Global Agriculture Analytics Market
Размер рынка в млрд долларов США
CAGR :
%
USD
6.99 Billion
USD
17.55 Billion
2024
2032
| 2025 –2032 | |
| USD 6.99 Billion | |
| USD 17.55 Billion | |
|
|
|
|
Сегментация мирового рынка сельскохозяйственной аналитики по компонентам (решения и услуги), области применения (аналитика фермерских хозяйств, аналитика животноводства, аналитика аквакультуры и другие), размеру фермы (крупные фермы, малые и средние фермы), способу развертывания (облачные и локальные), технологиям (дистанционное зондирование и спутниковые снимки, географическая информационная система, робототехника и автоматизация, большие данные и облачные вычисления, визуализация и отчетность, технология блокчейн и другие), конечным пользователям (фермеры, агрономы, агробизнес, сельскохозяйственные исследователи, государственные учреждения и другие) — тенденции отрасли и прогноз до 2032 года
Аналитика сельского хозяйства Анализ рынка
Сектор сельскохозяйственной аналитики демонстрирует динамичный и быстро меняющийся ландшафт, который меняет способ управления сельскохозяйственными операциями. На рынке комплексные аналитические решения все чаще интегрируются в сельскохозяйственные практики для поддержки принятия обоснованных решений и повышения производительности.
Системы сельскохозяйственной аналитики используются для мониторинга здоровья урожая, оптимизации графиков орошения и точной настройки распределения ресурсов. Эти решения опираются на надежную инфраструктуру сбора данных, интеграции и анализа в реальном времени для предоставления информации, которая способствует повышению эффективности и совершенству операций.
Расширенные аналитические платформы, разработанные с удобными для пользователя интерфейсами, становятся неотъемлемой частью современного сельского хозяйства. Компании предлагают настраиваемые решения, которые облегчают визуализацию сложных наборов данных, позволяя заинтересованным сторонам лучше понимать тенденции производительности и вносить точные коррективы в свою практику.
В рыночной среде наблюдается заметная тенденция к принятию систем сквозной аналитики, которые упрощают управление данными, предоставляя при этом действенные идеи. Развитие сельскохозяйственной аналитики, таким образом, характеризуется постоянными инновациями, поскольку разработчики совершенствуют свои продукты для удовлетворения растущих потребностей технологически ориентированного сельскохозяйственного сектора, обеспечивая долгосрочную устойчивость и конкурентное преимущество. Этот подробный анализ подтверждает, что быстрая технологическая интеграция значительно повысит производительность и прибыльность сельского хозяйства.
Размер рынка сельскохозяйственной аналитики
Объем рынка сельскохозяйственной аналитики оценивался в 6,99 млрд долларов США в 2024 году и, по прогнозам, достигнет 17,55 млрд долларов США к 2032 году со среднегодовым темпом роста 12,20% в прогнозируемый период с 2025 по 2032 год. Помимо информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают анализ импорта и экспорта, обзор производственных мощностей, анализ потребления продукции, анализ ценовых тенденций, сценарий изменения климата, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу.
Аналитика сельского хозяйства Тенденции
«Внедрение предиктивной аналитики и машинного обучения»
Растущее внедрение предиктивной аналитики и машинного обучения является ключевой тенденцией, движущей трансформацию сельскохозяйственного сектора. Внедрение предиктивной аналитики и машинного обучения революционизирует сельскохозяйственный сектор, предоставляя фермерам мощные инструменты для улучшения принятия решений и оптимизации методов ведения сельского хозяйства. Предиктивная аналитика позволяет фермерам прогнозировать урожайность, предвидеть заражение вредителями и оптимизировать графики посадки и сбора урожая, используя данные в реальном времени, такие как погодные условия и состояние почвы. Это приводит к более обоснованным решениям, повышению эффективности и большей устойчивости.
Аналогичным образом алгоритмы машинного обучения, которые обучаются на основе данных и со временем совершенствуются, преобразуют способ, которым фермеры контролируют урожай. Эти технологии позволяют на ранней стадии обнаруживать болезни и стрессы в посевах с помощью изображений с дронов, что позволяет своевременно вмешиваться. Более того, машинное обучение помогает оптимизировать использование ресурсов, таких как вода и удобрения, обеспечивая устойчивость и снижая затраты. Интеграция предиктивной аналитики и машинного обучения приводит к более разумным и устойчивым методам ведения сельского хозяйства, в конечном итоге повышая прибыльность и минимизируя воздействие на окружающую среду.
