и оборонная промышленность, безопасность и другие) — отраслевые тенденции и прогноз до 2032 года
Размер рынка нейронных сетей глубокого обучения (DNN)
- Объем рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе оценивался в 35,66 млрд долларов США в 2024 году и, как ожидается , достигнет 300,33 млрд долларов США к 2032 году при среднегодовом темпе роста 30,52% в течение прогнозируемого периода.
- Значительное расширение рынка обусловлено в первую очередь ускоренным внедрением искусственного интеллекта (ИИ) в различных секторах, включая технологии умного дома, здравоохранение, автомобилестроение и производство. Развитие подключенных устройств и инфраструктуры IoT также вносит значительный вклад в растущий спрос на DNN как в жилых, так и в коммерческих приложениях.
- • Кроме того, растущая потребность в интеллектуальных, безопасных и автоматизированных системах делает нейронные сети глубокого обучения основополагающей технологией для предиктивной аналитики, распознавания образов и интеллектуального принятия решений. Эти факторы подталкивают DNN к массовому внедрению, подпитывая быструю цифровую трансформацию в Азиатско-Тихоокеанском регионе.
Анализ рынка нейронных сетей глубокого обучения (DNN)
- Глубокие нейронные сети обучения (DNN) становятся неотъемлемой частью цифровой трансформации отраслей в Азиатско-Тихоокеанском регионе, особенно в области автоматизации умных домов, систем безопасности и интеллектуального наблюдения. Эти передовые алгоритмы позволяют машинам выполнять такие задачи, как распознавание изображений и речи, предиктивная аналитика и автономное принятие решений с точностью, близкой к человеческой.
- Рынок DNN в Азиатско-Тихоокеанском регионе демонстрирует устойчивый рост из-за быстрого внедрения интеллектуальных технологий в жилых и коммерческих помещениях. Правительства и предприятия в таких странах, как Китай, Япония, Южная Корея и Индия, активно инвестируют в инфраструктуру на основе ИИ, тем самым ускоряя развертывание решений на основе DNN в городских и полугородских районах.
- Растущий спрос потребителей на интеллектуальные, безопасные и удаленно доступные решения также стимулирует рынок DNN. В экосистемах умного дома DNN расширяют такие возможности, как распознавание лиц для контроля доступа, интеграция голосовых команд и мониторинг поведенческих моделей, предлагая новый уровень автоматизации, персонализации и удобства.
- Более того, распространение устройств IoT, улучшение вычислительной мощности и расширение инфраструктуры 5G в Азиатско-Тихоокеанском регионе способствуют бесшовной интеграции DNN в повседневные приложения. Эти тенденции существенно меняют такие секторы, как здравоохранение, розничная торговля, финансы и транспорт, устанавливая DNN в качестве ядра цифровой экономики следующего поколения в Азиатско-Тихоокеанском регионе.
- Китай является основным драйвером быстрого расширения рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе, внося значительный вклад в прогнозируемый среднегодовой темп роста региона в размере 33,12% в период с 2025 по 2032 год.
- На сегмент оборудования пришлась наибольшая доля выручки рынка в 2024 году, что обусловлено растущим внедрением оборудования для высокопроизводительных вычислений (HPC), такого как графические процессоры, тензорные процессоры и ПЛИС, для обучения и вывода в моделях DNN.
Область применения отчета и сегментация рынка нейронных сетей глубокого обучения (DNN)
|
Атрибуты |
Ключевые сведения о рынке нейронных сетей глубокого обучения (DNN) |
|
Охваченные сегменты |
|
|
Страны, охваченные |
Азиатско-Тихоокеанский регион
|
|
Ключевые игроки рынка |
|
|
Возможности рынка |
|
|
Информационные наборы данных с добавленной стоимостью |
Помимо аналитических данных о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, анализ цен, анализ доли бренда, опрос потребителей, демографический анализ, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу. |
Тенденции рынка нейронных сетей глубокого обучения (DNN)
« Ускорение интеграции ИИ и спрос на обработку данных в реальном времени »
- Растущая интеграция искусственного интеллекта (ИИ) в различных секторах, таких как финансы, здравоохранение, розничная торговля и производство, значительно увеличивает спрос на нейронные сети глубокого обучения (DNN). Компании все чаще используют DNN для таких задач, как предиктивная аналитика, моделирование поведения клиентов, обнаружение мошенничества и персонализированные системы рекомендаций, которые требуют высокоточной интерпретации данных в реальном времени.
