Отчет об анализе размера, доли и тенденций мирового рынка распределения ресурсов больниц с использованием искусственного интеллекта — обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Отчет об анализе размера, доли и тенденций мирового рынка распределения ресурсов больниц с использованием искусственного интеллекта — обзор отрасли и прогноз до 2032 года

Сегментация мирового рынка распределения ресурсов больниц на основе искусственного интеллекта по компонентам (программное обеспечение, оборудование и услуги), развертыванию (облачное и локальное), применению (управление уходом за пациентами, административные процессы, диагностическая визуализация и радиология, поиск лекарств и другие), технологии (компьютерное зрение, контекстно-зависимые вычисления, машинное обучение, обработка естественного языка), конечным пользователям (плательщики медицинских услуг, больницы и поставщики медицинских услуг, пациенты, фармацевтические и биотехнологические компании и другие конечные пользователи) — отраслевые тенденции и прогноз до 2032 года

  • Medical Devices
  • May 2025
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60

Global Ai Powered Hospital Resource Allocation Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 1.78 Billion USD 10.19 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 1.78 Billion
Diagram Размер рынка (прогнозируемый год)
USD 10.19 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • GE HealthCare.
  • Koninklijke Philips N.V.
  • Siemens Healthineers AG
  • IBM
  • Oracle

Сегментация мирового рынка распределения ресурсов больниц на основе искусственного интеллекта по компонентам (программное обеспечение, оборудование и услуги), развертыванию (облачное и локальное), применению (управление уходом за пациентами, административные процессы, диагностическая визуализация и радиология, поиск лекарств и другие), технологии (компьютерное зрение, контекстно-зависимые вычисления, машинное обучение, обработка естественного языка), конечным пользователям (плательщики медицинских услуг, больницы и поставщики медицинских услуг, пациенты, фармацевтические и биотехнологические компании и другие конечные пользователи) — отраслевые тенденции и прогноз до 2032 года

Рынок распределения ресурсов больницы на основе искусственного интеллекта Z

 Размер рынка распределения ресурсов больницы с использованием искусственного интеллекта

  • Объем мирового рынка распределения больничных ресурсов на базе искусственного интеллекта оценивался в 1,78 млрд долларов США в 2024 году и, как ожидается ,  достигнет  10,19 млрд долларов США к 2032 году при среднегодовом темпе роста 24,40% в прогнозируемый период.
  • Рост рынка во многом обусловлен растущим спросом на повышение эффективности, точности и улучшение результатов лечения пациентов в секторе здравоохранения, а также растущим признанием потенциала ИИ для оптимизации сложных больничных операций.
  • Кроме того, растущее давление на системы здравоохранения, направленное на сокращение расходов, управление растущими объемами пациентов и переход к моделям ухода на основе ценностей, ускоряет внедрение решений на базе ИИ. Эти сходящиеся факторы делают распределение ресурсов на базе ИИ критически важным инструментом для современных больниц, тем самым значительно стимулируя рост отрасли.

Анализ рынка распределения ресурсов в больницах с использованием искусственного интеллекта

  • Решения по распределению ресурсов в больницах на базе искусственного интеллекта, использующие передовую аналитику и машинное обучение, становятся незаменимыми инструментами для оптимизации сложных операций в здравоохранении — от планирования потоков пациентов и персонала до управления цепочками поставок, поскольку они позволяют повышать эффективность, сокращать расходы и значительно улучшать качество ухода за пациентами.
  • Растущий спрос на ИИ при распределении больничных ресурсов обусловлен в первую очередь растущей нагрузкой на системы здравоохранения из-за увеличения количества пациентов, постоянной потребности в сокращении расходов и растущего акцента на предоставлении более персонализированных и эффективных медицинских услуг.
  • Северная Америка доминирует на рынке распределения больничных ресурсов на базе ИИ с самой большой долей выручки в 38% в 2024 году, что характеризуется ранним внедрением передовых технологий здравоохранения, значительными инвестициями в исследования и разработки ИИ и сильным присутствием ведущих поставщиков решений ИИ.
  • Ожидается, что Азиатско-Тихоокеанский регион станет самым быстрорастущим регионом на рынке распределения больничных ресурсов на базе ИИ в течение прогнозируемого периода из-за быстрого расширения инфраструктуры здравоохранения, увеличения числа инициатив правительств по цифровизации и растущего понимания потенциала ИИ в решении проблем здравоохранения в густонаселенных странах.
  • Облачный сегмент доминирует на рынке распределения больничных ресурсов на базе искусственного интеллекта с долей рынка 63,3% в 2024 году, что обусловлено его превосходной масштабируемостью, экономической эффективностью, улучшенной доступностью для удаленных медицинских бригад и надежными функциями безопасности, предоставляемыми основными поставщиками облачных решений.

