Анализ объема, доли и тенденций мирового рынка наборов данных для обучения ИИ — обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Анализ объема, доли и тенденций мирового рынка наборов данных для обучения ИИ — обзор отрасли и прогноз до 2032 года

  • ICT
  • Upcoming Report
  • Aug 2025
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60
  • Author : Megha Gupta

Обходите тарифные трудности с помощью гибкого консалтинга в области цепочки поставок

Анализ экосистемы цепочки поставок теперь является частью отчетов DBMR

Global Ai Training Dataset Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 2.72 Billion USD 16.00 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 2.72 Billion
Diagram Размер рынка (прогнозируемый год)
USD 16.00 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • Scale AI
  • Appen
  • Lionbridge
  • AWS
  • Sama

Сегментация мирового рынка наборов данных для обучения ИИ по типу программного обеспечения (инструменты сбора данных, ПО для аннотации данных и готовые наборы данных) (изображения/видео, аудио и текст), вертикали (ИТ, автомобилестроение, государственный сектор, здравоохранение, бизнес-финансирование, розничная торговля и электронная коммерция) — отраслевые тенденции и прогноз до 2032 года

Рынок наборов данных для обучения ИИ z

Размер рынка наборов данных для обучения ИИ

  • Объем мирового рынка наборов данных для обучения искусственного интеллекта в 2024 году оценивался в 2,72 млрд долларов США , а к 2032 году , как ожидается, он достигнет 16 млрд долларов США при среднегодовом темпе роста 24,80% в прогнозируемый период.
  • Рост рынка во многом обусловлен растущим внедрением технологий искусственного интеллекта и машинного обучения в таких секторах, как здравоохранение, автомобилестроение, розничная торговля и BFSI, что привело к резкому увеличению спроса на высококачественные аннотированные обучающие наборы данных для повышения точности и производительности моделей.
  • Более того, распространение приложений, работающих с большими объемами данных, — от компьютерного зрения и распознавания речи до обработки естественного языка и предиктивной аналитики — побуждает организации инвестировать в масштабируемые, предметно-ориентированные наборы данных, что значительно ускоряет расширение отрасли наборов данных для обучения ИИ.

Анализ рынка наборов данных для обучения ИИ

  • Наборы данных для обучения ИИ состоят из структурированных или аннотированных данных, используемых для обучения моделей машинного обучения в контролируемых и полуконтролируемых средах. Эти наборы данных могут включать изображения, аудио, видео, текст или мультимодальные входные данные и необходимы для обучения систем ИИ распознаванию закономерностей, построению прогнозов и автоматизации принятия решений с минимальным вмешательством человека.
  • Стремительный рост развития ИИ создаёт огромный спрос на данные для обучения, особенно в секторах, разрабатывающих интеллектуальные системы для диагностики, обнаружения мошенничества, автономной навигации и рекомендательных систем. В результате рынок демонстрирует устойчивый рост, поддерживаемый растущими инвестициями в сервисы аннотации данных, платформы синтетических данных и экосистемы рынка ИИ.
  • Северная Америка доминировала на рынке наборов данных для обучения ИИ с долей 36,3% в 2024 году благодаря мощной экосистеме ИИ в регионе, масштабным инвестициям в НИОКР и присутствию крупных технологических компаний и стартапов в области ИИ.
  • Ожидается, что Азиатско-Тихоокеанский регион станет самым быстрорастущим регионом на рынке наборов данных для обучения ИИ в течение прогнозируемого периода благодаря быстрой цифровой трансформации, расширению вариантов использования ИИ и увеличению государственной поддержки развития ИИ в таких странах, как Китай, Япония, Индия и Южная Корея.
  • Сегмент изображений и видео доминировал на рынке с долей 41,5% в 2024 году благодаря бурному развитию приложений компьютерного зрения, таких как аутентификация по лицу, автономное вождение, медицинская диагностика и видеонаблюдение в розничной торговле. Эти модели требуют огромных объемов аннотированных изображений и видеокадров для высокоточной идентификации, классификации и отслеживания объектов. Стремительный рост числа периферийных устройств и встроенных систем машинного зрения в дронах, робототехнике и интеллектуальной инфраструктуре дополнительно стимулирует спрос на визуальные наборы данных. Организации также все чаще используют синтетические наборы изображений и видеоданных для дополнения данных реального мира, повышая надежность моделей в различных условиях окружающей среды.

