Global Ai Agriculture Market
Размер рынка в млрд долларов США
CAGR :
%

![]() |
2026 –2032 |
![]() |
USD 2.08 Billion |
![]() |
USD 10.49 Billion |
![]() |
|
![]() |
|
Глобальный рынок искусственного интеллекта на сельскохозяйственном рынке по предложению (оборудование, программное обеспечение и услуги), технологиям [машинное обучение (МО), компьютерное зрение, обработка естественного языка (НЛП), робототехника и автоматизация и другие], применению (точное земледелие, мониторинг животноводства, прогнозирование погоды, управление почвой, мониторинг здоровья сельскохозяйственных культур, оптимизация цепочки поставок и другие), способу развертывания (локально и в облаке), конечному пользователю (фермы, агротехнологические компании, агрохимические компании, научно-исследовательские институты и другие) — отраслевые тенденции и прогноз до 2031 года.
Анализ и размер рынка искусственного интеллекта в сельском хозяйстве
Глобальный рынок искусственного интеллекта в сельском хозяйстве готов к существенному росту, обусловленному несколькими ключевыми факторами. Основным фактором является значительное снижение затрат, предлагаемое решениями TEM, что привлекательно для предприятий, стремящихся оптимизировать свои расходы на телекоммуникации. Растущее внедрение мобильных телефонов и других портативных устройств еще больше подпитывает спрос на эффективные решения по управлению расходами. TEM обеспечивает критически важную прозрачность расходов, позволяя организациям лучше понимать и контролировать свои расходы на телекоммуникации. Кроме того, рост IoT и облачных приложений привел к повышению спроса на решения TEM, поскольку эти технологии вносят новые сложности в управление расходами на телекоммуникации. Однако рынок сталкивается с ограничениями, в частности с проблемой соблюдения различных правил и требований соответствия телекоммуникаций в разных регионах, что усложняет внедрение и управление. Несмотря на эти проблемы, существуют значительные возможности для роста. Технология автоматизации для управления расходами на телекоммуникации представляет значительную возможность, как и аутсорсинг решений TEM, который может обеспечить экономическую эффективность и экспертизу.
Data Bridge Market Research анализирует, что ожидается, что глобальный рынок искусственного интеллекта в сельском хозяйстве достигнет значения 8,5 млрд долларов США к 2031 году при среднегодовом темпе роста 22,4% в течение прогнозируемого периода. Отчет о мировом рынке искусственного интеллекта в сельском хозяйстве также всесторонне охватывает анализ цен, патентный анализ и технологические достижения.
Отчет Метрика |
Подробности |
Прогнозируемый период |
2024-2031 |
Базовый год |
2023 |
Исторические годы |
2022 |
Количественные единицы |
Доход в млрд долларов США |
Охваченные сегменты |
По предложению (оборудование, программное обеспечение и услуги), технологиям [машинное обучение (МО), компьютерное зрение , обработка естественного языка (НЛП) , робототехника и автоматизация и другие), применению ( точное земледелие , мониторинг скота , прогнозирование погоды, управление почвой, мониторинг здоровья сельскохозяйственных культур, оптимизация цепочки поставок и другие), режиму развертывания (локальный и облачный), конечному пользователю (фермы, агротехнологические компании, агрохимические компании, научно-исследовательские институты и другие) |
Страны, охваченные |
США, Канада и Мексика, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, остальная Европа, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, остальная часть Азиатско-Тихоокеанского региона, Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, остальная часть Ближнего Востока и Африки, Бразилия, Аргентина и остальная часть Южной Америки |
Охваченные участники рынка |
Deere & Company, IBM, Microsoft, Google, OpenAI, Open Text Corporation, ClimateAi, AgEagle Aerial Systems Inc., CNH Industrial NV, AGCO Corporation, KUBOTA Corporation, YANMAR HOLDINGS CO., LTD., DeLaval, Lely, Raven Industries, Inc., Gamaya, Bayer AG, VALMONT INDUSTRIES, INC., Cisco Systems, Inc., Oracle, Harvest CROO Robotics LLC, ADM, SYNGENTA GLOBAL, Corteva и Bowery Farming Inc. и другие |
Определение рынка
Глобальный рынок искусственного интеллекта в сельском хозяйстве охватывает технологии и решения, которые используют ИИ для улучшения сельскохозяйственных практик. Сюда входит машинное обучение, компьютерное зрение и робототехника для оптимизации управления урожаем, точного земледелия и распределения ресурсов. Рынок охватывает инструменты на основе ИИ для анализа данных, автономные машины и предиктивную аналитику, направленные на повышение эффективности, урожайности и устойчивости сельскохозяйственных операций. Он обслуживает широкий спектр приложений, включая мониторинг урожая, управление почвой, борьбу с вредителями и оптимизацию цепочки поставок.
