Анализ размера, доли и тенденций мирового рынка автоматизации обработки дебиторской задолженности – обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Анализ размера, доли и тенденций мирового рынка автоматизации обработки дебиторской задолженности – обзор отрасли и прогноз до 2032 года

  • ICT
  • Upcoming Report
  • Sep 2021
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60
  • Author : Megha Gupta

Обходите тарифные трудности с помощью гибкого консалтинга в области цепочки поставок

Анализ экосистемы цепочки поставок теперь является частью отчетов DBMR

Global Accounts Receivable Automation Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 4.30 Billion USD 11.35 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 4.30 Billion
Diagram Размер рынка (прогнозируемый год)
USD 11.35 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • Oracle
  • Sap SE
  • WorkdayInc.
  • Bottomline Technologies Inc.Comarch SA
  • HighRadius

Сегментация мирового рынка автоматизации обработки дебиторской задолженности по компонентам (решения, услуги), способу развертывания (локально, облако), размеру организации (малые и средние предприятия, крупные предприятия), конечному пользователю (бизнес-финансовые учреждения, ИТ и телекоммуникации, производство, здравоохранение и другие) — отраслевые тенденции и прогноз до 2032 года

Глобальный рынок автоматизации управления дебиторской задолженностью z

Размер мирового рынка автоматизации обработки дебиторской задолженности

  • Объем мирового рынка автоматизации управления дебиторской задолженностью в 2024 году оценивался в 4,30 млрд долларов США и, как ожидается, достигнет 11,35 млрд долларов США к 2032 году, увеличившись в среднем на 12,90% в течение прогнозируемого периода.
  • Расширение рынка обусловлено растущей потребностью в оптимизированных финансовых операциях и улучшенном управлении денежными потоками в компаниях всех размеров, поддерживаемых инициативами по автоматизации и цифровой трансформации.
  • Кроме того, растущий спрос на доступ к данным в режиме реального времени, сокращение количества ошибок и ускоренную обработку счетов стимулирует внедрение инструментов автоматизации обработки дебиторской задолженности, что существенно стимулирует рост рынка.

Анализ глобального рынка автоматизации обработки дебиторской задолженности

  • Глобальный рынок автоматизации обработки дебиторской задолженности становится неотъемлемой частью финансовых операций для предприятий по всему миру, предлагая автоматизированную обработку счетов-фактур, отслеживание платежей и использование денежных средств для повышения точности, эффективности и прозрачности дебиторской задолженности в режиме реального времени.
  • Растущее внедрение облачных решений, аналитики на базе искусственного интеллекта и возможностей машинного обучения обуславливает спрос на автоматизацию обработки дебиторской задолженности, поскольку организации стремятся сократить число ручных ошибок, ускорить движение денежных средств и улучшить общее управление оборотным капиталом.
  • Северная Америка лидировала на рынке автоматизации дебиторской задолженности с наибольшей долей выручки в 31,5% в 2024 году, чему способствовало раннее внедрение технологий автоматизации, сильное присутствие поставщиков программного обеспечения и высокий спрос на цифровую трансформацию среди предприятий, особенно в США и Канаде.
  • Прогнозируется, что Азиатско-Тихоокеанский регион станет регионом с самыми быстрыми темпами роста в течение прогнозируемого периода, чему будут способствовать быстрая цифровизация отраслей, расширение секторов малого и среднего бизнеса и увеличение инвестиций в инфраструктуру финансовых технологий.
  • Сегмент решений доминировал на рынке с наибольшей долей выручки в 73,7% в 2024 году, в первую очередь за счет компаний, которым нужны инструменты автоматизации для выставления счетов, взыскания задолженностей, управления кредитами и разрешения споров.