Область применения отчета и сегментация рынка сельскохозяйственной аналитики
|
Атрибуты |
Аналитика сельского хозяйства. Ключевые сведения о рынке |
|
Охваченные сегменты |
|
|
Страны, охваченные |
США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, Остальная Европа в Европе, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, Остальная часть Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, Остальной Ближний Восток и Африка (MEA) как часть Ближнего Востока и Африки (MEA), Бразилия, Аргентина и Остальная часть Южной Америки как часть Южной Америки |
|
Ключевые игроки рынка |
Oracle (США), Microsoft (США), Trimble Inc. (США), Bayer AG (Германия), Deere & Company (США), Accenture (Ирландия), Iteris, Inc. (США), Taranis (Израиль), SAP SE (Германия), AGNIK LLC. (США), DTN (США), DeLaval (Швеция), Conservis (США), Farmer's Business Network, Inc. (США), Farmers Edge Inc. (Канада), Geosys Holdings ULC (Канада) |
|
Возможности рынка |
|
|
Информационные наборы данных с добавленной стоимостью |
Помимо информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают анализ импорта и экспорта, обзор производственных мощностей, анализ потребления продукции, анализ ценовых тенденций, сценарий изменения климата, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу. |
Определение рынка сельскохозяйственной аналитики
Аналитика сельского хозяйства относится к систематическому сбору, обработке и анализу обширных данных, связанных с различными аспектами сельскохозяйственных операций. Эти данные включают информацию с датчиков почвы, прогнозы погоды, спутниковые снимки и модели сельскохозяйственных культур. Изучая эту информацию, фермеры могут принимать решения, которые повышают урожайность, сокращают отходы, лучше управляют ресурсами и защищают окружающую среду.
Динамика аналитики сельского хозяйства
Драйверы
- Растущая потребность в оптимальном использовании ресурсов
Эффективное использование ресурсов имеет решающее значение для устойчивого сельского хозяйства. Решения для сельскохозяйственной аналитики играют важную роль в оптимизации распределения ресурсов на фермах. Интегрируя данные из различных источников, включая полевые датчики, машины и метеостанции, фермеры могут собирать информацию о доступности ресурсов и потребностях в них. Эти данные в сочетании с передовыми аналитическими инструментами позволяют фермерам принимать решения на основе данных для эффективного распределения ресурсов. Например, анализируя данные о влажности почвы с полевых датчиков и метеорологические данные, фермеры могут определять оптимальный график орошения для своих культур, избегая избыточного или недостаточного полива, сокращая потери воды и гарантируя, что культуры получат необходимое количество влаги для своего роста. Аналогичным образом, отслеживая уровни питательных веществ в почве и анализируя данные о здоровье культур, фермеры могут более точно вносить удобрения, избегая чрезмерного использования и минимизируя воздействие на окружающую среду. Такой целенаправленный подход к распределению ресурсов не только сокращает отходы, но и улучшает здоровье и производительность культур.
- Технологические достижения
Интеграция передовых технологий, таких как Интернет вещей, искусственный интеллект и машинное обучение, в сельскохозяйственную аналитику произвела революцию в сельскохозяйственной практике. Эти технологии позволяют собирать и анализировать данные в режиме реального времени, предоставляя фермерам действенные идеи для улучшения процессов принятия решений. Например, устройства IoT могут контролировать уровень влажности почвы, погодные условия и здоровье сельскохозяйственных культур, передавая данные на централизованные платформы для анализа. Алгоритмы ИИ и машинного обучения могут предсказывать заболевания сельскохозяйственных культур, оптимизировать графики посадки и рекомендовать стратегии распределения ресурсов. Эти достижения приводят к повышению эффективности, повышению урожайности и снижению воздействия на окружающую среду, делая сельское хозяйство более устойчивым и прибыльным
Возможности
- Сотрудничество государственного и частного секторов
Сотрудничество между государственными учреждениями и частными предприятиями открывает значительные возможности для развития сельскохозяйственной аналитики. Правительства все больше осознают важность фермерства, основанного на данных, и инвестируют в инициативы по содействию принятию аналитических решений. Государственно-частное партнерство может способствовать разработке комплексных платформ данных, финансировать исследования и разработки и поддерживать распространение знаний среди фермеров. Такое сотрудничество также может помочь в создании стандартизированных протоколов данных и решении нормативных проблем, тем самым ускоряя интеграцию аналитики в основное сельское хозяйство. Такие совместные усилия могут привести к улучшению продовольственной безопасности, экономическому росту и экологической устойчивости.