Динамика мирового рынка искусственного интеллекта в сельском хозяйстве
В этом разделе рассматривается понимание движущих сил рынка, преимуществ, возможностей, ограничений и проблем. Все это подробно обсуждается ниже:
Драйверы
- Повышение точности мониторинга урожая и прогнозирования урожайности
Искусственный интеллект (ИИ) в сельском хозяйстве повышает точность мониторинга урожая и прогнозирования урожайности. Используя алгоритмы машинного обучения и аналитику данных, ИИ может анализировать огромные объемы данных из различных источников, таких как спутниковые снимки, датчики почвы и прогнозы погоды. Это позволяет фермерам контролировать состояние урожая, выявлять заражение вредителями и точнее прогнозировать урожайность. Следовательно, основанные на ИИ идеи помогают оптимизировать распределение ресурсов, улучшить процесс принятия решений и повысить общую производительность сельского хозяйства.
Например,
- Согласно блогу Gramener, в июле 2021 года прогнозирование урожайности с использованием машинного обучения и ИИ стало все более актуальным. В статье обсуждалось, как пространственный анализ и устройства IoT улучшили мониторинг урожая и прогнозирование урожайности. Модели ИИ и машинного обучения, использующие спутниковые снимки и климатические данные, повысили точность прогнозирования урожайности путем оценки состояния почвы и погодных условий. Использование этих технологий принесло пользу сельскохозяйственным производителям, обеспечив удаленный мониторинг, эффективное картирование ресурсов и предиктивную аналитику, что способствовало более эффективному принятию решений и планированию. Это достижение способствует более эффективному управлению урожаем
Расширение внедрения лучших методов ведения сельского хозяйства с использованием ИИ
Расширение внедрения лучших методов ведения сельского хозяйства с помощью ИИ подразумевает оптимизацию использования таких ресурсов, как вода, удобрения и пестициды. Решения на основе ИИ позволяют точно управлять этими ресурсами, гарантируя их эффективное применение и только там, где это необходимо. Это снижает затраты и повышает производительность за счет минимизации отходов и максимизации урожайности, что в конечном итоге приводит к более устойчивым и прибыльным методам ведения сельского хозяйства.
Например,
- В январе 2024 года, согласно статье, опубликованной Intellias, ИИ оказал значительное влияние на сельское хозяйство, улучшив методы ведения сельского хозяйства. ИИ обеспечил точное управление водой, удобрениями и пестицидами, сократив затраты и повысив производительность. Автоматизированные системы оптимизировали орошение и внесение удобрений, что привело к повышению урожайности и эффективности использования ресурсов. Эти достижения способствовали более устойчивым и прибыльным методам ведения сельского хозяйства, в конечном итоге принося пользу фермерам за счет повышения урожайности и экономии затрат.
Возможность
- Технология автоматизации для управления расходами на телекоммуникации
Технология автоматизации для управления расходами на телекоммуникации (TEM) оптимизирует процессы, повышает точность и снижает затраты. Используя автоматизированные инструменты и программное обеспечение, операторы связи и предприятия эффективно управляют счетами, отслеживают расходы и анализируют закономерности использования в режиме реального времени. Эта технология повышает прозрачность, контроль и позволяет принимать упреждающие решения на основе данных. Более того, автоматизация сводит к минимуму человеческие ошибки, обеспечивает соответствие нормативным требованиям и оптимизирует распределение ресурсов, превращая TEM в стратегический актив
Например,
- В июле 2022 года, согласно статье, опубликованной Brightfin, переход на автоматизированную систему управления расходами на телекоммуникации принес несколько преимуществ. Во-первых, это значительно сократило количество заявок в службу поддержки, связанных с проблемами телекоммуникаций, высвободив ИТ-ресурсы. Эта автоматизация также сэкономила время сотрудников, выполняя рутинные задачи, такие как обработка счетов и управление расходами, что позволило им сосредоточиться на более важных проектах. Кроме того, автоматизация сократила количество человеческих ошибок, обеспечив согласованность и эффективность операций. Наконец, система предоставила ценную информацию и помогла снизить расходы за счет оптимизированных процессов управления телекоммуникациями.