- Например, в марте 2024 года IBM усовершенствовала свою платформу ИИ и данных Watsonx для поддержки более сложных моделей DNN для интеллектуальной автоматизации и взаимодействия с клиентами в секторе BFSI. Это усовершенствование позволяет финансовым учреждениям улучшить оценку рисков в реальном времени и улучшить качество обслуживания клиентов с помощью аналитических данных на основе ИИ.
- Более того, способность DNN обрабатывать неструктурированные данные, такие как изображения, речь и видео в реальном времени, делает их незаменимыми в современных приложениях ИИ. Поскольку компании сосредотачиваются на цифровой трансформации, принятие масштабируемых, интегрированных в облако решений DNN становится необходимым для поддержания конкурентоспособности и достижения операционной эффективности.
Динамика рынка нейронных сетей глубокого обучения (DNN)
Водитель
«Расширение экосистем интеллектуальных устройств и Интернета вещей»
- Распространение устройств Интернета вещей (IoT) и растущее использование интеллектуальной инфраструктуры ускоряют развертывание DNN на периферии. DNN позволяют принимать решения в реальном времени в подключенных устройствах, таких как автономные транспортные средства, системы умного дома и установки промышленной автоматизации, за счет сокращения задержек и обеспечения локализованной обработки.
- Например, в апреле 2024 года компания Qualcomm Technologies, Inc. запустила платформу периферийных вычислений на базе искусственного интеллекта, интегрированную с передовыми моделями DNN для повышения оперативности работы приложений умного города, таких как управление дорожным движением и управление энергопотреблением.
- Ожидается, что конвергенция глубоких нейронных сетей с Интернетом вещей и периферийными вычислениями будет способствовать устойчивому спросу в различных секторах, особенно в регионах с крупными инвестициями в интеллектуальную инфраструктуру, таких как Азиатско-Тихоокеанский регион, США и некоторые части Европы.
Сдержанность/Вызов
« Высокие вычислительные затраты и потребление энергии »
- Основной проблемой, с которой сталкивается рынок нейронных сетей глубокого обучения (DNN), является значительная вычислительная мощность и энергия, необходимые для обучения и развертывания сложных моделей. Эти требования часто требуют использования высокопроизводительных графических процессоров, крупномасштабного хранения данных и современных систем охлаждения, что приводит к увеличению эксплуатационных расходов.
- Это создает барьер для малых и средних предприятий (МСП), особенно в развивающихся странах, где доступ к инфраструктуре и финансированию может быть ограничен. Кроме того, поскольку экологическая устойчивость становится глобальным приоритетом, высокий углеродный след, связанный с обучением больших DNN, привлекает внимание регулирующих органов и заинтересованных сторон.
- В результате отрасль сталкивается с необходимостью разработки более эффективных алгоритмов и маломощного оборудования ИИ, чтобы сделать внедрение DNN более устойчивым и доступным во всех экономических слоях.
Масштаб рынка нейронных сетей глубокого обучения (DNN)
Рынок сегментирован по компонентному признаку, области применения и конечному пользователю.
- По компоненту
На основе компонентов рынок нейронных сетей глубокого обучения (DNN) сегментируется на оборудование, программное обеспечение и услуги. На сегмент оборудования пришлась наибольшая доля выручки рынка в 2024 году, что обусловлено растущим развертыванием оборудования для высокопроизводительных вычислений (HPC), такого как GPU, TPU и FPGA, для обучения и вывода в моделях DNN. Растущая потребность в масштабируемой инфраструктуре в рабочих нагрузках глубокого обучения на предприятиях и в исследовательских институтах еще больше увеличивает спрос на оборудование, специфичное для ИИ.