- Появление экосистем цифрового земледелия
Разработка комплексных экосистем цифрового земледелия представляет собой значительную возможность на рынке аналитики сельского хозяйства. Эти экосистемы интегрируют различные технологии, включая датчики, дроны и программные платформы, для создания комплексных решений по управлению фермерским хозяйством. Аналитика сельского хозяйства выступает в качестве центрального компонента, обрабатывая и анализируя данные из нескольких источников, чтобы предложить единое представление о работе фермы. Эта интеграция позволяет фермерам контролировать здоровье урожая, эффективно управлять ресурсами и принимать обоснованные решения, тем самым повышая производительность и устойчивость.
Ограничения/Проблемы
- Проблемы конфиденциальности и безопасности данных
Растущее использование цифровых технологий в сельском хозяйстве вызывает опасения по поводу конфиденциальности и безопасности данных. Фермеры опасаются несанкционированного доступа к своим данным, потенциального неправомерного использования и отсутствия контроля над обменом информацией. Отсутствие стандартизированных правил и передовых методов управления данными в сельском хозяйстве усугубляет эти опасения. Для решения этих проблем важно внедрить надежную политику конфиденциальности данных, использовать передовые меры безопасности, такие как шифрование и контроль доступа, и обеспечить обучение всех заинтересованных сторон передовым методам обеспечения конфиденциальности и безопасности данных. Формирование доверия между фермерами в отношении обработки данных имеет решающее значение для широкого внедрения решений для сельскохозяйственной аналитики.
- Разрыв в технологической грамотности и навыках
Значительной проблемой при внедрении сельскохозяйственной аналитики является отсутствие технологической грамотности и навыков среди фермеров и заинтересованных сторон в сельском хозяйстве. Многие фермеры могут быть не знакомы с концепциями анализа данных и преимуществами аналитики в сельском хозяйстве. Такая неосведомленность может препятствовать внедрению аналитических решений, поскольку потенциальные пользователи могут не воспринимать их как ценные или релевантные для своей деятельности. Кроме того, существует ограниченная доступность учебных и образовательных ресурсов, адаптированных к конкретным потребностям сельскохозяйственного сектора. Решение этой проблемы требует разработки практичных и доступных учебных программ, которые обучают фермеров эффективному использованию аналитических инструментов и интерпретации результатов. Устранение этого разрыва в навыках имеет важное значение для максимального использования потенциала сельскохозяйственной аналитики в повышении производительности и устойчивости.
В этом отчете о рынке содержатся сведения о последних новых разработках, правилах торговли, анализе импорта-экспорта, анализе производства, оптимизации цепочки создания стоимости, доле рынка, влиянии внутренних и локальных игроков рынка, анализируются возможности с точки зрения новых источников дохода, изменений в правилах рынка, анализ стратегического роста рынка, размер рынка, рост рынка категорий, ниши приложений и доминирование, одобрения продуктов, запуски продуктов, географические расширения, технологические инновации на рынке. Чтобы получить больше информации о рынке, свяжитесь с Data Bridge Market Research для получения аналитического обзора, наша команда поможет вам принять обоснованное рыночное решение для достижения роста рынка.
Аналитика сельского хозяйства Рынок Сфера
Рынок сегментирован на основе компонентов, области применения, размера фермы, режима развертывания, технологии и роста числа конечных пользователей. Эти сегменты помогут вам проанализировать сегменты со слабым ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночную информацию, которые помогут им принимать стратегические решения для определения основных рыночных приложений.
Компонент
- Решение
- Услуги
Область применения
- Аналитика фермы
- Аналитика животноводства
- Аналитика аквакультуры
- Другие
Размер фермы
- Крупные фермы
- Малые фермы
- Фермы среднего размера
Режим развертывания
- На основе облака
- Локально
Технологии
- Дистанционное зондирование и спутниковые снимки
- Геоинформационная система
- Робототехника и автоматизация
- Большие данные и облачные вычисления
- Визуализация и отчетность
- Технология Блокчейн
- Другие
Конечный пользователь
- Фермеры
- Агрономы
- Агробизнес
- Сельскохозяйственные исследователи,
- Государственные учреждения
- Другие
Аналитика сельского хозяйства Анализ регионального рынка
Проводится анализ рынка, а также предоставляются сведения о размерах рынка и тенденциях по странам, компонентам, областям применения, размерам фермы, способам развертывания, технологиям и конечным пользователям, как указано выше.