Область применения отчета и глобальная сегментация рынка автоматизации управления дебиторской задолженностью   

Атрибуты

Ключевые аспекты рынка автоматизации управления дебиторской задолженностью

Охваченные сегменты

  • По компонентам : решения, услуги
  • По способу развертывания : локально, в облаке
  • По размеру организации : малые и средние предприятия, крупные предприятия
  • По конечному пользователю : BFSI, ИТ и телекоммуникации, производство, здравоохранение, другие

Охваченные страны

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальной Азиатско-Тихоокеанский регион

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

  • Oracle (США)
  • SAP SE (Германия)
  • Workday, Inc. (США)
  • Bottomline Technologies (DE), Inc. (США)
  • Comarch SA (Польша)
  • HighRadius (США)
  • FinancialForce (США)
  • Эскер (Франция)
  • Корпорация Emagia (США)
  • YayPay Inc. (США)
  • Корпорация VersaPay (Канада)
  • KOFAX, Inc. (США)
  • Office Torque (США)
  • Swiss Post Solutions Inc. (Швейцария)
  • API Outsourcing Inc (США)
  • В любое время (США)
  • numberz (США)
  • Решения OnPay (США)
  • Qvalia AB (Швеция)
  • MYOB Technology Pty Ltd (Австралия)

Рыночные возможности

  • Интеграция с ERP и облачными финансовыми системами
  • Растущее распространение среди МСП на развивающихся рынках

Информационные наборы данных с добавленной стоимостью

Помимо информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, отчеты о рынке, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, анализ цен, анализ доли бренда, опрос потребителей, демографический анализ, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу.

Тенденции мирового рынка автоматизации управления дебиторской задолженностью

Повышение эффективности за счет искусственного интеллекта и интеллектуальной автоматизации процессов

  • Важной и набирающей обороты тенденцией на мировом рынке автоматизации управления дебиторской задолженностью является растущая интеграция искусственного интеллекта (ИИ) и интеллектуальной автоматизации процессов (ИАП) в рабочие процессы дополненной реальности. Это сочетание передовых технологий трансформирует традиционное управление дебиторской задолженностью, повышая операционную эффективность, сокращая ручное вмешательство и улучшая прозрачность денежных потоков.
    • Например, ведущие платформы автоматизации дополненной реальности, такие как HighRadius и YayPay, используют предиктивную аналитику на основе ИИ для прогнозирования платежного поведения клиентов, позволяя финансовым отделам проактивно управлять кредитными рисками и оптимизировать стратегии взыскания задолженности. BlackLine также использует ИИ для автоматизации сверки счетов и платежей, значительно сокращая время сверки.
  • Интеграция ИИ в решения по управлению дебиторской задолженностью позволяет реализовать такие функции, как автоматическая отправка счетов на основе предпочтений клиентов, помощь в разрешении споров в режиме реального времени и интеллектуальная приоритизация мероприятий по взысканию задолженности на основе риска и вероятности оплаты. Например, некоторые платформы используют обработку естественного языка (NLP) для анализа коммуникаций с клиентами и выявления потенциально просроченных платежей.
  • Интеллектуальная автоматизация процессов ещё больше упрощает повторяющиеся задачи, такие как ввод данных, формирование счетов и напоминания об оплате. Благодаря роботизированным роботам (RPA) компании могут автоматизировать сквозные процессы дополненной реальности, позволяя финансовым отделам сосредоточиться на более важных задачах, таких как стратегическое планирование и управление взаимоотношениями с клиентами.
  • Простая интеграция инструментов автоматизации дополненной реальности с системами планирования ресурсов предприятия (ERP) и платформами управления взаимоотношениями с клиентами (CRM) обеспечивает централизованное и унифицированное представление финансовых данных. Эта взаимосвязанная экосистема обеспечивает взаимодействие в режиме реального времени между финансовыми, продажными и операционными отделами, улучшая процесс принятия решений и качество обслуживания клиентов. 
  • Эта тенденция к более интеллектуальным, автоматизированным и интегрированным системам дополненной реальности (AR) фундаментально меняет подход организаций к управлению денежными потоками и оборотным капиталом. В результате поставщики разрабатывают решения для автоматизации дополненной реальности, основанные на ИИ, которые предлагают такие функции, как разговорный ИИ для взаимодействия с клиентами, автоматизированные процессы напоминаний о долгах и динамический кредитный скоринг на основе аналитики данных в режиме реального времени.
  • Спрос на инструменты автоматизации обработки дебиторской задолженности на базе искусственного интеллекта стремительно растет во всех отраслях и регионах, особенно в связи с тем, что предприятия стремятся повысить ликвидность, сократить срок погашения дебиторской задолженности (DSO) и получить конкурентное преимущество за счет повышения финансовой гибкости.