Область применения отчета и сегментация рынка наборов данных для обучения ИИ 

Атрибуты

Ключевые рыночные данные для обучения ИИ

Охваченные сегменты

  • По программному обеспечению: инструменты сбора данных, программное обеспечение для аннотации данных и готовые наборы данных
  • По типу: изображение/видео, аудио и текст
  • По отраслям: ИТ, автомобилестроение, государственное управление, здравоохранение, BFSI, розничная торговля и электронная коммерция

Страны действия

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальной Азиатско-Тихоокеанский регион

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

  • Масштаб ИИ (США)
  • Аппен (Австралия)
  • Лайонбридж (США)
  • AWS (США)
  • Сама (США)
  • Clickworker (Великобритания)
  • Cogito Tech (США)
  • CloudFactory (Великобритания)
  • TELUS International (Канада)
  • Иннодата (США)
  • iMerit (США)
  • TransPerfect (США)
  • Google (США)
  • LXT (Канада)
  • IBM (США)
  • Microsoft (США)
  • NVIDIA (США)

Рыночные возможности

  • Расширение применения ИИ в странах с развивающейся экономикой
  • Интеграция генеративного ИИ для автоматизированной маркировки данных

Информационные наборы данных с добавленной стоимостью

Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, отчет о рынке, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов.

Тенденции рынка наборов данных для обучения ИИ

Растущее внедрение синтетических обучающих данных

  • Рынок наборов данных для обучения искусственного интеллекта стремительно развивается, поскольку синтетические данные набирают популярность как масштабируемая, соответствующая требованиям конфиденциальности альтернатива традиционному аннотированию данных, преодолевая ограничения, связанные с нехваткой данных, предвзятостью и раскрытием конфиденциальной информации.
  • Например, такие компании, как NVIDIA и Mostly AI, специализируются на платформах генерации синтетических данных, которые позволяют создавать высококачественные маркированные наборы данных для обучения компьютерному зрению, обработке естественного языка и автономным системам в таких отраслях, как здравоохранение, автомобилестроение и финансы.
  • Гибкость синтетических данных позволяет создавать сценарии редких событий или сбалансированные наборы данных, уменьшая смещение и улучшая обобщение модели.
  • Усиление контроля со стороны регулирующих органов за использованием персональных данных стимулирует внедрение синтетических наборов данных, которые обеспечивают конфиденциальность и при этом сохраняют аналитическую ценность.
  • Достижения в области генеративно-состязательных сетей (GAN) и технологий моделирования способствуют созданию реалистичных и разнообразных синтетических выборок данных, ускоряя циклы разработки ИИ.
  • Синтетические наборы данных все чаще интегрируются с реальными наборами данных для оптимизации эффективности обучения и снижения рисков переобучения в моделях машинного обучения.

Динамика рынка наборов данных для обучения ИИ

Водитель

Растущий спрос на предметно-ориентированные и многоязычные наборы данных в различных отраслях

  • С расширением использования ИИ в таких отраслях, как здравоохранение, автомобилестроение, розничная торговля и телекоммуникации, растет потребность в тщательно отобранных предметно-ориентированных и многоязычных наборах данных для поддержки обучения моделей с учетом языка, контекста и конкретных задач.
  • Например, Appen и Lionbridge предоставляют обширные аннотированные наборы данных по разным языкам и специализированным областям, помогая предприятиям разрабатывать надежные приложения ИИ в сфере обслуживания клиентов, медицинской диагностики и автономных транспортных средств, адаптированные к местным рынкам и нормативно-правовой среде.
  • Растущая локализация и персонализация продуктов ИИ требует высококачественных, контекстно-релевантных обучающих данных для повышения точности и удовлетворенности пользователей. Соблюдение отраслевых норм, особенно в здравоохранении и финансах, требует отбора данных с учетом специфики предметной области, что гарантирует соответствие моделей ИИ юридическим и этическим стандартам.
  • Растущая популярность разговорного ИИ, анализа настроений и инструментов языкового перевода стимулирует спрос на разнообразные наборы текстовых, речевых и графических данных на разных языках и диалектах.
  • Стратегическое партнерство между разработчиками ИИ и компаниями, занимающимися аннотацией данных, способствует созданию специализированных наборов данных по запросу, ускоряя вывод решений ИИ на рынок.