В отчете о рынке рассматриваются следующие страны: США, Канада, Мексика в Северной Америке, Германия, Швеция, Польша, Дания, Италия, Великобритания, Франция, Испания, Нидерланды, Бельгия, Швейцария, Турция, Россия, остальные страны Европы в Европе, Япония, Китай, Индия, Южная Корея, Новая Зеландия, Вьетнам, Австралия, Сингапур, Малайзия, Таиланд, Индонезия, Филиппины, остальные страны Азиатско-Тихоокеанского региона (APAC) в Азиатско-Тихоокеанском регионе (APAC), Бразилия, Аргентина, остальные страны Южной Америки как часть Южной Америки, ОАЭ, Саудовская Аравия, Оман, Катар, Кувейт, Южная Африка, остальные страны Ближнего Востока и Африки (MEA) как часть Ближнего Востока и Африки (MEA).
В настоящее время Северная Америка доминирует на рынке сельскохозяйственной аналитики, занимая самую большую долю рынка в мире. Это лидерство объясняется существенной концентрацией в регионе поставщиков технологий, специализирующихся на искусственном интеллекте, облачных вычислениях, аналитике больших данных и других передовых технологиях. Раннее внедрение этих технологий в различных отраслях, особенно в США, внесло значительный вклад в это доминирование.
Азиатско-Тихоокеанский регион переживает самый быстрый рост рынка сельскохозяйственной аналитики. Этот быстрый рост обусловлен несколькими факторами, включая правительственные инициативы, направленные на оцифровку и модернизацию методов ведения сельского хозяйства, а также необходимостью повышения производительности сельского хозяйства для удовлетворения потребностей растущего населения. Такие страны, как Китай, Япония и Индия, находятся на переднем крае внедрения передовых технологий для повышения урожайности и эффективности в сельском хозяйстве.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as down-stream and upstream value chain analysis, technical trends and porter's five forces analysis, case studies are some of the pointers used to forecast the market scenario for individual countries. Also, the presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of domestic tariffs and trade routes are considered while providing forecast analysis of the country data.
Agriculture Analytics Market Share
The market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, production capacities, company strengths and weaknesses, product launch, product width and breadth, application dominance. The above data points provided are only related to the companies' focus related to market.
Agriculture Analytics Market Leaders Operating in the Market Are:
- Oracle (U.S.)
- Microsoft (U.S.)
- Trimble Inc. (U.S.)
- Bayer AG (Germany)
- Deere & Company (U.S.)
- Accenture (Ireland)
- Iteris, Inc (U.S.)
- Taranis (Israel)
- SAP SE (Germany)
- AGNIK LLC. (U.S.)
- DTN (U.S.)
- DeLaval (Sweden)
- Conservis (U.S.)
- Farmer's Business Network, Inc (U.S.)
- Farmers Edge Inc (Canada)
- Geosys Holdings ULC (Canada)
Latest Developments in Agriculture Analytics Market
- In November 2024, Eurofins Agro Testing and trinamiX GmbH announced a strategic collaboration to develop a mobile analysis solution for forage. This handheld device allows farmers and advisors to analyze forage samples directly on-farm, providing instant nutritional insights. By enabling rapid identification of issues and optimization of silage production and feed rations, the solution aims to improve animal health, boost farm productivity, and reduce environmental impact. The device, coupled with Eurofins Agro Testing’s forage analysis applications, is expected to be available from Spring 2025
- В октябре 2024 года Bayer и Samunnati заключили Меморандум о взаимопонимании для повышения производительности и прибыльности фермеров в Индии. Цель этого партнерства — предоставить фермерам, особенно тем, кто связан с организациями фермерских производителей (FPO), доступ к высококачественным сельскохозяйственным ресурсам через розничные магазины FPO Agri-input. Samunnati будет объединять спрос от FPO, в то время как Bayer будет выполнять эти заказы через своих дистрибьюторов, обеспечивая своевременную доставку индивидуальных продуктов и решений. Кроме того, полевые силы Bayer будут предлагать агрономическую поддержку и содействовать передаче знаний в области агротехнологий. Это сотрудничество дает фермерам необходимые ресурсы, знания и доступ к рынкам, способствуя созданию устойчивой и ориентированной на фермеров экосистемы в Индии.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