Динамика мирового рынка автоматизации управления дебиторской задолженностью

Водитель

Растущая потребность в связи со спросом на операционную эффективность и цифровую трансформацию

  • Растущее давление на компании, связанное с необходимостью оптимизации оборотного капитала, сокращения ручной нагрузки и ускорения циклов движения денежных средств, является одним из основных факторов спроса на решения по автоматизации управления дебиторской задолженностью (AR). В условиях экономической неопределенности и сокращения ликвидности, эффективные процессы AR становятся критически важными для поддержания бизнес-процессов.

    • Например, в марте 2024 года компания Billtrust запустила решение для обработки наличных на базе искусственного интеллекта, предназначенное для предприятий среднего бизнеса, которое позволяет быстрее сверять счета и обрабатывать платежи в режиме реального времени. Подобные разработки демонстрируют, как компании активно внедряют инновации для устранения операционной неэффективности традиционных систем дополненной реальности.
  • По мере того, как финансовые отделы отказываются от устаревших процессов, требующих работы с электронными таблицами, инструменты автоматизации на основе дополненной реальности предлагают такие функции, как автоматическое выставление счетов, отслеживание платежей в режиме реального времени и интеллектуальные процессы взыскания задолженности. Эти инструменты помогают сократить срок погашения задолженности по дебиторской задолженности (DSO), снизить риск безнадежной задолженности и повысить удовлетворенность клиентов за счет ускоренного разрешения споров.
  • Более того, более широкая волна цифровой трансформации в различных отраслях, включая производство, здравоохранение, розничную торговлю и логистику, стимулирует инвестиции в автоматизацию бэк-офиса. По мере того, как ERP- и CRM-системы всё чаще переходят в облако, интеграция с платформами автоматизации дополненной реальности становится проще и эффективнее, обеспечивая унифицированные финансовые операции на основе данных.
  • Рост популярности удалённой и гибридной работы также обострил потребность в облачных решениях дополненной реальности, которые позволяют финансовым отделам сотрудничать, отслеживать дебиторскую задолженность и безопасно управлять взаимодействием с клиентами из любой точки мира. Такая гибкость стала ключевым требованием для современных финансовых отделов, стремящихся сохранять гибкость и устойчивость в динамичной бизнес-среде.

Сдержанность/Вызов

Проблемы безопасности данных, сложности интеграции и высокие затраты на внедрение

  • Несмотря на многочисленные преимущества автоматизации дополненной реальности, её более широкому внедрению по-прежнему препятствует ряд проблем, в частности, безопасность данных, сложность системной интеграции и первоначальные затраты на внедрение. Эти проблемы могут особенно остро сказаться на малых и средних предприятиях (МСП) с ограниченной ИТ-инфраструктурой или бюджетом.
    • Например, растущее использование облачных платформ дополненной реальности (AR) вызывает опасения по поводу конфиденциальности данных, особенно в секторах со строгими требованиями к соблюдению нормативных требований, таких как финансы, здравоохранение и юриспруденция. Опасения по поводу потенциальной утечки или несанкционированного доступа к конфиденциальным данным клиентов и платежам могут заставить компании не спешить с переходом с устаревших систем.
  • Проблемы интеграции также возникают при подключении инструментов автоматизации дополненной реальности к различным устаревшим ERP-платформам, особенно в организациях с децентрализованной или многоотраслевой структурой. Индивидуальная интеграция часто требует значительного времени и технической экспертизы, что приводит к более длительным циклам внедрения и более высоким затратам.
  • Кроме того, хотя решения для автоматизации могут обеспечить долгосрочную окупаемость инвестиций, первоначальные инвестиции в лицензии на программное обеспечение, настройку, обучение и управление изменениями могут быть значительными, особенно для компаний с низкой маржой или на развивающихся рынках. Этот ценовой барьер может задержать или сдержать внедрение, несмотря на высокий интерес к модернизации процессов.
  • Для решения этих задач поставщикам решений для автоматизации дополненной реальности потребуется предлагать более гибкие модели ценообразования, обеспечивать надёжные функции кибербезопасности (такие как шифрование, многофакторная аутентификация и сертификация соответствия) и упрощать интеграцию с помощью готовых к использованию решений на базе API. Обучающие инициативы, проводимые поставщиками в области окупаемости инвестиций и безопасности, также сыграют решающую роль в повышении уровня внедрения.

