Global Ai Agriculture Market
Размер рынка в млрд долларов США
CAGR :
%
USD
2.08 Billion
USD
10.49 Billion
2025
2032
| 2026 –2032 | |
| USD 2.08 Billion | |
| USD 10.49 Billion | |
|
|
|
|
Глобальный рынок искусственного интеллекта в сельском хозяйстве: по видам продукции (оборудование, программное обеспечение и услуги), технологиям (машинное обучение (ML), компьютерное зрение, обработка естественного языка (NLP), робототехника и автоматизация и другие), областям применения (точное земледелие, мониторинг животноводства, прогнозирование погоды, управление почвой, мониторинг состояния урожая, оптимизация цепочки поставок и другие), способам развертывания (локальное и облачное), конечным пользователям (фермы, агротехнологические компании, агрохимические компании, научно-исследовательские институты и другие) — отраслевые тенденции и прогноз до 2032 года.
Размер рынка искусственного интеллекта в сельском хозяйстве
Согласно анализу Data Bridge Market Research, глобальный рынок искусственного интеллекта в сельском хозяйстве, как ожидается, достигнет 10,49 млрд долларов США к 2032 году и 2,08 млрд долларов США к 2025 году, демонстрируя среднегодовой темп роста в 22,39% в течение прогнозируемого периода. В отчете о глобальном рынке искусственного интеллекта в сельском хозяйстве также подробно рассматриваются ценовой анализ, анализ патентов и технологические достижения.
Анализ рынка искусственного интеллекта в сельском хозяйстве
Глобальный рынок искусственного интеллекта в сельском хозяйстве готов к существенному росту, обусловленному несколькими ключевыми факторами. Основной движущей силой является значительное снижение затрат, которое обеспечивают решения TEM (управление телекоммуникационными расходами), что привлекает компании, стремящиеся оптимизировать свои расходы на телекоммуникации. Растущее распространение мобильных телефонов и других портативных устройств еще больше подпитывает спрос на эффективные решения для управления расходами. TEM обеспечивает критически важную прозрачность расходов, позволяя организациям лучше понимать и контролировать свои расходы на телекоммуникации. Кроме того, развитие IoT и облачных приложений привело к увеличению спроса на решения TEM, поскольку эти технологии вносят новые сложности в управление расходами на телекоммуникации. Однако рынок сталкивается с ограничениями, в частности, с проблемой соблюдения различных телекоммуникационных правил и требований соответствия в разных регионах, что усложняет внедрение и управление. Несмотря на эти проблемы, существуют значительные возможности для роста. Технологии автоматизации управления расходами на телекоммуникации представляют собой значительную возможность, как и аутсорсинг решений TEM, который может обеспечить экономию затрат и экспертную поддержку.
|
Показатель отчета |
Подробности |
|
Прогнозируемый период |
2025–2032 гг. |
|
базовый год |
2024 |
|
Исторические годы |
2023 (2018-2022) |
|
Количественные единицы |
Выручка в млрд долларов США |
|
Охваченные сегменты |
Предлагаемые решения (оборудование, программное обеспечение и услуги), технологии [машинное обучение (ML), компьютерное зрение , обработка естественного языка (NLP) , робототехника и автоматизация и другие], области применения ( точное земледелие , мониторинг животноводства , прогнозирование погоды, управление почвой, мониторинг состояния урожая, оптимизация цепочки поставок и другие), режим развертывания (локальное и облачное), конечные пользователи (фермы, агротехнологические компании, агрохимические компании, научно-исследовательские институты и другие). |
|
Охваченные страны |
США, Канада и Мексика, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, остальная Европа, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, остальная часть Азиатско-Тихоокеанского региона, Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, остальная часть Ближнего Востока и Африки, Бразилия, Аргентина и остальная часть Южной Америки |
|
Участники рынка, охваченные обзором |
Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva и Bowery Farming Inc., а также многие другие. |
Определение рынка
Глобальный рынок искусственного интеллекта в сельском хозяйстве охватывает технологии и решения, использующие ИИ для совершенствования сельскохозяйственных практик. Это включает машинное обучение, компьютерное зрение и робототехнику для оптимизации управления посевами, точного земледелия и распределения ресурсов. Рынок охватывает инструменты на основе ИИ для анализа данных, автономной техники и прогнозной аналитики, направленные на повышение эффективности, урожайности и устойчивости сельскохозяйственных операций. Он обслуживает широкий спектр применений, включая мониторинг урожая, управление почвой, борьбу с вредителями и оптимизацию цепочки поставок.
