Global Accounts Receivable Automation Market
Размер рынка в млрд долларов США
CAGR :
%
USD
4.30 Billion
USD
11.35 Billion
2024
2032
| 2025 –2032 | |
| USD 4.30 Billion | |
| USD 11.35 Billion | |
|
|
|
|
Сегментация мирового рынка автоматизации обработки дебиторской задолженности по компонентам (решения, услуги), способу развертывания (локально, облако), размеру организации (малые и средние предприятия, крупные предприятия), конечному пользователю (бизнес-финансовые учреждения, ИТ и телекоммуникации, производство, здравоохранение и другие) — отраслевые тенденции и прогноз до 2032 года
Размер мирового рынка автоматизации обработки дебиторской задолженности
- Объем мирового рынка автоматизации управления дебиторской задолженностью в 2024 году оценивался в 4,30 млрд долларов США и, как ожидается, достигнет 11,35 млрд долларов США к 2032 году, увеличившись в среднем на 12,90% в течение прогнозируемого периода.
- Расширение рынка обусловлено растущей потребностью в оптимизированных финансовых операциях и улучшенном управлении денежными потоками в компаниях всех размеров, поддерживаемых инициативами по автоматизации и цифровой трансформации.
- Кроме того, растущий спрос на доступ к данным в режиме реального времени, сокращение количества ошибок и ускоренную обработку счетов стимулирует внедрение инструментов автоматизации обработки дебиторской задолженности, что существенно стимулирует рост рынка.
Анализ глобального рынка автоматизации обработки дебиторской задолженности
- Глобальный рынок автоматизации обработки дебиторской задолженности становится неотъемлемой частью финансовых операций для предприятий по всему миру, предлагая автоматизированную обработку счетов-фактур, отслеживание платежей и использование денежных средств для повышения точности, эффективности и прозрачности дебиторской задолженности в режиме реального времени.
- Растущее внедрение облачных решений, аналитики на базе искусственного интеллекта и возможностей машинного обучения обуславливает спрос на автоматизацию обработки дебиторской задолженности, поскольку организации стремятся сократить число ручных ошибок, ускорить движение денежных средств и улучшить общее управление оборотным капиталом.
- Северная Америка лидировала на рынке автоматизации дебиторской задолженности с наибольшей долей выручки в 31,5% в 2024 году, чему способствовало раннее внедрение технологий автоматизации, сильное присутствие поставщиков программного обеспечения и высокий спрос на цифровую трансформацию среди предприятий, особенно в США и Канаде.
- Прогнозируется, что Азиатско-Тихоокеанский регион станет регионом с самыми быстрыми темпами роста в течение прогнозируемого периода, чему будут способствовать быстрая цифровизация отраслей, расширение секторов малого и среднего бизнеса и увеличение инвестиций в инфраструктуру финансовых технологий.
- Сегмент решений доминировал на рынке с наибольшей долей выручки в 73,7% в 2024 году, в первую очередь за счет компаний, которым нужны инструменты автоматизации для выставления счетов, взыскания задолженностей, управления кредитами и разрешения споров.
Область применения отчета и глобальная сегментация рынка автоматизации управления дебиторской задолженностью
|
Атрибуты |
Ключевые аспекты рынка автоматизации управления дебиторской задолженностью |
|
Охваченные сегменты |
|
|
Охваченные страны |
Северная Америка
Европа
Азиатско-Тихоокеанский регион
Ближний Восток и Африка
Южная Америка
|
|
Ключевые игроки рынка |
|
|
Рыночные возможности |
|
|
Информационные наборы данных с добавленной стоимостью |
Помимо информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, отчеты о рынке, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, анализ цен, анализ доли бренда, опрос потребителей, демографический анализ, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу. |
Тенденции мирового рынка автоматизации управления дебиторской задолженностью
Повышение эффективности за счет искусственного интеллекта и интеллектуальной автоматизации процессов
- Важной и набирающей обороты тенденцией на мировом рынке автоматизации управления дебиторской задолженностью является растущая интеграция искусственного интеллекта (ИИ) и интеллектуальной автоматизации процессов (ИАП) в рабочие процессы дополненной реальности. Это сочетание передовых технологий трансформирует традиционное управление дебиторской задолженностью, повышая операционную эффективность, сокращая ручное вмешательство и улучшая прозрачность денежных потоков.
