Global Artificial Intelligence Ai In Drug Discovery Market
Размер рынка в млрд долларов США
CAGR :
%
USD
981.64 Million
USD
1,483.82 Million
2024
2032
| 2025 –2032 | |
| USD 981.64 Million | |
| USD 1,483.82 Million | |
|
|
|
Сегментация глобального рынка искусственного интеллекта (ИИ) в разработке лекарств по области применения (новые кандидаты на лекарства, оптимизация и перепрофилирование доклинических испытаний и одобрений лекарств, мониторинг лекарств, поиск новых мишеней и путей развития, понимание механизмов заболеваний, агрегация и синтез информации, формирование и проверка гипотез, разработка новых лекарств, поиск мишеней для старых лекарств и др.), технологиям (машинное обучение, глубокое обучение, обработка естественного языка и др.), типу лекарств (малые и большие молекулы), предложению (программное обеспечение и услуги), показанию (иммуноонкология, нейродегенеративные заболевания, сердечно-сосудистые заболевания, метаболические заболевания и др.), конечному использованию (контрактные исследовательские организации (CRO), фармацевтические и биотехнологические компании, исследовательские центры и академические институты и др.) — тенденции отрасли и прогноз до 2032 г.
Искусственный интеллект (ИИ) в сфере разработки лекарств
- Глобальный рынок искусственного интеллекта (ИИ) в сфере разработки лекарственных препаратов в 2024 году оценивался в 981,64 млн долларов США и, как ожидается, достигнет 1483,82 млн долларов США к 2032 году.
- В прогнозируемый период с 2025 по 2032 год рынок, вероятно, будет расти среднегодовыми темпами на 5,30%, в первую очередь за счет повышения доступности медицинских данных.
- Этот рост обусловлен такими факторами, как рост распространенности хронических заболеваний и достижения в области технологий искусственного интеллекта, которые улучшают процессы разработки лекарственных препаратов.
Искусственный интеллект (ИИ) в анализе рынка разработки лекарств
- Рынок переживает стремительный рост, обусловленный достижениями в области технологий искусственного интеллекта, таких как машинное обучение и глубокое обучение, которые оптимизируют процессы разработки лекарственных препаратов и снижают затраты.
- ИИ широко применяется для оптимизации лекарственных средств, перепрофилирования, доклинических испытаний и разработки клинических испытаний, что значительно ускоряет сроки разработки лекарств.
- Северная Америка лидирует на рынке благодаря своему развитому фармацевтическому сектору, в то время как Азиатско-Тихоокеанский регион, как ожидается, будет расти быстрыми темпами, чему будет способствовать увеличение инвестиций в исследования и разработки.
Например, технологии искусственного интеллекта, такие как машинное обучение и глубокое обучение, используются для прогнозирования показателей успешности клинических испытаний, оптимизации потенциальных лекарственных препаратов и выявления новых терапевтических целей, что значительно сокращает время и стоимость разработки лекарств.
- Внедрение ИИ в процесс разработки лекарственных препаратов произвело революцию в фармацевтической отрасли, решив такие проблемы, как высокие затраты, длительные сроки и низкие показатели успешности традиционных процессов разработки лекарств.
Область применения отчета и искусственный интеллект (ИИ) в сегментации рынка разработки лекарственных препаратов
|
Атрибуты |
Искусственный интеллект (ИИ) в разработке лекарств: ключевые аспекты рынка |
|
Охваченные сегменты |
|
|
Охваченные страны |
Северная Америка
Европа
Азиатско-Тихоокеанский регион
Ближний Восток и Африка
Южная Америка
|
|
Ключевые игроки рынка |
|
|
Рыночные возможности |
|
|
Информационные наборы данных с добавленной стоимостью |
Помимо информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают анализ импорта и экспорта, обзор производственных мощностей, анализ потребления продукции, анализ ценовых тенденций, сценарий изменения климата, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу. |
Искусственный интеллект (ИИ) в тенденциях рынка разработки лекарств
«Инновации на основе ИИ, революционизирующие процесс открытия лекарств»
- Одной из заметных тенденций на рынке ИИ для разработки лекарственных препаратов является растущее внедрение технологий машинного обучения и глубокого обучения для оптимизации процессов разработки лекарственных препаратов .