Динамика мирового рынка искусственного интеллекта в сельском хозяйстве
Водители
- Повышение точности мониторинга урожая и прогнозирования урожайности.
Искусственный интеллект (ИИ) в сельском хозяйстве повышает точность мониторинга урожая и прогнозирования урожайности. Используя алгоритмы машинного обучения и анализ данных, ИИ может анализировать огромные объемы данных из различных источников, таких как спутниковые снимки, датчики почвы и прогнозы погоды. Это позволяет фермерам отслеживать состояние урожая, выявлять вредителей и более точно прогнозировать урожайность. В результате, аналитические данные, полученные с помощью ИИ, помогают оптимизировать распределение ресурсов, улучшить процесс принятия решений и повысить общую производительность сельского хозяйства.
Например,
- В июле 2021 года, согласно сообщению в блоге Gramener, прогнозирование урожайности сельскохозяйственных культур с использованием машинного обучения и ИИ стало все более актуальным. В статье обсуждалось, как пространственный анализ и устройства IoT улучшили мониторинг урожая и прогнозирование урожайности. Модели ИИ и машинного обучения, использующие спутниковые снимки и климатические данные, повысили точность прогнозирования урожайности за счет оценки состояния почвы и погодных условий. Использование этих технологий принесло пользу сельскохозяйственным производителям, обеспечив дистанционный мониторинг, эффективное картирование ресурсов и прогнозную аналитику, что способствовало принятию более эффективных решений и планированию. Этот прогресс способствует более эффективному управлению урожаем.
Расширение внедрения передовых методов ведения сельского хозяйства с использованием ИИ.
Внедрение более эффективных методов ведения сельского хозяйства с использованием ИИ предполагает оптимизацию использования таких ресурсов, как вода, удобрения и пестициды. Решения на основе ИИ позволяют точно управлять этими ресурсами, обеспечивая их эффективное применение только там, где это необходимо. Это снижает затраты и повышает производительность за счет минимизации потерь и максимизации урожайности, что в конечном итоге приводит к более устойчивым и прибыльным методам ведения сельского хозяйства.
Например,
- В январе 2024 года, согласно статье, опубликованной компанией Intellias, искусственный интеллект оказал значительное влияние на сельское хозяйство, улучшив методы ведения сельского хозяйства. ИИ позволил точно управлять водными ресурсами, удобрениями и пестицидами, снижая затраты и повышая производительность. Автоматизированные системы оптимизировали орошение и внесение удобрений, что привело к повышению урожайности и эффективности использования ресурсов. Эти достижения способствовали внедрению более устойчивых и прибыльных методов ведения сельского хозяйства, в конечном итоге принося пользу фермерам за счет повышения урожайности и экономии средств.
Возможность
- Технологии автоматизации для управления расходами в сфере телекоммуникаций.
Технологии автоматизации управления расходами на телекоммуникации (TEM) оптимизируют процессы, повышают точность и снижают затраты. Используя автоматизированные инструменты и программное обеспечение, телекоммуникационные операторы и предприятия эффективно управляют счетами-фактурами, отслеживают расходы и анализируют модели использования в режиме реального времени. Эта технология повышает прозрачность, контроль и позволяет принимать упреждающие решения на основе данных. Более того, автоматизация минимизирует человеческие ошибки, обеспечивает соответствие нормативным требованиям и оптимизирует распределение ресурсов, превращая TEM в стратегический актив.
Например,
- В июле 2022 года, согласно статье, опубликованной компанией Brightfin, переход на автоматизированную систему управления расходами на телекоммуникации принес ряд преимуществ. Во-первых, это значительно сократило количество обращений в службу поддержки по вопросам телекоммуникаций, высвободив ИТ-ресурсы. Автоматизация также сэкономила время сотрудников, взяв на себя рутинные задачи, такие как обработка счетов и управление расходами, что позволило им сосредоточиться на более важных проектах. Кроме того, автоматизация снизила количество человеческих ошибок, обеспечив согласованность и эффективность операций. Наконец, система предоставила ценные данные и помогла снизить затраты за счет оптимизации процессов управления телекоммуникациями.
- Согласно статье, опубликованной PAG, автоматизация трансформирует управление расходами на телекоммуникации. Она упростила такие задачи, как мониторинг использования и сверка счетов, что особенно полезно для больниц и медицинских организаций. Автоматизированные решения сокращают время и усилия, затрачиваемые на аудиты, выявляя значительные возможности для экономии за счет оптимизации использования оборудования и телекоммуникационных контрактов.