Сдержанность/Вызов

Высокие затраты и время на ручную аннотацию данных

  • Ручное аннотирование остается критически важным узким местом из-за его трудоемкости, подверженности ошибкам и дороговизны, часто требуя привлечения экспертов в предметной области и длительных циклов проверки, что замедляет обучение и развертывание модели ИИ.
  • Например, предприятия, использующие ручную маркировку для сложных наборов изображений или видеоданных, такие как разработчики беспилотных автомобилей или компании, занимающиеся медицинской визуализацией, сталкиваются с высокими эксплуатационными расходами и проблемами масштабируемости, несмотря на строгие требования к качеству.
  • Сложность набора и обучения квалифицированных аннотаторов, обладающих экспертными знаниями в данной области, усугубляет задержки и изменчивость качества данных в разных проектах.
  • Несоответствия в аннотациях и проблемы контроля качества требуют доработки и многоуровневых процессов проверки, что увеличивает время и расходы. Рост объёмов наборов данных, обусловленный ростом сложности моделей ИИ, повышает спрос на аннотации, что ещё больше увеличивает нагрузку на человеческие ресурсы и бюджеты.
  • Отрасль активно изучает полуавтоматические и основанные на искусственном интеллекте инструменты аннотации для сокращения затрат и времени выполнения, но их широкому внедрению по-прежнему препятствуют надежность моделей и сложность интеграции.

Рынок наборов данных для обучения ИИ

Рынок сегментирован по признаку программного обеспечения, типа и вертикали.

  • По программному обеспечению

На основе программного обеспечения рынок наборов данных для обучения ИИ сегментируется на инструменты сбора данных, программное обеспечение для аннотации данных и готовые наборы данных. Сегмент программного обеспечения для аннотации данных доминировал на рынке в 2024 году благодаря своей критической роли в создании высококачественных размеченных данных, необходимых для обучения моделей контролируемого обучения в таких секторах, как автомобилестроение, здравоохранение и розничная торговля. Эти платформы поддерживают различные типы данных, включая изображения, текст, аудио и видео, и часто оснащены функциями аннотации с помощью ИИ, которые ускоряют процесс маркировки. Предприятия предпочитают эти инструменты за их способность обрабатывать большие наборы данных, обеспечивать совместную работу распределенных команд в режиме реального времени и обеспечивать согласованность задач маркировки. Их широкая интеграция с конвейерами машинного обучения и совместимость с несколькими фреймворками обучения моделей еще больше укрепляют их доминирование.

Ожидается, что сегмент готовых наборов данных будет демонстрировать самые высокие среднегодовые темпы роста в период с 2025 по 2032 год, что обусловлено растущим спросом со стороны компаний, стремящихся сократить сроки вывода на рынок своих ИИ-решений. Эти предварительно размеченные наборы данных предназначены для конкретных областей, таких как распознавание лиц, выявление мошенничества или медицинская визуализация, что позволяет командам, работающим с ИИ, избегать трудоемкого этапа сбора данных. Стартапы и малые предприятия, в частности, выигрывают от их доступности, скорости и гарантии качества. Кроме того, поскольку обобщение моделей становится ключевым направлением, готовые наборы данных все чаще востребованы для бенчмаркинга и предварительного обучения, особенно в области трансферного обучения и разработки базовых моделей.

  • По типу

По типу рынок наборов данных для обучения ИИ сегментируется на сегменты «Изображения/Видео», «Аудио» и «Текст». На сегмент «Изображения/Видео» в 2024 году пришлась наибольшая доля – 41,5% – благодаря бурному развитию приложений компьютерного зрения, таких как аутентификация по лицу, автономное вождение, медицинская диагностика и видеонаблюдение в розничной торговле. Эти модели требуют огромных объёмов аннотированных изображений и видеокадров для высокоточной идентификации, классификации и отслеживания объектов. Стремительный рост числа периферийных устройств и встроенных систем машинного зрения в дронах, робототехнике и интеллектуальной инфраструктуре дополнительно стимулирует спрос на наборы визуальных данных. Организации также всё чаще используют наборы синтетических изображений и видеоданных для дополнения данных реального мира, повышая надёжность моделей в различных условиях окружающей среды.