- Эти передовые технологии повышают эффективность и точность разработки новых лекарственных препаратов за счет анализа обширных наборов данных, прогнозирования свойств связывания молекул и выявления потенциальных кандидатов на новые лекарственные препараты.
- Например, платформы на базе искусственного интеллекта используются для перепрофилирования существующих лекарств для новых терапевтических областей, что значительно сокращает время и затраты, связанные с традиционными методами разработки лекарств.
- Интеграция ИИ также позволяет улучшить дизайн клинических испытаний за счет прогнозирования показателей успешности и определения групп пациентов, что повышает общую успешность разработки лекарственных препаратов.
- Эта тенденция трансформирует фармацевтическую отрасль, ускоряет разработку инновационных методов лечения и решает неудовлетворенные потребности медицины, тем самым стимулируя спрос на решения на основе ИИ на рынке.
Динамика рынка разработки новых лекарств с использованием искусственного интеллекта (ИИ)
Водитель
«Рост инвестиций в НИОКР в фармацевтической промышленности»
- Фармацевтические компании увеличивают бюджеты на НИОКР для разработки новых лекарственных препаратов и методов лечения, гарантируя свою конкурентоспособность и удовлетворение меняющихся потребностей пациентов.
- Инструменты ИИ интегрируются в процессы НИОКР для улучшения процесса открытия новых лекарственных препаратов, позволяя быстрее идентифицировать кандидаты на лекарственные препараты, повышать показатели успешности и оптимизировать исследования на ранних стадиях.
- ИИ обеспечивает высокопроизводительный скрининг, значительно ускоряя процесс тестирования соединений и выявления перспективных кандидатов для дальнейшей разработки.
- ИИ может обрабатывать большие наборы данных из геномики, клинических испытаний и демографических данных пациентов для обнаружения скрытых закономерностей, ускоряя идентификацию новых терапевтических целей.
- Благодаря алгоритмам искусственного интеллекта, оптимизирующим набор пациентов и разработку исследований, фармацевтические компании могут проводить более эффективные клинические испытания, сокращая время и затраты.
Например,
- Sanofi сотрудничала с Exscientia , используя ИИ для разработки новых лекарственных препаратов, что ускорило их путь к клиническим испытаниям. В рамках одного из совместных проектов им удалось найти перспективный препарат для лечения аутоиммунных заболеваний, затратив на это гораздо меньше времени, чем при использовании традиционных методов.
- GlaxoSmithKline (GSK) и 24M совместно работают над применением ИИ для оптимизации процесса НИОКР, включая выявление новых лекарственных препаратов и ускорение разработки новых методов лечения, например, редких заболеваний.
- Растущие инвестиции в НИОКР в сочетании с возможностями искусственного интеллекта значительно повышают способность фармацевтической отрасли быстрее, эффективнее и точнее открывать новые лекарственные препараты.
Возможность
«Улучшенное прогностическое моделирование для клинических испытаний»
- ИИ может оптимизировать дизайн клинических испытаний, определяя наиболее подходящие параметры испытаний, такие как размер выборки, конечные точки и схемы лечения, что приводит к более эффективным и результативным исследованиям.
- Анализируя электронные медицинские карты и другие данные, ИИ может помочь определить подходящих пациентов для клинических испытаний на основе определенных критериев включения/исключения, повышая скорость и точность набора пациентов.
- Модели ИИ способны прогнозировать вероятный успех или неудачу клинического испытания на основе исторических данных и информации в режиме реального времени, что позволяет вносить ранние корректировки в протоколы испытаний и повышать шансы на успех.
- Используя прогностическую аналитику, ИИ может выявлять пациентов, подверженных риску отказа от участия в исследовании, и предлагать меры по поддержанию их вовлеченности, тем самым сокращая количество незавершенных исследований.
- Способность ИИ оптимизировать процесс клинических испытаний — от отбора участников до прогнозирования результатов — может значительно сократить затраты, связанные с традиционными методами испытаний.