- Например, ведущие платформы автоматизации дополненной реальности, такие как HighRadius и YayPay, используют предиктивную аналитику на основе ИИ для прогнозирования платежного поведения клиентов, позволяя финансовым отделам проактивно управлять кредитными рисками и оптимизировать стратегии взыскания задолженности. BlackLine также использует ИИ для автоматизации сверки счетов и платежей, значительно сокращая время сверки.
- Интеграция ИИ в решения по управлению дебиторской задолженностью позволяет реализовать такие функции, как автоматическая отправка счетов на основе предпочтений клиентов, помощь в разрешении споров в режиме реального времени и интеллектуальная приоритизация мероприятий по взысканию задолженности на основе риска и вероятности оплаты. Например, некоторые платформы используют обработку естественного языка (NLP) для анализа коммуникаций с клиентами и выявления потенциально просроченных платежей.
- Интеллектуальная автоматизация процессов ещё больше упрощает повторяющиеся задачи, такие как ввод данных, формирование счетов и напоминания об оплате. Благодаря роботизированным роботам (RPA) компании могут автоматизировать сквозные процессы дополненной реальности, позволяя финансовым отделам сосредоточиться на более важных задачах, таких как стратегическое планирование и управление взаимоотношениями с клиентами.
- Простая интеграция инструментов автоматизации дополненной реальности с системами планирования ресурсов предприятия (ERP) и платформами управления взаимоотношениями с клиентами (CRM) обеспечивает централизованное и унифицированное представление финансовых данных. Эта взаимосвязанная экосистема обеспечивает взаимодействие в режиме реального времени между финансовыми, продажными и операционными отделами, улучшая процесс принятия решений и качество обслуживания клиентов.
- Эта тенденция к более интеллектуальным, автоматизированным и интегрированным системам дополненной реальности (AR) фундаментально меняет подход организаций к управлению денежными потоками и оборотным капиталом. В результате поставщики разрабатывают решения для автоматизации дополненной реальности, основанные на ИИ, которые предлагают такие функции, как разговорный ИИ для взаимодействия с клиентами, автоматизированные процессы напоминаний о долгах и динамический кредитный скоринг на основе аналитики данных в режиме реального времени.
- Спрос на инструменты автоматизации обработки дебиторской задолженности на базе искусственного интеллекта стремительно растет во всех отраслях и регионах, особенно в связи с тем, что предприятия стремятся повысить ликвидность, сократить срок погашения дебиторской задолженности (DSO) и получить конкурентное преимущество за счет повышения финансовой гибкости.
Динамика мирового рынка автоматизации управления дебиторской задолженностью
Водитель
Растущая потребность в связи со спросом на операционную эффективность и цифровую трансформацию
-
Растущее давление на компании, связанное с необходимостью оптимизации оборотного капитала, сокращения ручной нагрузки и ускорения циклов движения денежных средств, является одним из основных факторов спроса на решения по автоматизации управления дебиторской задолженностью (AR). В условиях экономической неопределенности и сокращения ликвидности, эффективные процессы AR становятся критически важными для поддержания бизнес-процессов.
- Например, в марте 2024 года компания Billtrust запустила решение для обработки наличных на базе искусственного интеллекта, предназначенное для предприятий среднего бизнеса, которое позволяет быстрее сверять счета и обрабатывать платежи в режиме реального времени. Подобные разработки демонстрируют, как компании активно внедряют инновации для устранения операционной неэффективности традиционных систем дополненной реальности.
- По мере того, как финансовые отделы отказываются от устаревших процессов, требующих работы с электронными таблицами, инструменты автоматизации на основе дополненной реальности предлагают такие функции, как автоматическое выставление счетов, отслеживание платежей в режиме реального времени и интеллектуальные процессы взыскания задолженности. Эти инструменты помогают сократить срок погашения задолженности по дебиторской задолженности (DSO), снизить риск безнадежной задолженности и повысить удовлетворенность клиентов за счет ускоренного разрешения споров.
- Более того, более широкая волна цифровой трансформации в различных отраслях, включая производство, здравоохранение, розничную торговлю и логистику, стимулирует инвестиции в автоматизацию бэк-офиса. По мере того, как ERP- и CRM-системы всё чаще переходят в облако, интеграция с платформами автоматизации дополненной реальности становится проще и эффективнее, обеспечивая унифицированные финансовые операции на основе данных.