Область применения отчета и сегментация рынка распределения ресурсов больниц с использованием искусственного интеллекта   

Атрибуты

Распределение ресурсов больницы с использованием искусственного интеллекта. Ключевые рыночные аналитики

Охваченные сегменты

  • По компонентам : программное обеспечение, оборудование и услуги
  • По развертыванию : облачное и локальное
  • По применению : Управление уходом за пациентами, Административные процессы, Диагностическая визуализация и радиология , Разработка лекарственных препаратов и другие
  • По технологиям : компьютерное зрение, контекстно-зависимые вычисления, машинное обучение, обработка естественного языка
  • По конечному пользователю : плательщики медицинских услуг, больницы и поставщики медицинских услуг, пациенты, фармацевтические и биотехнологические компании и другие конечные пользователи

Страны, охваченные

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальная часть Азиатско-Тихоокеанского региона

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

  • GE HealthCare (США)
  • Конинклийке Philips NV (Нидерланды)
  • Siemens Healthineers AG (Германия)
  • IBM (США)
  • Оракул (США)
  • Epic Systems (США)
  • Инфор (США)
  • Optum Inc. (США)
  • Medtronic (Ирландия)
  • Veradigm LLC (США)
  • Health Catalyst (США)
  • Viz.ai, Inc. (США)
  • Темпус (США)
  • Komodo Health, Inc. (США)
  • LeanTaaS (США)
  • Qventus (США)
  • Intelligent Medical Objects, Inc (США)
  • athenahealth (США)
  • Известный (США)

Возможности рынка

  • Расширение в сторону предиктивной и проактивной медицинской помощи за пределами операционной деятельности
  • Интеграция с системами телемедицины и удаленного мониторинга пациентов (RPM)

Информационные наборы данных с добавленной стоимостью

Помимо аналитических данных о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, анализ цен, анализ доли бренда, опрос потребителей, демографический анализ, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу.

Тенденции рынка распределения ресурсов в больницах с использованием искусственного интеллекта

«Прогностическая аналитика в реальном времени и этические основы ИИ»

  • Значительная и ускоряющаяся тенденция на мировом рынке распределения больничных ресурсов на основе ИИ — это углубляющаяся интеграция аналитики данных в реальном времени со сложными моделями ИИ, что позволяет получать прогнозные и предписывающие сведения для немедленной корректировки операций. Такое слияние технологий значительно повышает гибкость и способность больницы реагировать на динамические потребности пациентов.
    • Например, больницы все чаще используют ИИ для прогнозирования приема и выписки пациентов по часам, что позволяет динамически корректировать доступность коек и уровень укомплектованности персоналом. Аналогичным образом, продвинутые модели ИИ могут предсказывать отказы оборудования, обеспечивая проактивное обслуживание и оптимальное использование критически важных медицинских устройств, предотвращая дорогостоящие простои
  • Интеграция ИИ в распределение ресурсов больницы также запускает такие функции, как интеллектуальная маршрутизация пациентов для сокращения времени ожидания и оптимизации клинических путей. Например, некоторые системы ИИ анализируют симптомы пациентов и исторические данные, чтобы предложить наиболее подходящее отделение или специалиста, обеспечивая более быструю и эффективную помощь. Кроме того, возможности мониторинга в реальном времени предлагают администраторам непрерывную видимость использования ресурсов, что позволяет немедленно перераспределять их на основе меняющегося спроса
  • Бесшовная интеграция решений на базе ИИ с электронными медицинскими картами (EHR) и другими информационными системами больниц облегчает централизованный контроль над различными аспектами операций здравоохранения. С помощью единого интерфейса администраторы могут управлять распределением коек, графиками работы персонала и уровнями запасов, создавая единую и высокоэффективную операционную среду
  • Спрос на решения на базе ИИ, которые предлагают возможности прогнозирования в реальном времени и легко интегрируются в существующие рабочие процессы больниц, стремительно растет среди поставщиков медицинских услуг, поскольку они все больше отдают приоритет операционной эффективности, сокращению затрат и превосходному уходу за пациентами. Растущий акцент на этичном ИИ, включая прозрачность алгоритмов и смягчение предубеждений в распределении ресурсов, также является ключевой формирующей тенденцией