Сдержанность/Вызов
- Постоянные опасения по поводу конфиденциальности и безопасности данных
Несмотря на многообещающие достижения в области применения ИИ в сельском хозяйстве, сохраняющиеся проблемы конфиденциальности и безопасности данных затмевают эти преимущества. Поскольку системы ИИ собирают и анализируют огромные объемы конфиденциальных сельскохозяйственных данных, включая урожайность, состояние почвы и особенности фермерских хозяйств, они подвергают фермеров значительным рискам. Несанкционированный доступ и утечки этих данных могут привести к серьезным последствиям, включая потерю интеллектуальной собственности, манипулирование конфиденциальной информацией и повышение уязвимости к кибератакам. Эти проблемы безопасности подрывают доверие к технологиям ИИ и препятствуют их широкому внедрению.
Например
- В августе 2023 года, согласно сообщению в блоге ShardSecure, сельское хозяйство столкнулось с растущими проблемами конфиденциальности и безопасности данных. Кибератаки, такие как атака программ-вымогателей на JBS Foods в 2021 году, подчеркнули уязвимость сектора. С развитием точного земледелия, генерирующего огромные объемы данных, и появлением устройств Интернета вещей (IoT) риски значительно возросли. Недавно созданный Центр обмена и анализа информации в сфере продовольствия и сельского хозяйства (Food and Agriculture Information Sharing and Analysis Center) был призван решить эти проблемы. Однако многие агропредприятия по-прежнему испытывают трудности с обеспечением безопасности данных, соблюдением нормативных требований и защитой от угроз, связанных с искусственным интеллектом. Улучшенные меры безопасности могут принести пользу компаниям, защитив конфиденциальные данные и снизив риск дорогостоящих сбоев.
Влияние COVID-19 на мировой рынок искусственного интеллекта в сельском хозяйстве.
Ситуация после COVID-19 оказала значительное влияние на мировой рынок. Однако по мере постепенного восстановления экономики возрастает внимание к развитию инфраструктуры, что приводит к возобновлению реализации проектов. Отрасль адаптируется к новым нормам, внедряя усиленные протоколы безопасности и цифровые технологии для оптимизации процессов. Спрос на телекоммуникационные услуги восстанавливается по мере возобновления строительных проектов, что открывает перед участниками рынка возможности внести свой вклад в развитие инфраструктуры страны в постпандемическую эпоху.
Последние события
Например,
- В июне 2024 года компания TeeJet Technologies выпустила электромагнитный расходомер FM9380-F75, отличающийся инновационной конструкцией без движущихся частей, обеспечивающей бесперебойную работу без технического обслуживания, оптимизированной производительностью в различных условиях жидкости и широкой совместимостью с различными областями применения. Это решение расширило ассортимент продукции для точного земледелия и повысило эффективность работы компании.
- В ноябре 2023 года корпорация Kubota представила на выставке Agritechnica роботизированную сельскохозяйственную технику Agri Robo KVT, что ознаменовало значительный прогресс в области автономных сельскохозяйственных технологий. Этот усовершенствованный трактор решил проблему нехватки рабочей силы, повысил безопасность и способствовал повышению эффективности сельского хозяйства, что принесло Kubota выгоду в виде увеличения конкурентоспособности на рынке и лидерства в области инноваций.
Обзор мирового рынка искусственного интеллекта в сельском хозяйстве.
Рынок искусственного интеллекта в сельском хозяйстве сегментирован на пять основных сегментов, основанных на предлагаемых решениях, технологиях, применении, способах внедрения и конечных пользователях. Рост в этих сегментах поможет вам проанализировать сегменты с незначительным ростом в отрасли и предоставит пользователям ценный обзор рынка и аналитические данные, которые помогут им принимать стратегические решения для определения ключевых рыночных приложений.
В данном исследовательском отчете глобальный рынок искусственного интеллекта в сельском хозяйстве подразделяется на следующие сегменты:
ПРЕДЛОЖЕНИЕ
- АППАРАТНОЕ ОБЕСПЕЧЕНИЕ
- ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ
- УСЛУГИ
В зависимости от предлагаемых услуг рынок сегментируется на аппаратное обеспечение, программное обеспечение и сервисы.