Прогнозируется, что сегмент программного обеспечения будет наблюдать самый быстрый CAGR с 2025 по 2032 год благодаря достижениям в области фреймворков глубокого обучения (таких как TensorFlow, PyTorch и MXNet) и более широкому использованию предварительно обученных моделей и библиотек для обработки естественного языка, компьютерного зрения и систем рекомендаций. Облачные платформы ИИ также подпитывают этот рост за счет упрощенной разработки и развертывания моделей.
- По применению
На основе применения рынок нейронных сетей глубокого обучения (DNN) сегментируется на распознавание изображений, распознавание речи, обработку естественного языка (NLP) и интеллектуальный анализ данных. Сегмент распознавания изображений занимал самую большую долю рынка в 2024 году, чему способствовало широкое внедрение в автономные транспортные средства, диагностику здравоохранения, распознавание лиц и системы наблюдения. Растущее использование сверточных нейронных сетей (CNN) для визуального анализа данных и обработки изображений в реальном времени значительно стимулирует рост в этом сегменте.
Ожидается, что сегмент обработки естественного языка (NLP) будет демонстрировать самый быстрый рост в период с 2025 по 2032 год, что обусловлено быстрыми достижениями в области генеративного ИИ, виртуальных помощников, чат-ботов, инструментов анализа настроений и услуг перевода на базе ИИ. Растущая полезность NLP в обслуживании клиентов, образовании и автоматизации предприятий продолжает стимулировать движение рынка.
- Конечным пользователем
На основе конечного пользователя рынок нейронных сетей глубокого обучения (DNN) сегментируется на банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничную торговлю, автомобилестроение, производство, аэрокосмическую и оборонную промышленность, безопасность и другие. Сегмент ИТ и телекоммуникаций доминировал на рынке в 2024 году, что обусловлено потребностью в оптимизации сетей в реальном времени, обнаружении аномалий и предиктивном обслуживании. Операторы связи используют DNN для улучшения качества обслуживания клиентов и автоматизации предоставления услуг с помощью интеллектуальных виртуальных агентов и аналитики данных.
Ожидается, что сегмент здравоохранения будет расти самыми быстрыми темпами CAGR в 2025–2032 годах, что обусловлено растущим внедрением DNN в медицинской визуализации, разработке лекарств, диагностике и оценке риска для пациентов. Способность моделей глубокого обучения обрабатывать большие объемы неструктурированных медицинских данных революционизирует персонализированную медицину и ускоряет рабочие процессы НИОКР.
Региональный анализ рынка нейронных сетей глубокого обучения (DNN)
- Китай является основным драйвером быстрого расширения рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе, внося значительный вклад в прогнозируемый среднегодовой темп роста региона в размере 33,12% в период с 2025 по 2032 год.
- Рост страны обусловлен значительными государственными инвестициями в искусственный интеллект в рамках таких национальных стратегий, как «План развития искусственного интеллекта следующего поколения», способствующих широкой интеграции глубоких нейронных сетей во все отрасли.
- Огромная потребительская база Китая и инициативы «умных городов» стимулируют распространение решений на базе DNN в области распознавания лиц, интеллектуального наблюдения, автономных транспортных средств и персонализированного опыта электронной коммерции.
- Кроме того, такие сильные отечественные игроки, как Baidu, Alibaba, Tencent и Huawei, активно разрабатывают чипсеты ИИ, облачные платформы и фреймворки глубокого обучения, способствуя более быстрому локализованному развертыванию приложений DNN.
- Экосистема производства дешевой электроники в стране в сочетании с широкомасштабным развертыванием инфраструктуры 5G также снижает барьеры для входа и способствует внедрению систем на основе DNN как на городских, так и на сельских рынках.
- Поскольку Китай позиционирует себя как мировую сверхдержаву в области искусственного интеллекта, местный рынок нейронных сетей глубокого обучения (DNN) выигрывает от агрессивных инноваций, благоприятных политических рамок и растущего сотрудничества предприятий и правительств, что еще больше укрепляет его лидерство в Азиатско-Тихоокеанском регионе.