Динамика рынка распределения ресурсов больниц с использованием искусственного интеллекта

Водитель

«Растущее давление в сторону сокращения затрат и повышения эффективности работы»

  • Растущее финансовое давление на системы здравоохранения во всем мире в сочетании с необходимостью повышения операционной эффективности является существенным фактором повышенного спроса на решения по распределению больничных ресурсов на основе ИИ. Больницы постоянно ищут способы предоставления высококачественной помощи, одновременно управляя растущими расходами
    • Например, решения на основе ИИ внедряются для автоматизации административных задач, таких как планирование приема пациентов, выставление счетов и обработка претензий, что может значительно сократить затраты на рабочую силу и минимизировать человеческие ошибки. Это освобождает медицинских работников, чтобы они могли больше сосредоточиться на непосредственном уходе за пациентами, повышая производительность
  • Поскольку организации здравоохранения сталкиваются с растущим объемом пациентов и сложными логистическими проблемами, ИИ предлагает расширенные возможности, такие как предиктивная аналитика для прогнозирования приема пациентов, оптимизации расписания персонала и упрощения управления койками. Это обеспечивает убедительное решение для устранения узких мест и улучшения потока пациентов
  • Кроме того, растущее принятие моделей ухода, основанных на ценностях, которые стимулируют качество и эффективность, а не количество, делает ИИ неотъемлемым компонентом для больниц. ИИ обеспечивает лучшее принятие решений на основе данных, гарантируя эффективное использование ресурсов для достижения лучших результатов лечения пациентов и сокращения предотвратимых повторных госпитализаций.
  • Способность ИИ предоставлять информацию об использовании ресурсов в режиме реального времени, выявлять недоиспользуемые активы и способствовать проактивному обслуживанию медицинского оборудования являются ключевыми факторами, способствующими принятию этих решений. Тенденция к цифровой трансформации в здравоохранении, поддерживаемая возросшей доступностью данных пациентов и надежной вычислительной мощностью, дополнительно способствует росту рынка

Сдержанность/Вызов

«Опасения относительно конфиденциальности данных, безопасности и высоких затрат на внедрение»

  • Опасения, связанные со строгими требованиями к конфиденциальности данных и уязвимостью кибербезопасности высокочувствительной информации о пациентах, в сочетании со значительными первоначальными инвестиционными затратами представляют собой серьезную проблему для более широкого проникновения на рынок решений по распределению ресурсов больниц на основе ИИ.
    • Например, громкие сообщения об атаках программ-вымогателей, нацеленных на учреждения здравоохранения, и сложности соблюдения таких нормативных актов, как HIPAA и GDPR, заставили некоторые организации здравоохранения не спешить внедрять комплексные решения на основе ИИ, особенно для основных операций, связанных с пациентами.
  • Решение этих проблем конфиденциальности данных и кибербезопасности с помощью надежного шифрования, безопасных фреймворков управления данными, объяснимого ИИ и постоянного мониторинга имеет решающее значение для построения доверия. Ведущие поставщики решений ИИ для здравоохранения подчеркивают свои передовые протоколы защиты данных и сертификаты соответствия, чтобы успокоить потенциальных покупателей. Кроме того, относительно высокая начальная стоимость внедрения сложных платформ ИИ, включая интеграцию данных, модернизацию инфраструктуры и обучение персонала, может стать существенным препятствием для больниц, чувствительных к цене, особенно небольших учреждений или тех, у кого ограниченный бюджет на ИТ. Хотя модульные или облачные решения ИИ становятся все более доступными, комплексные развертывания в масштабах всего предприятия по-прежнему требуют существенных инвестиций
  • Хотя долгосрочная окупаемость инвестиций в ИИ в здравоохранении очевидна, предполагаемое начальное финансовое бремя все еще может препятствовать широкому внедрению, особенно для организаций, которые испытывают трудности с количественной оценкой немедленных выгод или не обладают необходимыми техническими знаниями.
  • Преодоление этих проблем посредством усиления мер безопасности данных, четкого нормативного регулирования, комплексных программ обучения и разработки более доступных и масштабируемых решений на основе ИИ будет иметь решающее значение для устойчивого роста рынка.