Глобальный рынок автоматизации обработки дебиторской задолженности

Рынок автоматизации управления дебиторской задолженностью сегментирован по компонентам, развертыванию, размеру организации и конечному пользователю.

  • По компонентам

Глобальный рынок автоматизации управления дебиторской задолженностью сегментируется по компонентам на решения и услуги. Сегмент решений доминировал на рынке с наибольшей долей выручки в 73,7% в 2024 году, что обусловлено, главным образом, потребностями компаний в инструментах автоматизации для выставления счетов, взыскания дебиторской задолженности, управления кредитами и разрешения споров. Эти платформы помогают оптимизировать операции, сократить период дебиторской задолженности (DSO) и улучшить общее управление оборотным капиталом. Возможности интеграции с ERP-системами и аналитикой в ​​режиме реального времени делают эти решения чрезвычайно ценными для крупных и средних предприятий, стремящихся к операционной эффективности и финансовой прозрачности.

Прогнозируется, что сегмент услуг будет демонстрировать самые высокие среднегодовые темпы роста в период с 2025 по 2032 год благодаря растущему спросу на услуги по внедрению, консалтингу и управлению. По мере того, как компании внедряют инструменты автоматизации дополненной реальности, они всё чаще полагаются на поставщиков для адаптации, настройки систем и технической поддержки. Услуги, обеспечивающие бесперебойное развертывание и постоянную оптимизацию, становятся критически важными для долгосрочной окупаемости инвестиций.

  • По режиму развертывания

По способу развертывания глобальный рынок автоматизации управления дебиторской задолженностью сегментируется на локальные и облачные решения. В 2024 году облачный сегмент занимал наибольшую долю рынка – 64,3%, чему способствовал переход к цифровой трансформации финансов и растущая популярность SaaS-решений для финансовых услуг. Облачное развертывание обеспечивает масштабируемую инфраструктуру, автоматические обновления и удаленный доступ – функции, особенно важные для организаций, работающих в распределенных или гибридных рабочих средах. Облачные платформы также улучшают совместную работу и обеспечивают прозрачность работы отделов в режиме реального времени, что делает их идеальным решением для динамично развивающихся компаний.

Ожидается, что сегмент облачных технологий будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено ростом внедрения облачных технологий среди малого и среднего бизнеса и повышением экономической эффективности. Хотя некоторые традиционные отрасли по-прежнему отдают предпочтение локальным моделям для управления данными и обеспечения соответствия требованиям безопасности, тенденция явно смещается в сторону облачных решений благодаря простоте интеграции, снижению нагрузки на ИТ-отдел и улучшенным возможностям аварийного восстановления.

  • По размеру организации

В зависимости от размера организации глобальный рынок автоматизации управления дебиторской задолженностью сегментируется на малые и средние предприятия (МСП) и крупные предприятия. Крупные предприятия доминировали на рынке с долей выручки 57,6% в 2024 году, что обусловлено их сложной операционной деятельностью, обширной клиентской базой и более высокими объемами счетов. Этим организациям требуются надежные инструменты автоматизации с расширенными функциями, такими как динамическая оценка кредитного риска, процессы взыскания задолженности на основе искусственного интеллекта и прогнозирование движения денежных средств в режиме реального времени. Крупные предприятия также являются одними из первых, кто внедряет интегрированные финансовые системы, и получают выгоду от решений дополненной реальности, масштабируемых в глобальном масштабе.