Например,
- Компания Pfizer совместно с IBM Watson Health использовала искусственный интеллект (ИИ) для оптимизации набора участников клинических исследований и оптимизации дизайна исследований по разработке лечения редкого заболевания. Подход на основе ИИ помог ускорить набор участников и улучшить результаты исследований.
- Компания Novartis использовала ИИ для прогнозирования ответа пациентов и оптимизации дизайна исследований генной терапии. Этот подход, основанный на ИИ, позволил разработать более целевые методы лечения и повысить эффективность клинических испытаний.
- Способность ИИ улучшать прогностическое моделирование в клинических испытаниях дает значительные преимущества, включая более эффективные проекты испытаний, более быстрый набор пациентов, снижение затрат и улучшение результатов испытаний, что в конечном итоге ускоряет разработку новых методов лечения.
Сдержанность/Вызов
«Высокие первоначальные инвестиционные затраты»
- Инструменты на базе ИИ требуют дорогостоящей технологической инфраструктуры, включая мощные вычислительные системы, решения для хранения данных и специализированное программное обеспечение, что обуславливает высокие первоначальные инвестиции.
- Привлечение квалифицированных специалистов, таких как специалисты по обработке данных, эксперты по ИИ и исследователи в области биофармацевтики, обладающих знаниями как в области ИИ, так и в области разработки лекарственных препаратов, требует больших затрат, что увеличивает финансовое бремя внедрения ИИ в НИОКР.
- Интеграция инструментов ИИ в существующие рабочие процессы по разработке лекарственных препаратов, особенно в устаревшие системы, требует значительных финансовых ресурсов на адаптацию, обучение и оптимизацию.
- Технологии искусственного интеллекта требуют постоянного обслуживания, обновления программного обеспечения и модернизации оборудования, чтобы оставаться в курсе последних достижений в области машинного обучения и аналитики данных, что приводит к долгосрочным эксплуатационным расходам.
- Системы ИИ в разработке лекарственных препаратов зависят от обширных высококачественных наборов данных, а приобретение или лицензирование таких наборов данных может быть дорогостоящим для небольших компаний или стартапов, что еще больше увеличивает стоимость внедрения ИИ.
Например,
- Компания BenevolentAI вложила значительные средства в платформы для разработки лекарств на основе ИИ и экспертные знания, чтобы оптимизировать процесс разработки лекарств, уделяя особое внимание онкологии. Несмотря на первоначальные высокие инвестиции, их подход позволил ускорить разработку лекарств и повысить показатели успешности.
- Insilico Medicine , стартапу, использующему ИИ для разработки лекарств, потребовались значительные первоначальные инвестиции для создания своей платформы на базе ИИ, которая позволила им ускорить разработку лекарств от таких заболеваний, как фиброз и рак. Однако затраты были высокими и мелким конкурентам было сложно с ними конкурировать.
- Высокие первоначальные инвестиции в ИИ для разработки лекарств создают барьер для небольших компаний и стартапов, ограничивая их способность конкурировать с крупными организациями, которые могут себе позволить эти технологии. Для решения этой проблемы могут потребоваться инновационные модели финансирования или партнерства, чтобы сделать ИИ более доступным для более широкого круга участников фармацевтической отрасли.
Искусственный интеллект (ИИ) на рынке разработки лекарств
Рынок сегментирован по принципу применения, типа продукта, технологии, типа увеличения, конечного пользователя и канала сбыта.
|
Сегментация |
Подсегментация |
|
По применению |
|
|
По технологии |
|
|
По типу препарата |
|
|
Предлагая |
|
|
По показаниям |
|
|
По конечному использованию
|
|
Искусственный интеллект (ИИ) в региональном анализе рынка разработки лекарств
«Северная Америка является доминирующим регионом на рынке искусственного интеллекта (ИИ) для разработки новых лекарств»
- Северная Америка доминирует на рынке искусственного интеллекта (ИИ) в разработке лекарственных препаратов , чему способствуют развитая инфраструктура здравоохранения, широкое внедрение передовых медицинских технологий и сильное присутствие ключевых игроков рынка.
- В США расположены крупнейшие фармацевтические компании, такие как Pfizer , Johnson & Johnson , Merck и Eli Lilly , которые являются лидерами в области внедрения ИИ для разработки лекарственных препаратов. Эти компании вкладывают значительные средства в ИИ, чтобы оптимизировать процесс разработки лекарств и улучшить результаты.