Масштаб рынка распределения ресурсов больницы с использованием искусственного интеллекта

Рынок сегментирован по компонентам, развертыванию, применению, технологиям и конечному пользователю.

  • По компоненту

На основе компонентов рынок распределения больничных ресурсов на основе ИИ сегментируется на программное обеспечение, оборудование и услуги. Сегмент программного обеспечения доминирует в самой большой доле выручки рынка в 48,1% в 2024 году, что обусловлено существенной ролью алгоритмов, платформ и приложений ИИ в оптимизации сложных больничных рабочих процессов и принятия решений. Больницы отдают приоритет программным решениям за их способность предоставлять прогнозную аналитику, интеллектуальную автоматизацию и бесшовную интеграцию с существующими системами, напрямую решая основные потребности распределения ресурсов.

Ожидается, что сегмент услуг будет демонстрировать самые высокие темпы роста, что обусловлено растущим спросом на специализированные знания в области внедрения, интеграции, настройки и постоянного обслуживания систем ИИ в разнообразных и сложных медицинских средах. Необходимость обучения медицинского персонала и обеспечения бесперебойной работы инструментов ИИ еще больше стимулирует рост этого сегмента.

  • По развертыванию

На основе развертывания рынок распределения больничных ресурсов на базе ИИ сегментируется на облачные и локальные. Облачный сегмент занимал самую большую долю рынка в 63,3% в 2024 году, что обусловлено его превосходной масштабируемостью, экономической эффективностью, улучшенной доступностью для удаленных медицинских бригад и надежными функциями безопасности, предоставляемыми основными поставщиками облачных решений. Облачные решения обеспечивают быстрое развертывание и облегчают доступ к данным в реальном времени, что имеет решающее значение для динамического управления ресурсами

Ожидается, что сегмент локальных решений будет демонстрировать устойчивый рост, в первую очередь его выберут крупные организации здравоохранения со строгими требованиями к управлению данными или те, кто предпочитает полный контроль над своей ИТ-инфраструктурой и конфиденциальными данными пациентов.

  • По применению

На основе применения рынок распределения больничных ресурсов на основе ИИ сегментируется на управление уходом за пациентами, административные процессы, диагностическую визуализацию и радиологию, разработку лекарств и другие. Сегмент управления уходом за пациентами составляет наибольшую долю рынка в 26,6% в 2024 году, что обусловлено критической необходимостью оптимизировать поток пациентов, использование коек и клинические пути для улучшения результатов лечения пациентов и сокращения времени ожидания. ИИ напрямую влияет на качество и эффективность основных услуг для пациентов

Ожидается, что сегмент административных процессов будет переживать значительный рост, благоприятствуемый своей способностью автоматизировать трудоемкие задачи, такие как планирование, выставление счетов и управление претензиями, тем самым сокращая эксплуатационные расходы и позволяя человеческим ресурсам сосредоточиться на клинической деятельности. Это приложение напрямую решает проблему растущей административной нагрузки на системы здравоохранения

  • По технологии

На основе технологий рынок распределения ресурсов больниц на основе ИИ сегментируется на компьютерное зрение, контекстно-зависимые вычисления, машинное обучение и обработку естественного языка. Сегмент машинного обучения (МО) занимал самую большую долю рынка в 35,5% в 2024 году, что обусловлено его основополагающей ролью в обеспечении предиктивной аналитики для прогнозирования спроса, оптимизации сложных алгоритмов планирования и обучения на основе обширных наборов данных для повышения точности распределения ресурсов с течением времени. МО является двигателем интеллектуальных решений по ресурсам

Ожидается, что сегмент обработки естественного языка (NLP) будет переживать быстрый рост, обусловленный его способностью извлекать ценную информацию из неструктурированных клинических записей, отзывов пациентов и административных документов, облегчая автоматический ввод данных, интеллектуальный поиск и улучшенную коммуникацию в системе здравоохранения.