ТЕХНОЛОГИЯ
- МАШИННОЕ ОБУЧЕНИЕ (МО)
- КОМПЬЮТЕРНОЕ ЗРЕНИЕ
- Обработка естественного языка (NLP)
- РОБОТОТЕХНИКА И АВТОМАТИЗАЦИЯ
- ДРУГИЕ
В зависимости от используемой технологии рынок сегментируется на машинное обучение (ML), компьютерное зрение, обработку естественного языка (NLP), робототехнику и автоматизацию, а также другие направления.
ПРИЛОЖЕНИЕ
- ТОЧНОЕ ЗЕМЛЕДЕЛИЕ
- МОНИТОРИНГ ЖИВОТНОВОДСТВА
- ПРОГНОЗ ПОГОДЫ
- УПРАВЛЕНИЕ ПОЧВАМИ
- МОНИТОРИНГ СОСТОЯНИЯ РАСТЕНИЙ
- ОПТИМИЗАЦИЯ ЦЕПОЧКИ ПОСТАВОК
- ДРУГИЕ
В зависимости от области применения рынок сегментируется на точное земледелие, мониторинг животноводства, прогнозирование погоды, управление почвой, мониторинг состояния сельскохозяйственных культур, оптимизацию цепочки поставок и другие.
РЕЖИМ РАЗВЕРТЫВАНИЯ
- ОБЛАКО
- НА ТЕРРИТОРИИ
В зависимости от способа развертывания рынок сегментируется на облачные и локальные решения.
КОНЕЧНЫЙ ПОЛЬЗОВАТЕЛЬ
- ФЕРМЫ
- Агротехнологические компании
- Агрохимические компании
- НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЕ ИНСТИТУТЫ
- ДРУГИЕ
В зависимости от конечного пользователя рынок сегментируется на фермерские хозяйства, агротехнологические компании, агрохимические компании, научно-исследовательские институты и другие.
Глобальный рынок искусственного интеллекта в сельском хозяйстве
Глобальный рынок искусственного интеллекта в сельском хозяйстве сегментирован на пять основных сегментов, основанных на предлагаемых решениях, технологиях, применении, способах развертывания и конечных пользователях. В число стран, охваченных глобальным рынком интернета вещей (IoT) в сельском хозяйстве, входят: США, Канада и Мексика (Северная Америка), Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция (остальная Европа), Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины (остальная часть Азиатско-Тихоокеанского региона), Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль (остальная часть Ближнего Востока и Африки), Бразилия, Аргентина (остальная часть Южной Америки).
В Северной Америке США лидируют как страна с наибольшим количеством поставщиков аппаратных компонентов. Также в Европе доминирует Великобритания благодаря своему технологическому прогрессу. В Азиатско-Тихоокеанском регионе лидирует Китай, поскольку в этой стране сосредоточены крупнейшие производители аппаратных компонентов в регионе.
В разделе отчета, посвященном отдельным странам, также рассматриваются факторы, влияющие на рынок, и изменения в регулировании рынка, которые воздействуют на текущие и будущие тенденции рынка. Для прогнозирования рыночной ситуации в отдельных странах используются такие данные, как анализ цепочки создания стоимости (восходящая и нисходящая), технические тенденции, анализ пяти сил Портера и тематические исследования. Кроме того, при прогнозировании данных по странам учитываются наличие и доступность брендов Азиатско-Тихоокеанского региона, а также проблемы, с которыми они сталкиваются из-за высокой или низкой конкуренции со стороны местных и отечественных брендов, влияние внутренних тарифов и торговых маршрутов.
Анализ конкурентной среды и доли мирового рынка искусственного интеллекта в сельском хозяйстве.
В разделе «Конкурентная среда мирового рынка искусственного интеллекта в сельском хозяйстве» представлена подробная информация о конкурентах. Включены следующие данные: обзор компании, финансовые показатели, полученная выручка, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, присутствие в Азиатско-Тихоокеанском регионе и Юго-Восточной Азии, производственные площадки и мощности, производственные возможности, сильные и слабые стороны компании, запуск продуктов, ассортимент продукции, доминирование в применении. Приведенные выше данные относятся только к компаниям, ориентированным на мировой рынок искусственного интеллекта в сельском хозяйстве. К числу основных игроков на мировом рынке искусственного интеллекта в сельском хозяйстве относятся: Open Text Corporation, OpenAI, VALMONT INDUSTRIES, INC., AGCO Corporation и IBM, а также другие.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