- Рост популярности удалённой и гибридной работы также обострил потребность в облачных решениях дополненной реальности, которые позволяют финансовым отделам сотрудничать, отслеживать дебиторскую задолженность и безопасно управлять взаимодействием с клиентами из любой точки мира. Такая гибкость стала ключевым требованием для современных финансовых отделов, стремящихся сохранять гибкость и устойчивость в динамичной бизнес-среде.
Сдержанность/Вызов
Проблемы безопасности данных, сложности интеграции и высокие затраты на внедрение
- Несмотря на многочисленные преимущества автоматизации дополненной реальности, её более широкому внедрению по-прежнему препятствует ряд проблем, в частности, безопасность данных, сложность системной интеграции и первоначальные затраты на внедрение. Эти проблемы могут особенно остро сказаться на малых и средних предприятиях (МСП) с ограниченной ИТ-инфраструктурой или бюджетом.
- Например, растущее использование облачных платформ дополненной реальности (AR) вызывает опасения по поводу конфиденциальности данных, особенно в секторах со строгими требованиями к соблюдению нормативных требований, таких как финансы, здравоохранение и юриспруденция. Опасения по поводу потенциальной утечки или несанкционированного доступа к конфиденциальным данным клиентов и платежам могут заставить компании не спешить с переходом с устаревших систем.
- Проблемы интеграции также возникают при подключении инструментов автоматизации дополненной реальности к различным устаревшим ERP-платформам, особенно в организациях с децентрализованной или многоотраслевой структурой. Индивидуальная интеграция часто требует значительного времени и технической экспертизы, что приводит к более длительным циклам внедрения и более высоким затратам.
- Кроме того, хотя решения для автоматизации могут обеспечить долгосрочную окупаемость инвестиций, первоначальные инвестиции в лицензии на программное обеспечение, настройку, обучение и управление изменениями могут быть значительными, особенно для компаний с низкой маржой или на развивающихся рынках. Этот ценовой барьер может задержать или сдержать внедрение, несмотря на высокий интерес к модернизации процессов.
- Для решения этих задач поставщикам решений для автоматизации дополненной реальности потребуется предлагать более гибкие модели ценообразования, обеспечивать надёжные функции кибербезопасности (такие как шифрование, многофакторная аутентификация и сертификация соответствия) и упрощать интеграцию с помощью готовых к использованию решений на базе API. Обучающие инициативы, проводимые поставщиками в области окупаемости инвестиций и безопасности, также сыграют решающую роль в повышении уровня внедрения.
Глобальный рынок автоматизации обработки дебиторской задолженности
Рынок автоматизации управления дебиторской задолженностью сегментирован по компонентам, развертыванию, размеру организации и конечному пользователю.
- По компонентам
Глобальный рынок автоматизации управления дебиторской задолженностью сегментируется по компонентам на решения и услуги. Сегмент решений доминировал на рынке с наибольшей долей выручки в 73,7% в 2024 году, что обусловлено, главным образом, потребностями компаний в инструментах автоматизации для выставления счетов, взыскания дебиторской задолженности, управления кредитами и разрешения споров. Эти платформы помогают оптимизировать операции, сократить период дебиторской задолженности (DSO) и улучшить общее управление оборотным капиталом. Возможности интеграции с ERP-системами и аналитикой в режиме реального времени делают эти решения чрезвычайно ценными для крупных и средних предприятий, стремящихся к операционной эффективности и финансовой прозрачности.
Прогнозируется, что сегмент услуг будет демонстрировать самые высокие среднегодовые темпы роста в период с 2025 по 2032 год благодаря растущему спросу на услуги по внедрению, консалтингу и управлению. По мере того, как компании внедряют инструменты автоматизации дополненной реальности, они всё чаще полагаются на поставщиков для адаптации, настройки систем и технической поддержки. Услуги, обеспечивающие бесперебойное развертывание и постоянную оптимизацию, становятся критически важными для долгосрочной окупаемости инвестиций.
- По режиму развертывания
По способу развертывания глобальный рынок автоматизации управления дебиторской задолженностью сегментируется на локальные и облачные решения. В 2024 году облачный сегмент занимал наибольшую долю рынка – 64,3%, чему способствовал переход к цифровой трансформации финансов и растущая популярность SaaS-решений для финансовых услуг. Облачное развертывание обеспечивает масштабируемую инфраструктуру, автоматические обновления и удаленный доступ – функции, особенно важные для организаций, работающих в распределенных или гибридных рабочих средах. Облачные платформы также улучшают совместную работу и обеспечивают прозрачность работы отделов в режиме реального времени, что делает их идеальным решением для динамично развивающихся компаний.