  • Конечным пользователем

На основе конечного пользователя рынок распределения ресурсов больниц на базе ИИ сегментируется на плательщиков медицинских услуг, больницы и поставщиков медицинских услуг, пациентов, фармацевтические и биотехнологические компании и других конечных пользователей. Сегмент больниц и поставщиков медицинских услуг составил наибольшую долю рынка в 44% в 2024 году, что обусловлено прямыми и непосредственными выгодами, которые эти организации получают от решений на базе ИИ в оптимизации своих повседневных операций, эффективном управлении ресурсами и, в конечном итоге, улучшении предоставления медицинской помощи пациентам.

Ожидается, что сегмент плательщиков медицинских услуг продемонстрирует самый быстрый рост, чему будет способствовать растущее внедрение искусственного интеллекта для борьбы с мошенничеством, оптимизации обработки заявок и анализа схем использования ресурсов в своих сетях для обеспечения экономической эффективности и надлежащего ухода.

Региональный анализ рынка распределения ресурсов больниц с использованием искусственного интеллекта

  • Северная Америка доминирует на рынке распределения больничных ресурсов на базе ИИ с наибольшей долей выручки в 38% в 2024 году, что обусловлено ранним внедрением передовых технологий здравоохранения, значительными инвестициями в исследования и разработки в области ИИ и сильным присутствием ведущих поставщиков решений в области ИИ.
  • Потребители в регионе высоко ценят эффективность, возможности прогнозирования и бесперебойную интеграцию, предлагаемые решениями на базе искусственного интеллекта с существующими электронными медицинскими картами (ЭМК) и другими информационными системами больниц.
  • Широкое внедрение также поддерживается технологически ориентированными работниками здравоохранения, растущими государственными инициативами и финансированием цифровой трансформации здравоохранения, а также растущим спросом на принятие решений на основе данных для эффективного управления сложными группами пациентов и потребностями в ресурсах.

Анализ рынка распределения ресурсов больниц с использованием искусственного интеллекта в США

Рынок распределения ресурсов больниц на базе ИИ в США получил наибольшую долю дохода в 37% в 2024 году в рамках более широкого североамериканского рынка ИИ в здравоохранении, чему способствовало быстрое внедрение передовых медицинских технологий и растущая тенденция цифровой трансформации в больницах. Поставщики медицинских услуг все чаще отдают приоритет повышению операционной эффективности и уходу за пациентами с помощью интеллектуальных систем на основе данных. Растущий акцент на ценностно-ориентированной помощи и необходимость управления растущими расходами на здравоохранение в сочетании с устойчивым спросом на предиктивную аналитику и интеграцию с существующими системами электронных медицинских карт (ЭМК) еще больше продвигают отрасль распределения ресурсов больниц на базе ИИ

Анализ рынка распределения ресурсов больниц с использованием искусственного интеллекта в Европе

Европейский рынок распределения больничных ресурсов на базе ИИ, как ожидается, будет расширяться со значительным среднегодовым темпом роста в течение прогнозируемого периода, в первую очередь за счет растущей потребности в повышении эффективности оказания медицинской помощи, распространенности хронических заболеваний и растущих государственных инициатив по внедрению ИИ в здравоохранение. Рост стареющего населения в сочетании со спросом на оптимизированное использование ресурсов в национальных системах здравоохранения способствует принятию решений на базе ИИ. Европейские поставщики медицинских услуг также привлекают потенциал снижения затрат и улучшения результатов лечения пациентов, которые предлагают эти технологии

Анализ рынка распределения ресурсов больниц с использованием искусственного интеллекта в Великобритании

Ожидается, что рынок распределения больничных ресурсов на базе ИИ в Великобритании будет расти с заметным среднегодовым темпом роста в течение прогнозируемого периода, что обусловлено усиливающейся тенденцией цифровой трансформации в NHS и стремлением к повышению операционной эффективности и экономии средств. Кроме того, опасения относительно задержек в приеме пациентов и нехватки персонала побуждают поставщиков медицинских услуг выбирать решения на базе ИИ для оптимизации рабочих процессов и распределения ресурсов. Ожидается, что принятие Великобританией подключенных медицинских устройств и ее надежной цифровой инфраструктуры здравоохранения продолжит стимулировать рост рынка