Прогнозируется, что сегмент малого и среднего бизнеса будет расти самыми быстрыми темпами в период с 2025 по 2032 год, поскольку автоматизация становится более доступной благодаря доступным облачным решениям. Малые и средние предприятия всё чаще ищут способы сократить количество ошибок, связанных с ручным трудом, повысить эффективность взыскания задолженности и улучшить прозрачность денежных потоков. Поставщики реагируют на это, предлагая удобные модели на основе подписки, которые минимизируют первоначальные затраты и обеспечивают быстрое развертывание решений, адаптированных для небольших предприятий.

  • Конечным пользователем

По типу конечного пользователя глобальный рынок автоматизации управления дебиторской задолженностью сегментируется на следующие сегменты: бизнес-финансовые учреждения (BFSI), ИТ и телекоммуникации, производство, здравоохранение и другие. В 2024 году сектор BFSI занимал наибольшую долю рынка – 31,4%, что обусловлено потребностями отрасли в своевременном взыскании задолженности, управлении рисками и соблюдении нормативных требований. Финансовые учреждения используют инструменты автоматизации дополненной реальности для оптимизации объемных транзакций, мониторинга просроченных платежей и автоматизации взаимодействия с клиентами. Возможность интеграции с основными банковскими и бухгалтерскими платформами делает автоматизацию дополненной реальности необходимым условием для обеспечения операционной устойчивости в секторе BFSI.

Ожидается, что сектор здравоохранения будет расти самыми быстрыми темпами в год в период с 2025 по 2032 год, чему будет способствовать цифровая трансформация выставления счетов за медицинские услуги и управления счетами пациентов. Автоматизация в здравоохранении оптимизирует обработку страховых требований, снижает административные расходы и улучшает управление циклом доходов. Поскольку поставщики медицинских услуг стремятся минимизировать задержки платежей и повысить финансовую вовлеченность пациентов, инструменты дополненной реальности, обеспечивающие интеллектуальную автоматизацию и интеграцию с информационными системами здравоохранения, становятся всё более важными.

Региональный анализ глобального рынка автоматизации управления дебиторской задолженностью

  • Северная Америка доминировала на мировом рынке автоматизации обработки дебиторской задолженности с наибольшей долей выручки в 31,5% в 2024 году, что было обусловлено широким распространением инициатив цифровой трансформации и высоким спросом на автоматизацию финансовых процессов во всех отраслях.
  • Организации в регионе отдают приоритет эффективности, финансовой прозрачности в режиме реального времени и оптимизированному управлению денежными потоками, что ускорило внедрение передовых инструментов автоматизации дополненной реальности, интегрированных с искусственным интеллектом, машинным обучением и облачными ERP-системами.
  • Доминирование региона подкрепляется развитой ИТ-инфраструктурой, ранним внедрением облачных технологий и высокой концентрацией крупных предприятий и финтех-компаний. Кроме того, соблюдение нормативных требований и необходимость в надёжных аудиторских журналах побудили компании в таких секторах, как банковские, финансовые и финансовые услуги (BFSI), здравоохранение и производство, инвестировать в автоматизацию управления дебиторской задолженностью, укрепляя позиции Северной Америки как мирового лидера на этом рынке.

Доля на мировом рынке автоматизации обработки дебиторской задолженности

Лидерами отрасли автоматизации обработки дебиторской задолженности являются в основном хорошо зарекомендовавшие себя компании, в том числе:

  • Oracle (США)
  • SAP SE (Германия)
  • Workday, Inc. (США)
  • Bottomline Technologies (DE), Inc. (США)
  • Comarch SA (Польша)
  • HighRadius (США)
  • FinancialForce (США)
  • Эскер (Франция)
  • Корпорация Emagia (США)
  • YayPay Inc. (США)
  • Корпорация VersaPay (Канада)
  • KOFAX, Inc. (США)
  • Office Torque (США)
  • Swiss Post Solutions Inc. (Швейцария)
  • API Outsourcing Inc (США)
  • В любое время (США)
  • numberz (США)
  • Решения OnPay (США)
  • Qvalia AB (Швеция)
  • MYOB Technology Pty Ltd (Австралия)

Каковы последние тенденции на мировом рынке автоматизации обработки дебиторской задолженности?