Ожидается, что сегмент облачных технологий будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено ростом внедрения облачных технологий среди малого и среднего бизнеса и повышением экономической эффективности. Хотя некоторые традиционные отрасли по-прежнему отдают предпочтение локальным моделям для управления данными и обеспечения соответствия требованиям безопасности, тенденция явно смещается в сторону облачных решений благодаря простоте интеграции, снижению нагрузки на ИТ-отдел и улучшенным возможностям аварийного восстановления.
- По размеру организации
В зависимости от размера организации глобальный рынок автоматизации управления дебиторской задолженностью сегментируется на малые и средние предприятия (МСП) и крупные предприятия. Крупные предприятия доминировали на рынке с долей выручки 57,6% в 2024 году, что обусловлено их сложной операционной деятельностью, обширной клиентской базой и более высокими объемами счетов. Этим организациям требуются надежные инструменты автоматизации с расширенными функциями, такими как динамическая оценка кредитного риска, процессы взыскания задолженности на основе искусственного интеллекта и прогнозирование движения денежных средств в режиме реального времени. Крупные предприятия также являются одними из первых, кто внедряет интегрированные финансовые системы, и получают выгоду от решений дополненной реальности, масштабируемых в глобальном масштабе.
Прогнозируется, что сегмент малого и среднего бизнеса будет расти самыми быстрыми темпами в период с 2025 по 2032 год, поскольку автоматизация становится более доступной благодаря доступным облачным решениям. Малые и средние предприятия всё чаще ищут способы сократить количество ошибок, связанных с ручным трудом, повысить эффективность взыскания задолженности и улучшить прозрачность денежных потоков. Поставщики реагируют на это, предлагая удобные модели на основе подписки, которые минимизируют первоначальные затраты и обеспечивают быстрое развертывание решений, адаптированных для небольших предприятий.
- Конечным пользователем
По типу конечного пользователя глобальный рынок автоматизации управления дебиторской задолженностью сегментируется на следующие сегменты: бизнес-финансовые учреждения (BFSI), ИТ и телекоммуникации, производство, здравоохранение и другие. В 2024 году сектор BFSI занимал наибольшую долю рынка – 31,4%, что обусловлено потребностями отрасли в своевременном взыскании задолженности, управлении рисками и соблюдении нормативных требований. Финансовые учреждения используют инструменты автоматизации дополненной реальности для оптимизации объемных транзакций, мониторинга просроченных платежей и автоматизации взаимодействия с клиентами. Возможность интеграции с основными банковскими и бухгалтерскими платформами делает автоматизацию дополненной реальности необходимым условием для обеспечения операционной устойчивости в секторе BFSI.
Ожидается, что сектор здравоохранения будет расти самыми быстрыми темпами в год в период с 2025 по 2032 год, чему будет способствовать цифровая трансформация выставления счетов за медицинские услуги и управления счетами пациентов. Автоматизация в здравоохранении оптимизирует обработку страховых требований, снижает административные расходы и улучшает управление циклом доходов. Поскольку поставщики медицинских услуг стремятся минимизировать задержки платежей и повысить финансовую вовлеченность пациентов, инструменты дополненной реальности, обеспечивающие интеллектуальную автоматизацию и интеграцию с информационными системами здравоохранения, становятся всё более важными.
Региональный анализ глобального рынка автоматизации управления дебиторской задолженностью
- Северная Америка доминировала на мировом рынке автоматизации обработки дебиторской задолженности с наибольшей долей выручки в 31,5% в 2024 году, что было обусловлено широким распространением инициатив цифровой трансформации и высоким спросом на автоматизацию финансовых процессов во всех отраслях.
- Организации в регионе отдают приоритет эффективности, финансовой прозрачности в режиме реального времени и оптимизированному управлению денежными потоками, что ускорило внедрение передовых инструментов автоматизации дополненной реальности, интегрированных с искусственным интеллектом, машинным обучением и облачными ERP-системами.
- Доминирование региона подкрепляется развитой ИТ-инфраструктурой, ранним внедрением облачных технологий и высокой концентрацией крупных предприятий и финтех-компаний. Кроме того, соблюдение нормативных требований и необходимость в надёжных аудиторских журналах побудили компании в таких секторах, как банковские, финансовые и финансовые услуги (BFSI), здравоохранение и производство, инвестировать в автоматизацию управления дебиторской задолженностью, укрепляя позиции Северной Америки как мирового лидера на этом рынке.