- Согласно статье, опубликованной PAG, автоматизация трансформирует управление расходами на телекоммуникации. Она оптимизировала такие задачи, как мониторинг использования и сверка счетов, что особенно выгодно для больниц и организаций здравоохранения. Автоматизированные решения сокращают время и усилия, затрачиваемые на аудит, выявляя значительную экономию за счет оптимизации использования оборудования и контрактов на телекоммуникации
Сдержанность/Вызов
- Постоянные проблемы конфиденциальности и безопасности данных
Несмотря на многообещающие достижения в области ИИ для сельского хозяйства, постоянные проблемы с конфиденциальностью и безопасностью данных затмевают эти преимущества. Поскольку системы ИИ собирают и анализируют огромные объемы конфиденциальных сельскохозяйственных данных, включая урожайность, состояние почвы и сельскохозяйственные операции, они подвергают фермеров значительным рискам. Несанкционированный доступ и утечка этих данных могут привести к серьезным последствиям, включая потерю интеллектуальной собственности, манипулирование конфиденциальной информацией и повышенную уязвимость к кибератакам. Эти проблемы безопасности подрывают доверие к технологиям ИИ и препятствуют их широкому внедрению.
Например
- Согласно блогу ShardSecure, в августе 2023 года сельское хозяйство столкнулось с растущими проблемами конфиденциальности и безопасности данных. Кибератаки, такие как атака с использованием вирусов-вымогателей на JBS Foods в 2021 году, подчеркнули уязвимость сектора. С учетом того, что точное земледелие генерирует огромные объемы данных, а также с ростом числа устройств IoT, риски усилились. Недавно созданный Центр обмена и анализа информации о продовольствии и сельском хозяйстве был призван решить эти проблемы. Однако многие агробизнесы по-прежнему испытывают трудности с безопасностью данных, соответствием требованиям и защитой от угроз, связанных с ИИ. Улучшенные меры безопасности могут принести пользу компаниям, защищая конфиденциальные данные и снижая риск дорогостоящих сбоев
Влияние пандемии COVID-19 на глобальный искусственный интеллект на сельскохозяйственном рынке
Ландшафт после COVID-19 существенно повлиял на мировой рынок. Однако по мере постепенного восстановления экономики все больше внимания уделяется развитию инфраструктуры, что приводит к возобновлению проектов. Отрасль адаптируется к новым нормам с улучшенными протоколами безопасности и цифровыми технологиями для оптимизации процессов. Спрос на телекоммуникационные услуги восстанавливается по мере того, как строительные проекты набирают обороты, предоставляя участникам рынка возможности внести свой вклад в рост инфраструктуры страны в эпоху после пандемии.
Последние события
Например,
- В июне 2024 года компания TeeJet Technologies выпустила электромагнитный расходомер FM9380-F75, отличающийся инновационной конструкцией без подвижных частей, что обеспечивает эксплуатацию без технического обслуживания, оптимизированную производительность в различных условиях эксплуатации и широкую совместимость с приложениями, что расширяет ассортимент продукции для точного земледелия и повышает эффективность работы.
- В ноябре 2023 года корпорация Kubota представила Agri Robo KVT на выставке Agritechnica, отметив значительный прогресс в области технологий автономного земледелия. Этот усовершенствованный трактор решает проблему нехватки рабочей силы, повышает безопасность и способствует эффективному земледелию, принося пользу Kubota за счет повышения конкурентоспособности на рынке и лидерства в области инноваций.
Глобальный охват рынка искусственного интеллекта в сельском хозяйстве
Искусственный интеллект на сельскохозяйственном рынке сегментирован на пять заметных сегментов, которые основаны на основе предложения, технологии, приложения, режима развертывания и конечного пользователя. Рост среди этих сегментов поможет вам проанализировать сегменты с незначительным ростом в отраслях и предоставить пользователям ценный обзор рынка и рыночные идеи, которые помогут им принимать стратегические решения для определения основных рыночных приложений.
В этом исследовательском отчете глобальный рынок искусственного интеллекта в сельском хозяйстве подразделяется на следующие сегменты:
ПРЕДЛОЖЕНИЕ
- АППАРАТНОЕ ОБЕСПЕЧЕНИЕ
- ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ
- УСЛУГИ
По принципу предложения рынок сегментируется на оборудование, программное обеспечение и услуги.