Ожидается, что сегмент аудио будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будет способствовать широкое использование ИИ в голосовых приложениях, включая виртуальных помощников, автоматизацию колл-центров и многоязычные сервисы транскрипции. Аннотированные аудиоданные с речевыми, акустическими событиями и фоновым шумом критически важны для повышения точности распознавания речи и классификации звуков. Росту также способствует расширение исследований и разработок в области эмоционально-чувствительного голосового ИИ и технологий доступности для слабовидящих. В связи с растущим спросом на голосовые данные на региональных языках и диалектах поставщики наборов данных расширяют свои предложения для поддержки различных лингвистических и акустических профилей.

  • По вертикали

По вертикали рынок наборов данных для обучения ИИ сегментируется на следующие сферы: ИТ, автомобилестроение, государственный сектор, здравоохранение, бизнес-финансирование, розничная торговля и электронная коммерция. В 2024 году ИТ-сегмент лидировал на рынке, поскольку технологические компании и поставщики облачных услуг активно инвестируют в обучение ИИ для обеспечения кибербезопасности, автоматизации и улучшения качества обслуживания клиентов. Эти организации часто разрабатывают собственные наборы данных или закупают огромные объёмы структурированных и неструктурированных данных для разработки моделей, тестирования и непрерывного обучения. Стремительные темпы инноваций в области программного обеспечения и интеграции ИИ между платформами и сервисами стимулируют постоянный спрос на разнообразные наборы данных, ориентированные на конкретные задачи. Более того, доступ ИТ-сектора к передовым инструментам для маркировки и обработки данных позволяет ему сохранять лидерство в использовании наборов данных.

Прогнозируется, что сегмент здравоохранения будет демонстрировать самые быстрые темпы роста в период с 2025 по 2032 год, что обусловлено растущим внедрением ИИ в диагностику заболеваний, анализ изображений, роботизированную хирургию и системы управления пациентами. Обучение моделей ИИ в этом секторе требует больших, тщательно подобранных наборов данных, таких как МРТ-снимки, патологические препараты, геномные данные и клинические записи, которые должны соответствовать строгим нормативным и этическим стандартам. Расширение государственно-частного сотрудничества, например, сотрудничество больниц с компаниями, разрабатывающими ИИ, для создания инноваций на основе данных, повышает доступность данных. Кроме того, стремление к персонализированной и предиктивной медицине ускоряет спрос на продольные и мультимодальные данные о пациентах, что делает здравоохранение высокорастущей вертикалью для обучения ИИ.

Региональный анализ рынка наборов данных для обучения ИИ

  • Северная Америка доминировала на рынке наборов данных для обучения ИИ с наибольшей долей выручки в 36,3% в 2024 году, что обусловлено мощной экосистемой ИИ в регионе, масштабными инвестициями в НИОКР и присутствием крупных технологических компаний и стартапов в области ИИ.
  • Предприятия в Северной Америке активно инвестируют в обучение моделей ИИ для приложений в здравоохранении, финансах, автономном вождении и кибербезопасности, тем самым увеличивая спрос на разнообразные и высококачественные наборы данных для обучения.
  • Регион получает выгоду от развитой облачной инфраструктуры, высокой цифровой грамотности и благоприятной нормативной поддержки инноваций в области ИИ, что способствует масштабному приобретению и использованию наборов данных в различных отраслях.

Обзор рынка наборов данных для обучения искусственного интеллекта в США

Рынок обучающих наборов данных для ИИ в США в 2024 году занял наибольшую долю выручки в Северной Америке благодаря активному внедрению ИИ в таких отраслях, как здравоохранение, автомобилестроение и ИТ. Стремительное развитие приложений машинного обучения и обработки естественного языка продолжает генерировать спрос на размеченные данные, особенно в форматах изображений, речи и текста. Технологические гиганты и стартапы используют огромные объемы обучающих данных для разработки собственных моделей ИИ. Государственно-частное партнерство, поддерживаемые государством исследования и инновационно-ориентированный академический сектор дополнительно ускоряют развитие экосистемы наборов данных в США.

Обзор европейского рынка наборов данных для обучения искусственному интеллекту

Ожидается, что европейский рынок наборов данных для обучения ИИ будет расти значительными среднегодовыми темпами в течение прогнозируемого периода, чему будут способствовать строгие правила конфиденциальности данных и растущее внимание к этичному развитию ИИ. Рост автоматизации, развитие государственных услуг на основе ИИ и интеллектуального производства обуславливают спрос на высококачественные наборы данных по всему континенту. Европейские предприятия делают акцент на использовании объяснимых и объективных наборов данных, соответствующих требованиям GDPR и этическим стандартам. Особенно активное внедрение наблюдается в таких секторах, как автомобилестроение, здравоохранение и государственный сектор, где высокоточные модели ИИ имеют решающее значение.