- В Северной Америке существует хорошо развитая технологическая экосистема, где такие крупные игроки в области ИИ, как IBM Watson Health и Google DeepMind, стимулируют инновации в области разработки лекарственных препаратов. Эти компании лидируют в исследованиях ИИ и предоставляют мощные инструменты ИИ для фармацевтических исследований и разработок.
- Северная Америка стабильно инвестирует значительную часть своего ВВП в исследования и разработки (НИОКР). Это финансирование стимулирует внедрение передовых технологий искусственного интеллекта в разработку лекарственных препаратов, поскольку компании ищут способы ускорить разработку новых лекарств и методов лечения.
- В Северной Америке наблюдается множество партнерств между фармацевтическими компаниями и стартапами или технологическими компаниями, работающими в сфере ИИ. Например, такие примеры сотрудничества, как сотрудничество Novartis и Microsoft по использованию ИИ для разработки лекарственных препаратов, подчеркивают лидерство региона в использовании ИИ для инноваций в разработке лекарств.
«Прогнозируется, что в Азиатско-Тихоокеанском регионе будут зафиксированы самые высокие темпы роста»
- Ожидается, что Азиатско-Тихоокеанский регион станет свидетелем самых высоких темпов роста в области искусственного интеллекта (ИИ) в области разработки лекарственных препаратов , что будет обусловлено быстрым расширением инфраструктуры здравоохранения, повышением осведомленности о здоровье глаз и увеличением объемов хирургических операций.
- Такие страны, как Китай , Индия и Япония, активно инвестируют в ИИ и биотехнологии , стремясь улучшить свой фармацевтический сектор и удовлетворить растущие потребности здравоохранения. Эти инвестиции ускоряют внедрение ИИ в разработку лекарственных препаратов.
- Правительства стран Азиатско-Тихоокеанского региона активно продвигают цифровое здравоохранение и интеграцию ИИ посредством различных инициатив. Например, Китай внедрил национальные стратегии по внедрению ИИ в здравоохранение, способствуя росту использования ИИ в разработке лекарственных препаратов.
- Страны Азиатско-Тихоокеанского региона обладают большой численностью населения и огромными объёмами медицинских данных, которые можно использовать для разработки лекарств с помощью ИИ. Мощная цифровая инфраструктура региона поддерживает интеграцию технологий ИИ в разработку лекарств.
- Азиатско -Тихоокеанский регион (АТР) является самым быстрорастущим на рынке ИИ для разработки лекарственных препаратов, чему способствуют увеличение инвестиций, поддерживающая государственная политика, большой массив данных и расширение биотехнологических компаний, использующих технологию ИИ.
Доля искусственного интеллекта (ИИ) на рынке разработки лекарств
В разделе «Конкурентная среда рынка» представлена подробная информация по конкурентам. В неё включены: описание компании, её финансовые показатели, полученная выручка, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, широта и разнообразие продуктов, доминирующие области применения. Представленные выше данные относятся только к рыночным интересам компаний.
Основными лидерами рынка, работающими на рынке, являются:
- Корпорация NVIDIA (США)
- IBM Corp. (США)
- Atomwise Inc. (США)
- Microsoft (США)
- Доброжелательный ИИ (Великобритания)
- Aria Pharmaceuticals, Inc. (США)
- ГЛУБОКАЯ ГЕНОМИКА (Канада)
- Exscientia (Великобритания)
- Insilico Medicine (Гонконг)
- Циклика (Канада)
- NuMedii, Inc. (США)
- Envisagenics (США)
- Owkin Inc. (США)
- BERG LLC (США)
- Schrödinger, Inc. (США)
- XtalPi Inc. (Китай)
- BIOAGE Inc. (США)
Последние разработки в области глобального искусственного интеллекта (ИИ) на рынке разработки лекарственных препаратов
- В мае 2024 года компания Google DeepMind представила третью версию своей модели искусственного интеллекта AlphaFold, предназначенную для оптимизации разработки лекарств и повышения эффективности таргетирования заболеваний. Эта усовершенствованная версия позволяет исследователям DeepMind и Isomorphic Labs анализировать поведение любых молекул, включая ДНК человека.