ТЕХНОЛОГИИ
- МАШИННОЕ ОБУЧЕНИЕ (МО)
- КОМПЬЮТЕРНОЕ ЗРЕНИЕ
- ОБРАБОТКА ЕСТЕСТВЕННОГО ЯЗЫКА (НЛП)
- РОБОТОТЕХНИКА И АВТОМАТИЗАЦИЯ
- ДРУГИЕ
По технологическому признаку рынок сегментируется на машинное обучение (МО), компьютерное зрение, обработку естественного языка (НЛП), робототехнику и автоматизацию и другие.
ПРИЛОЖЕНИЕ
- ТОЧНОЕ ЗЕМЛЕДЕЛИЕ
- МОНИТОРИНГ ЖИВОТНОВОДСТВА
- ПРОГНОЗ ПОГОДЫ
- УПРАВЛЕНИЕ ПОЧВОЙ
- МОНИТОРИНГ ЗДОРОВЬЯ УРОЖАЯ
- ОПТИМИЗАЦИЯ ЦЕПОЧКИ ПОСТАВОК
- ДРУГИЕ
По сфере применения рынок сегментируется на точное земледелие, мониторинг животноводства, прогнозирование погоды, управление почвой, мониторинг здоровья сельскохозяйственных культур, оптимизацию цепочек поставок и другие.
РЕЖИМ РАЗВЕРТЫВАНИЯ
- ОБЛАКО
- ЛОКАЛЬНО
По способу развертывания рынок сегментируется на облачный и локальный.
КОНЕЧНЫЙ ПОЛЬЗОВАТЕЛЬ
- ФЕРМЫ
- АГРОТЕХНОЛОГИЧЕСКИЕ КОМПАНИИ
- АГРОХИМИЧЕСКИЕ КОМПАНИИ
- НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЕ ИНСТИТУТЫ
- ДРУГИЕ
По признаку конечного потребителя рынок сегментируется на фермерские хозяйства, агротехнологические компании, агрохимические компании, научно-исследовательские институты и другие.
Глобальный искусственный интеллект на сельскохозяйственном рынке
Глобальный рынок искусственного интеллекта в сельском хозяйстве сегментирован на пять заметных сегментов, которые основаны на основе предложения, технологии, приложения, режима развертывания и конечного пользователя. Страны, охваченные глобальным рынком Интернета вещей (IOT) в сельском хозяйстве, это США, Канада и Мексика в Северной Америке, Германия, Франция, Великобритания, Нидерланды, Швейцария, Бельгия, Россия, Италия, Испания, Турция, остальная Европа, Китай, Япония, Индия, Южная Корея, Сингапур, Малайзия, Австралия, Таиланд, Индонезия, Филиппины, остальная часть Азиатско-Тихоокеанского региона, Саудовская Аравия, ОАЭ, Южная Африка, Египет, Израиль, остальная часть Ближнего Востока и Африки, Бразилия, Аргентина и остальная часть Южной Америки.
В Северной Америке США доминирует как страна с наибольшим числом поставщиков аппаратных компонентов. Также в Европе доминирует Великобритания благодаря своему технологическому прогрессу по всей стране. В Азиатско-Тихоокеанском регионе доминирует Китай, поскольку страна имеет крупнейших производителей аппаратных компонентов в регионе.
Раздел отчета по странам также содержит отдельные факторы, влияющие на рынок, и изменения в регулировании рынка, которые влияют на текущие и будущие тенденции рынка. Такие данные, как анализ цепочки создания стоимости вверх и вниз по течению, технические тенденции и анализ пяти сил Портера, тематические исследования — вот некоторые из указателей, используемых для прогнозирования рыночного сценария для отдельных стран. Кроме того, при предоставлении прогнозного анализа данных по странам учитываются наличие и доступность брендов APAC и их проблемы, связанные с большой или малой конкуренцией со стороны местных и отечественных брендов, влияние внутренних тарифов и торговые пути.
Конкурентная среда и глобальный искусственный интеллект в анализе доли рынка сельского хозяйства
Глобальный искусственный интеллект на рынке конкуренции в сельском хозяйстве предоставляет подробную информацию о конкуренте. Включены следующие сведения: обзор компании, финансовые показатели компании, полученный доход, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, присутствие в Азиатско-Тихоокеанском регионе и Юго-Восточной Азии, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, широта и широта продукта, доминирование приложений. Приведенные выше точки данных связаны только с фокусом компаний, связанным с глобальным искусственным интеллектом на рынке сельского хозяйства. Некоторые из основных игроков, работающих на мировом рынке искусственного интеллекта в сельском хозяйстве, включают: Open Text Corporation, OpenAI, VALMONT INDUSTRIES, INC., AGCO Corporation и IBM среди других.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.