Обзор рынка наборов данных для обучения искусственному интеллекту в Великобритании

Ожидается, что рынок наборов данных для обучения ИИ в Великобритании будет расти значительными среднегодовыми темпами в течение прогнозируемого периода, чему будут способствовать национальные инициативы, продвигающие лидерство в области ИИ и цифровую трансформацию. Инвестиции в исследовательские центры ИИ и растущий спрос на интеллектуальную автоматизацию в таких секторах, как бизнес-финансирование, финансовая и финансовая деятельность (BFSI) и электронная коммерция, приводят к увеличению потребности в надежных, предварительно маркированных наборах данных. Активная экосистема стартапов в Великобритании и сильное присутствие поставщиков услуг ИИ дополнительно укрепляют рынок. Акцент на ответственном подходе к ИИ и справедливом использовании данных стимулирует разработку высококачественных, непредвзятых наборов данных.

Обзор рынка наборов данных для обучения ИИ в Германии

Ожидается, что рынок наборов данных для обучения с использованием ИИ в Германии будет стабильно расти, чему способствует лидерство страны в области промышленной автоматизации, интеллектуальной мобильности и цифровизации здравоохранения. Немецкие организации всё чаще внедряют ИИ в таких областях, как предиктивное техническое обслуживание, автономные транспортные средства и медицинская диагностика, требующих точных и предметно-ориентированных наборов данных. Рынок выигрывает от сотрудничества между исследовательскими институтами, корпорациями и государственными инициативами в области ИИ. Внимание Германии к качеству, защите данных и инновациям поддерживает спрос на безопасные и масштабируемые решения для обучения с использованием данных.

Обзор рынка наборов данных для обучения ИИ в Азиатско-Тихоокеанском регионе

Ожидается, что рынок наборов данных для обучения ИИ в Азиатско-Тихоокеанском регионе будет расти самыми быстрыми среднегодовыми темпами в прогнозируемый период с 2025 по 2032 год благодаря быстрой цифровой трансформации, расширению сфер применения ИИ и усилению государственной поддержки развития ИИ в таких странах, как Китай, Япония, Индия и Южная Корея. Распространение устройств, подключенных к интернету, многоязычное население и рынки, ориентированные в первую очередь на мобильные устройства, создают разнообразные потребности в данных. Кроме того, роль Азиатско-Тихоокеанского региона как глобального центра для специалистов в области ИИ и экономически эффективных сервисов маркировки данных дополнительно ускоряет создание и потребление наборов данных во всех отраслях.

Обзор рынка наборов данных для обучения ИИ в Японии

Рынок наборов данных для обучения на основе ИИ в Японии стабильно растёт, чему способствует акцент страны на робототехнике, умных городах и интеллектуальных транспортных системах. Высокоразвитая цифровая инфраструктура Японии и широкое использование подключённых устройств генерируют большие объёмы структурированных и неструктурированных данных. Предприятия активно используют ИИ для решения проблем нехватки рабочей силы и старения населения, особенно в здравоохранении и логистике. Спрос на мультимодальные и языковые наборы данных растёт по мере расширения применения ИИ в потребительской электронике и государственных услугах.

Обзор рынка наборов данных для обучения искусственного интеллекта в Китае

В 2024 году китайский рынок наборов данных для обучения с использованием ИИ обеспечил наибольшую долю выручки в Азиатско-Тихоокеанском регионе благодаря стратегии развития страны, ориентированной на ИИ, масштабной цифровизации и доминированию на рынке умных устройств. Широкое внедрение систем распознавания лиц, видеонаблюдения и электронной коммерции с использованием ИИ привело к огромному спросу на маркированные наборы данных. Поддерживаемые государством программы и рост числа отечественных компаний в сфере ИИ создали надежную экосистему для генерации, аннотации и распространения данных. Успешные инициативы Китая в области умных городов и беспилотных автомобилей продолжают создавать огромные возможности для поставщиков наборов данных.