- В апреле 2024 года Xaira Therapeutics, инновационная компания, специализирующаяся на разработке и поиске лекарственных препаратов с использованием искусственного интеллекта, привлекла более 1 миллиона долларов США в рамках совместного раунда финансирования с ARCH Venture Partners и Foresite Labs. Используя машинное обучение, модели генерации данных и разработку терапевтических продуктов, компания фокусируется на решении задач, которые традиционно представляли сложность для лекарственных препаратов.
- В декабре 2023 года MilliporeSigma, подразделение Merck в области естественных наук, запустило AIDDISON — передовое программное обеспечение для разработки лекарственных препаратов. Эта платформа стирает разрыв между виртуальным проектированием молекул и реальным производством, интегрируя API-интерфейс Synthia для ретросинтеза. Она сочетает в себе генеративный ИИ, машинное обучение и автоматизированное проектирование лекарственных препаратов для оптимизации процессов разработки.
- В мае 2023 года Google запустила два инновационных инструмента на основе искусственного интеллекта, призванных помочь биотехнологическим и фармацевтическим компаниям ускорить разработку новых лекарственных препаратов и усовершенствовать методы прецизионной медицины. Эти решения призваны сократить время и затраты, связанные с выводом новых препаратов на рынок США. Среди первых, кто внедрил эти инструменты, — Cerevel Therapeutics, Pfizer и Colossal Biosciences .
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Содержание
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE
2.3 VENDOR POSITIONING GRID
2.4 MARKETS COVERED
2.5 GEOGRAPHIC SCOPE
2.6 YEARS CONSIDERED FOR THE STUDY
2.7 RESEARCH METHODOLOGY
2.8 TECHNOLOGY LIFE LINE CURVE
2.9 MULTIVARIATE MODELLING
2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS
2.11 DBMR MARKET POSITION GRID
2.12 MARKET APPLICATION COVERAGE GRID
2.13 DBMR MARKET CHALLENGE MATRIX
2.14 SECONDARY SOURCES
2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT
2.16 ASSUMPTIONS
3 MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHTS
5.1 PESTEL ANALYSIS
5.2 PORTER’S FIVE FORCES MODEL
6 INDUSTRY INSIGHTS
6.1 MICRO AND MACRO ECONOMIC FACTORS
6.2 PENETRATION AND GROWTH PROSPECT MAPPING
6.3 KEY PRICING STRATEGIES
6.4 INTERVIEWS WITH SPECIALIST
6.5 ANALYIS AND RECOMMENDATION
7 INTELLECTUAL PROPERTY (IP) PORTFOLIO
7.1 PATENT QUALITY AND STRENGTH
7.2 PATENT FAMILIES
7.3 LICENSING AND COLLABORATIONS
7.4 COMPETITIVE LANDSCAPE
7.5 IP STRATEGY AND MANAGEMENT
7.6 OTHER
8 COST ANALYSIS BREAKDOWN
9 TECHNONLOGY ROADMAP
10 INNOVATION TRACKER AND STRATEGIC ANALYSIS
10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS
10.1.1 JOINT VENTURES
10.1.2 MERGERS AND ACQUISITIONS
10.1.3 LICENSING AND PARTNERSHIP
10.1.4 TECHNOLOGY COLLABORATIONS
10.1.5 STRATEGIC DIVESTMENTS
10.2 NUMBER OF PRODUCTS IN DEVELOPMENT
10.3 STAGE OF DEVELOPMENT
10.4 TIMELINES AND MILESTONES
10.5 INNOVATION STRATEGIES AND METHODOLOGIES
10.6 RISK ASSESSMENT AND MITIGATION
10.7 FUTURE OUTLOOK
11 REGULATORY COMPLIANCE
11.1 REGULATORY AUTHORITIES