Доля на мировом рынке автоматизации обработки дебиторской задолженности
Лидерами отрасли автоматизации обработки дебиторской задолженности являются в основном хорошо зарекомендовавшие себя компании, в том числе:
- Oracle (США)
- SAP SE (Германия)
- Workday, Inc. (США)
- Bottomline Technologies (DE), Inc. (США)
- Comarch SA (Польша)
- HighRadius (США)
- FinancialForce (США)
- Эскер (Франция)
- Корпорация Emagia (США)
- YayPay Inc. (США)
- Корпорация VersaPay (Канада)
- KOFAX, Inc. (США)
- Office Torque (США)
- Swiss Post Solutions Inc. (Швейцария)
- API Outsourcing Inc (США)
- В любое время (США)
- numberz (США)
- Решения OnPay (США)
- Qvalia AB (Швеция)
- MYOB Technology Pty Ltd (Австралия)
Каковы последние тенденции на мировом рынке автоматизации обработки дебиторской задолженности?
- В мае 2023 года компания SAP SE, мировой лидер в области корпоративного программного обеспечения, запустила значительное обновление своего решения SAP S/4HANA Finance, внедрив улучшенные функции автоматизации обработки дебиторской задолженности на базе искусственного интеллекта. Новые возможности включают в себя предиктивную аналитику платежного поведения, автоматизированные процессы разрешения споров и профилирование рисков клиентов в режиме реального времени. Это нововведение подчёркивает стремление SAP оптимизировать финансовые операции и предоставлять компаниям возможность быстрее собирать дебиторскую задолженность, сокращать расходы на дебиторскую задолженность и повышать прозрачность денежных потоков в различных отраслях.
- В марте 2023 года корпорация HighRadius, ведущий поставщик программного обеспечения для автономных финансов, объявила о расширении своего пакета инструментов для управления дебиторской задолженностью на базе искусственного интеллекта (ИИ), добавив новые инструменты, ориентированные на прогнозирование денежных потоков и динамический кредитный скоринг. Эти функции позволяют организациям оценивать кредитный риск в режиме реального времени и проактивно управлять дебиторской задолженностью. Обновление отражает стремление HighRadius к развитию интеллектуальной автоматизации и предоставлению стратегических финансовых аналитических данных крупным и средним предприятиям.
- В феврале 2023 года корпорация Oracle представила расширенные функции машинного обучения в своей системе Oracle Fusion Cloud ERP для расширения возможностей автоматизации дополненной реальности. Обновление включает в себя интеллектуальное сопоставление платежей, сегментацию клиентов для взыскания задолженности и автоматизированные кампании по напоминанию о платежах по электронной почте. Эти инновации направлены на сокращение ручного вмешательства и повышение точности и скорости обработки дебиторской задолженности. Постоянные инвестиции Oracle в инструменты финансовой автоматизации демонстрируют её видение оптимизации операций бэк-офиса и поддержки гибкого управления финансами.
- В январе 2023 года компания Billtrust, поставщик решений для B2B-оплаты заказов, объявила о стратегическом партнерстве с Visa для автоматизации B2B-платежей с помощью интегрированных решений дополненной реальности. Целью сотрудничества является ускорение внедрения цифровых платежей среди корпоративных клиентов, сокращение использования бумажных чеков и повышение точности данных о денежных переводах. Этот шаг соответствует миссии Billtrust по цифровизации и автоматизации всего жизненного цикла дополненной реальности, предлагая клиентам безопасные, масштабируемые и быстрые варианты обработки платежей.
- В декабре 2022 года компания Quadient, мировой лидер в области клиентских коммуникаций и автоматизации дополненной реальности, запустила обновлённую версию своей платформы YayPay с улучшенными панелями управления, аналитикой клиентов в режиме реального времени и расширенной интеграцией с ERP-системами. Новая версия позволяет финансовым отделам эффективнее управлять рабочими процессами, отслеживать просроченные счета и улучшать взаимодействие с клиентами. Это обновление отражает постоянные инвестиции Quadient в улучшение пользовательского опыта, прозрачности операционной деятельности и оптимизацию денежных потоков как для малых, так и для крупных предприятий.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