Доля рынка наборов данных для обучения ИИ

Лидерами отрасли наборов данных для обучения ИИ являются в основном хорошо зарекомендовавшие себя компании, среди которых:

  • Масштаб ИИ (США)
  • Аппен (Австралия)
  • Лайонбридж (США)
  • AWS (США)
  • Сама (США)
  • Clickworker (Великобритания)
  • Cogito Tech (США)
  • CloudFactory (Великобритания)
  • TELUS International (Канада)
  • Иннодата (США)
  • iMerit (США)
  • TransPerfect (США)
  • Google (США)
  • LXT (Канада)
  • IBM (США)
  • Microsoft (США)
  • NVIDIA (США)

Последние разработки на мировом рынке наборов данных для обучения ИИ

  • В сентябре 2024 года компания Innodata запустила свой рынок данных для ИИ, что стало важным шагом на пути к решению проблем масштабируемости и доступности данных при обучении моделей ИИ/МО. Платформа предлагает тщательно отобранные синтетические наборы данных, доступные по запросу, которые помогают командам специалистов по анализу данных преодолевать ограничения, связанные с объемом, разнообразием и конфиденциальностью данных. Ожидается, что, упрощая доступ к готовым наборам данных, этот рынок ускорит разработку моделей ИИ и удовлетворит растущий спрос на синтетические и предметно-ориентированные данные для обучения в различных отраслях.
  • В сентябре 2024 года компания SCALE AI объявила об инвестициях в размере 21 миллиона долларов США в девять проектов в сфере здравоохранения, основанных на ИИ, по всей Канаде в рамках Общеканадской стратегии развития искусственного интеллекта. Эта инициатива призвана существенно повлиять на рынок наборов данных для обучения ИИ в сфере здравоохранения, способствуя сотрудничеству между больницами и разработчиками ИИ. Она направлена ​​на улучшение качества обслуживания пациентов, сокращение времени ожидания и оптимизацию работы системы здравоохранения, тем самым повышая спрос на высококачественные наборы данных, полученные из этичных источников и адаптированные для клинических, административных и диагностических приложений.
  • В августе 2024 года компания Lionbridge Technologies, Inc. представила Aurora AI Studio — специализированную платформу, призванную помочь предприятиям в обучении моделей ИИ с использованием высококачественных наборов данных. Этот запуск отвечает растущей потребности в специализированных и качественно аннотированных данных для поддержки сложных сценариев использования ИИ. Используя глобальный опыт Lionbridge в курировании и аннотировании данных, платформа укрепляет коммерческую экосистему ИИ и готова влиять на спрос на специализированные, многоязычные и отраслевые наборы данных в таких секторах, как финансы, розничная торговля и телекоммуникации.
  • В августе 2024 года компания Accenture в партнёрстве с Google Cloud ускорила внедрение решений для генеративного ИИ через свой Центр передового опыта в области генеративного ИИ. Переход 45% проектов в промышленную эксплуатацию свидетельствует о растущей масштабной операционализации ИИ. Это сотрудничество подчёркивает острую потребность в безопасных, разнообразных и готовых к использованию обучающих наборах данных, поддерживающих передовые модели ИИ на предприятиях. Инициатива также включает в себя кибербезопасность, усиливая роль ответственного обращения с данными и наборов данных, ориентированных на конфиденциальность, при внедрении ИИ на предприятиях.
  • В июле 2024 года компания Microsoft Research представила AgentInstruct — многоагентную платформу для автоматизации генерации высококачественных синтетических данных. Продемонстрированная на примере модели Orca-3 в различных тестах, эта платформа минимизирует вмешательство человека в маркировку данных, тем самым снижая затраты и ускоряя создание наборов данных. Ожидается, что AgentInstruct изменит рынок наборов данных для обучения ИИ, продвигая использование синтетических данных для обучения крупномасштабных моделей, особенно в генеративном ИИ и базовых моделях.


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация мирового рынка наборов данных для обучения ИИ по типу программного обеспечения (инструменты сбора данных, ПО для аннотации данных и готовые наборы данных) (изображения/видео, аудио и текст), вертикали (ИТ, автомобилестроение, государственный сектор, здравоохранение, бизнес-финансирование, розничная торговля и электронная коммерция) — отраслевые тенденции и прогноз до 2032 года .
Размер Анализ объема, доли и тенденций мирового рынка наборов данных для обучения ИИ — обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 2.72 USD Billion долларов США.
Ожидается, что Анализ объема, доли и тенденций мирового рынка наборов данных для обучения ИИ — обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 24.8% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают Scale AI, Appen, Lionbridge, AWS, Sama .
Testimonial