Анализ рынка распределения ресурсов больниц с использованием искусственного интеллекта в Германии

Ожидается, что рынок распределения больничных ресурсов на базе ИИ в Германии будет расширяться со значительным среднегодовым темпом роста в течение прогнозируемого периода, подпитываемым растущей осведомленностью о цифровых медицинских решениях и спросом на технологически продвинутые, эффективные системы здравоохранения. Хорошо развитая инфраструктура здравоохранения Германии в сочетании с ее акцентом на инновации и надежной государственной поддержкой инициатив ИИ (таких как Стратегия ИИ Германии) способствует принятию решений на базе ИИ, особенно в управлении больницами и оптимизации потока пациентов. Интеграция ИИ с существующими информационными системами больниц также становится все более распространенной, с сильным предпочтением безопасных, ориентированных на конфиденциальность решений, соответствующих местным нормативным ожиданиям

Анализ рынка распределения ресурсов больниц с использованием искусственного интеллекта в Азиатско-Тихоокеанском регионе

Рынок распределения ресурсов больниц на базе ИИ в Азиатско-Тихоокеанском регионе, как ожидается, будет расти самыми быстрыми темпами среднегодового темпа роста в течение прогнозируемого периода, что обусловлено ростом расходов на здравоохранение, ростом числа пациентов из-за урбанизации и хронических заболеваний, а также быстрым технологическим прогрессом в таких странах, как Китай, Япония и Индия. Растущая склонность региона к умным больницам, поддерживаемая правительственными инициативами, продвигающими цифровизацию и доступное здравоохранение, стимулирует принятие распределения ресурсов на базе ИИ. Кроме того, поскольку Азиатско-Тихоокеанский регион становится производственным и инновационным центром для компонентов и систем ИИ, доступность и доступность решений ИИ расширяются для более широкого круга поставщиков медицинских услуг

Анализ рынка распределения ресурсов больниц с использованием искусственного интеллекта в Японии

Японский рынок распределения ресурсов больниц на базе ИИ набирает обороты из-за высокотехнологичной культуры страны, быстрого старения населения и спроса на эффективное предоставление медицинских услуг. Японский рынок уделяет большое внимание технологическим инновациям и операционному совершенству, а внедрение решений на базе ИИ обусловлено растущим числом умных больниц и подключенных медицинских учреждений. Интеграция ИИ с другими устройствами IoT и медицинскими технологиями, такими как передовые системы визуализации, стимулирует рост. Более того, усилия Японии по решению проблемы нехватки рабочей силы и роста расходов на здравоохранение, вероятно, подстегнут спрос на решения по безопасному распределению ресурсов на базе ИИ как в клиническом, так и в административном секторах.

Анализ рынка распределения ресурсов больниц с использованием искусственного интеллекта в Китае

Рынок распределения ресурсов больниц на базе ИИ в Китае составил наибольшую долю выручки рынка в Азиатско-Тихоокеанском регионе в 2024 году, что объясняется расширением рынка здравоохранения страны, быстрой урбанизацией и высокими темпами внедрения технологий в сочетании с сильной государственной поддержкой ИИ в здравоохранении. Китай является одним из крупнейших рынков для цифровых медицинских решений, а распределение ресурсов на базе ИИ становится все более популярным в государственных и частных больницах. Стремление к умным городам, обширные доступные данные по здравоохранению и наличие сильных отечественных производителей ИИ являются ключевыми факторами, продвигающими рынок в Китае

Доля рынка распределения ресурсов больницы с использованием искусственного интеллекта

Лидерами отрасли распределения ресурсов больниц на основе искусственного интеллекта являются в основном известные компании, в том числе:

  • GE HealthCare (США)
  • Конинклийке Philips NV (Нидерланды)
  • Siemens Healthineers AG (Германия)
  • IBM (США)
  • Оракул (США)
  • Epic Systems (США)
  • Инфор (США)
  • Optum Inc. (США)
  • Medtronic (Ирландия)
  • Veradigm LLC (США)
  • Health Catalyst (США)
  • Viz.ai, Inc. (США)
  • Темпус (США)
  • Komodo Health, Inc. (США)
  • LeanTaaS (США)
  • Qventus (США)
  • Intelligent Medical Objects, Inc (США)
  • athenahealth (США)
  • Известный (США)

Последние разработки на мировом рынке распределения ресурсов больниц с использованием искусственного интеллекта

  • В мае 2025 года Smarter Technologies, новая компания, образованная стратегическими инвестициями в рост Access Healthcare, SmarterDx и Thoughtful.ai, запустила первую в отрасли платформу управления доходами на базе ИИ. Эта платформа нацелена на автоматизацию административных рабочих процессов больниц и систем здравоохранения и повышение финансовой эффективности за счет объединения агентов на основе ИИ с возможностями доставки с участием человека и клинически обоснованными алгоритмами выставления счетов
  • В марте 2025 года новый доклад мирового лидера в области разработки программного обеспечения IT Medical раскрывает, как помощники на базе ИИ могут сэкономить больницам миллионы на эксплуатационных расходах в год, потенциально более 13 миллионов долларов США. В исследовании подчеркивается потенциал ИИ для революционного изменения управления больницами за счет улучшения планирования, оптимизации выставления счетов, улучшения управления документацией и поддержки принятия решений на основе данных, что напрямую решает проблему растущих расходов и нехватки персонала.
  • В марте 2025 года Apollo Hospitals объявила о планах внедрения инструментов ИИ для автоматизации рутинных задач, таких как медицинская документация, и повышения точности диагностики. Этот шаг направлен на значительное снижение нагрузки на персонал и повышение общей эффективности работы, демонстрируя прямые инвестиции крупной группы больниц в ИИ для оптимизации ресурсов
  • В феврале 2025 года AdventHealth, крупная некоммерческая система здравоохранения, заключила партнерское соглашение с ParkourSC, лидером в области решений для принятия динамических решений в цепочке поставок на основе ИИ, чтобы улучшить работу своей цепочки поставок. Внедряя интеллектуальную башню управления запасами, AdventHealth стремится еще больше укрепить свою способность обеспечивать наличие критически важных медицинских принадлежностей именно тогда и там, где они необходимы. Это сотрудничество будет использовать платформу ParkourSC на основе ИИ для объединения различных источников данных и наложения возможностей ИИ для получения информации, которая будет способствовать принятию разумных решений на основе данных, повышая устойчивость и эффективность цепочки поставок по всей ее обширной сети.
  • В январе 2025 г. опрос, проведенный Innovaccer с участием более 100 специалистов в области здравоохранения, выявил ключевые тенденции в области ИИ в 2025 г. Среди них рост автоматизированной клинической документации значительно сокращает время, которое врачи тратят на бумажную работу (на 64,76% меньше времени), что приводит к улучшению принятия медицинских решений на 37,1%. Развитие точной медицины, обусловленное способностью ИИ анализировать сложные данные пациентов, приводит к повышению точности диагностики на 41,90% и повышению эффективности лечения на 37,5%. 


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация мирового рынка распределения ресурсов больниц на основе искусственного интеллекта по компонентам (программное обеспечение, оборудование и услуги), развертыванию (облачное и локальное), применению (управление уходом за пациентами, административные процессы, диагностическая визуализация и радиология, поиск лекарств и другие), технологии (компьютерное зрение, контекстно-зависимые вычисления, машинное обучение, обработка естественного языка), конечным пользователям (плательщики медицинских услуг, больницы и поставщики медицинских услуг, пациенты, фармацевтические и биотехнологические компании и другие конечные пользователи) — отраслевые тенденции и прогноз до 2032 года .
Размер Отчет об анализе размера, доли и тенденций мирового рынка распределения ресурсов больниц с использованием искусственного интеллекта — обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 1.78 USD Billion долларов США.
Ожидается, что Отчет об анализе размера, доли и тенденций мирового рынка распределения ресурсов больниц с использованием искусственного интеллекта — обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 24.4% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают GE HealthCare., Koninklijke Philips N.V., Siemens Healthineers AG, IBM, Oracle.
Testimonial