Обзор рынка нейронных сетей глубокого обучения (DNN) в Японии
Рынок нейронных сетей глубокого обучения (DNN) в Японии переживает существенный рост, обусловленный передовым технологическим ландшафтом, растущим спросом на автоматизацию и высокоурбанизированным обществом. Сильный акцент страны на робототехнике и системах на основе ИИ дополняет растущее внедрение DNN в аналитику в реальном времени, диагностику здравоохранения, автомобильные системы и приложения для умного дома. Старение населения Японии также создает возможности для вспомогательных технологий на основе ИИ, которые полагаются на алгоритмы DNN для повышения безопасности, удобства и качества ухода.
Обзор рынка нейронных сетей глубокого обучения (DNN) в Индии
Прогнозируется, что рынок нейронных сетей глубокого обучения (DNN) в Индии будет быстро расти из-за расширяющейся цифровой экосистемы, бурно развивающейся среды технологических стартапов и растущего внимания правительства к ИИ посредством таких инициатив, как Национальная стратегия ИИ и Цифровая Индия. Поскольку такие отрасли, как здравоохранение, BFSI и электронная коммерция, быстро цифровизуются, спрос на инструменты на основе DNN для обнаружения мошенничества, аналитики клиентов и персонализированных рекомендаций стремительно растет. Более того, чувствительный к затратам рынок Индии выигрывает от роста облачных и открытых фреймворков DNN, способствуя широкому экспериментированию и внедрению.
Доля рынка нейронных сетей глубокого обучения (DNN)
Индустрия нейронных сетей глубокого обучения (DNN) в основном представлена хорошо зарекомендовавшими себя компаниями, среди которых:
- LYUDA RESEARCH, LLC (Соединенные Штаты Америки)
- Alphabet Inc. (Google) (США)
- IBM(США)
- Micron Technologies, Inc. (США)
- Neural Technologies Limited (Великобритания)
- NEURODIMENSION, INC.(США)
- NEURALWARE(США)
- Корпорация NVIDIA (США)
- Skymind Inc.(США)
- Samsung(Южная Корея)
- Qualcomm Technologies, Inc. (США)
- Корпорация Intel (США)
- Amazon Web Services, Inc. (США)
- Microsoft(США)
- GMDH LLC. (США)
- Sensory Inc.(США)
- Ward Systems Group, Inc. (США)
- Xilinx Inc.(США)
- Starmind(Швейцария)
Последние разработки на рынке нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе
- В феврале 2025 года NDRC и полупроводниковые компании Китая представили знаковые реформы регулирования для поддержки моделей DNN с открытым исходным кодом, ориентированных на домен. Эта инициатива направлена на демократизацию разработки передового ИИ путем предоставления возможности обучения на доступных установках GPU, продвижения местных инноваций и снижения зависимости от иностранной инфраструктуры.
- В 2024 году Huawei полностью переработала свою среду глубокого обучения с открытым исходным кодом MindSpore (v2.3), оптимизированную для NPU на базе ARM на чипах HarmonyOS и Ascend. Это обновление повышает производительность DNN на устройствах в смартфонах, устройствах IoT и платформах периферийных вычислений в Азиатско-Тихоокеанском регионе
- В феврале 2025 года журнал Nature сообщил об ускорении конкуренции между китайскими и западными моделями искусственного интеллекта, при этом китайские мелкомасштабные DNN сокращают разрыв в производительности. Это отражает зрелую экосистему высококачественных, локально разработанных моделей нейронных сетей в Азиатско-Тихоокеанском регионе
- В начале 2025 года Origin Quantum объединилась с Phoenix, чтобы использовать свои сверхпроводящие квантовые чипы «Wukong» в обучении DNN. Это передовое сотрудничество в Китае свидетельствует о растущем интересе к интеграции квантовых вычислений с рабочими процессами нейронных сетей
- В июне 2025 года в Сямыне (Китай) прошла конференция MLANN 2025, объединившая ведущих исследователей и практиков отрасли в области машинного обучения и нейронных сетей. На мероприятии были представлены новые архитектуры, методы оптимизации и реальные приложения DNN в здравоохранении, робототехнике и интеллектуальном производстве.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