  • В мае 2023 года компания SAP SE, мировой лидер в области корпоративного программного обеспечения, запустила значительное обновление своего решения SAP S/4HANA Finance, внедрив улучшенные функции автоматизации обработки дебиторской задолженности на базе искусственного интеллекта. Новые возможности включают в себя предиктивную аналитику платежного поведения, автоматизированные процессы разрешения споров и профилирование рисков клиентов в режиме реального времени. Это нововведение подчёркивает стремление SAP оптимизировать финансовые операции и предоставлять компаниям возможность быстрее собирать дебиторскую задолженность, сокращать расходы на дебиторскую задолженность и повышать прозрачность денежных потоков в различных отраслях.
  • В марте 2023 года корпорация HighRadius, ведущий поставщик программного обеспечения для автономных финансов, объявила о расширении своего пакета инструментов для управления дебиторской задолженностью на базе искусственного интеллекта (ИИ), добавив новые инструменты, ориентированные на прогнозирование денежных потоков и динамический кредитный скоринг. Эти функции позволяют организациям оценивать кредитный риск в режиме реального времени и проактивно управлять дебиторской задолженностью. Обновление отражает стремление HighRadius к развитию интеллектуальной автоматизации и предоставлению стратегических финансовых аналитических данных крупным и средним предприятиям.
  • В феврале 2023 года корпорация Oracle представила расширенные функции машинного обучения в своей системе Oracle Fusion Cloud ERP для расширения возможностей автоматизации дополненной реальности. Обновление включает в себя интеллектуальное сопоставление платежей, сегментацию клиентов для взыскания задолженности и автоматизированные кампании по напоминанию о платежах по электронной почте. Эти инновации направлены на сокращение ручного вмешательства и повышение точности и скорости обработки дебиторской задолженности. Постоянные инвестиции Oracle в инструменты финансовой автоматизации демонстрируют её видение оптимизации операций бэк-офиса и поддержки гибкого управления финансами.
  • В январе 2023 года компания Billtrust, поставщик решений для B2B-оплаты заказов, объявила о стратегическом партнерстве с Visa для автоматизации B2B-платежей с помощью интегрированных решений дополненной реальности. Целью сотрудничества является ускорение внедрения цифровых платежей среди корпоративных клиентов, сокращение использования бумажных чеков и повышение точности данных о денежных переводах. Этот шаг соответствует миссии Billtrust по цифровизации и автоматизации всего жизненного цикла дополненной реальности, предлагая клиентам безопасные, масштабируемые и быстрые варианты обработки платежей.
  • В декабре 2022 года компания Quadient, мировой лидер в области клиентских коммуникаций и автоматизации дополненной реальности, запустила обновлённую версию своей платформы YayPay с улучшенными панелями управления, аналитикой клиентов в режиме реального времени и расширенной интеграцией с ERP-системами. Новая версия позволяет финансовым отделам эффективнее управлять рабочими процессами, отслеживать просроченные счета и улучшать взаимодействие с клиентами. Это обновление отражает постоянные инвестиции Quadient в улучшение пользовательского опыта, прозрачности операционной деятельности и оптимизацию денежных потоков как для малых, так и для крупных предприятий.


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация мирового рынка автоматизации обработки дебиторской задолженности по компонентам (решения, услуги), способу развертывания (локально, облако), размеру организации (малые и средние предприятия, крупные предприятия), конечному пользователю (бизнес-финансовые учреждения, ИТ и телекоммуникации, производство, здравоохранение и другие) — отраслевые тенденции и прогноз до 2032 года .
Размер Анализ размера, доли и тенденций мирового рынка автоматизации обработки дебиторской задолженности – обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 4.30 USD Billion долларов США.
Ожидается, что Анализ размера, доли и тенденций мирового рынка автоматизации обработки дебиторской задолженности – обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 12.9% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают Oracle, Sap SE, WorkdayInc., Bottomline Technologies Inc.Comarch SA, HighRadius, FinancialForce, Esker, Emagia Corporation, YayPay Inc., VersaPay Corporation, KOFAXInc., Office Torque, Swiss Post Solutions Inc., API Outsourcing Inc, Anytime Collect, numberz, OnPay Solutions, Qvalia AB and MYOB Technology Pty Ltd .
Testimonial