11.2 REGULATORY CLASSIFICATIONS
11.2.1 CLASS I
11.2.2 CLASS II
11.2.3 CLASS III
11.3 REGULATORY SUBMISSIONS
11.4 INTERNATIONAL HARMONIZATION
11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS
11.6 REGULATORY CHALLENGES AND STRATEGIES
12 REIMBURSEMENT FRAMEWORK
13 OPPUTUNITY MAP ANALYSIS
14 VALUE CHAIN ANALYSIS
15 HEALTHCARE ECONOMY
15.1 HEALTHCARE EXPENDITURE
15.2 CAPITAL EXPENDITURE
15.3 CAPEX TRENDS
15.4 CAPEX ALLOCATION
15.5 FUNDING SOURCES
15.6 INDUSTRY BENCHMARKS
15.7 GDP RATION IN OVERALL GDP
15.8 HEALTHCARE SYSTEM STRUCTURE
15.9 GOVERNMENT POLICIES
15.1 ECONOMIC DEVELOPMENT
16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING
16.1 OVERVIEW
16.2 SOFTWARE
16.2.1 INTEGRATED
16.2.2 STANDALONE
16.3 SERVICES
17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY
17.1 OVERVIEW
17.2 MACHINE LEARNING (ML)
17.2.1 SUPERVISED LEARNING
17.2.2 UNSUPERVISED LEARNING
17.2.3 REINFORCEMENT LEARNING
17.3 DEEP LEARNING
17.4 NATURAL LANGUAGE PROCESSING (NLP)
17.5 OTHERS
18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE
18.1 OVERVIEW
18.2 SMALL MOLECULE
18.3 LARGE MOLECULE
19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION
19.1 OVERVIEW
19.2 NOVEL DRUG CANDIDATES
19.2.1 IDENTIFY BIOLOGICS TARGET
19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE
19.2.3 OTHERS
19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL
19.4 DRUG MONITORING
19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS
19.6 UNDERSTANDING DISEASE MECHANISMS
19.7 AGGREGATING AND SYNTHESIZING INFORMATION
19.8 FORM ATION & QUALIFICATION OF HYPOTHESES
19.9 DE NOVO DRUG DESIGN
19.1 FINDING DRUG TARGETS OF AN OLD DRUG
19.11 OTHERS
20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION
20.1 OVERVIEW
20.2 IMMUNO-ONCOLOGY
20.2.1 PROSTATE CANCER
20.2.2 BREAST CANCER
20.2.3 BRAIN CANCER
20.2.4 LUNG CANCER
20.2.5 PANCREATIC CANCER
20.2.6 COLORECTAL CANCER
20.2.7 LEUKEMIA
20.2.8 OTHERS
20.3 NEURODEGENERATIVE DISEASES
20.4 CARDIOVASCULAR DISEASES
20.5 METABOLIC DISEASES
20.6 OTHERS
21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER
21.1 OVERVIEW
21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES
21.3 CONTRACT RESEARCH ORGANIZATIONS
21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES
21.5 OTHERS
22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)
GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
22.1 OVERVIEW
22.2 NORTH AMERICA
22.2.1 U.S.
22.2.2 CANADA
22.2.3 MEXICO
22.3 EUROPE
22.3.1 GERMANY
22.3.2 U.K.
22.3.3 ITALY
22.3.4 FRANCE
22.3.5 SPAIN
22.3.6 SWITZERLAND
22.3.7 RUSSIA
22.3.8 TURKEY
22.3.9 BELGIUM
22.3.10 NETHERLANDS
22.3.11 REST OF EUROPE
22.4 ASIA-PACIFIC
22.4.1 JAPAN
22.4.2 CHINA
22.4.3 SOUTH KOREA
22.4.4 INDIA
22.4.5 AUSTRALIA & NEW ZEALAND
22.4.6 SINGAPORE
22.4.7 THAILAND
22.4.8 INDONESIA
22.4.9 MALAYSIA
22.4.10 PHILIPPINES
22.4.11 REST OF ASIA-PACIFIC
22.5 SOUTH AMERICA
22.5.1 BRAZIL
22.5.2 ARGENTINA
22.5.3 REST OF SOUTH AMERICA
22.6 MIDDLE EAST AND AFRICA
22.6.1 SOUTH AFRICA
22.6.2 EGYPT
22.6.3 SAUDI ARABIA
22.6.4 UNITED ARAB EMIRATES
22.6.5 ISRAEL
22.6.6 REST OF MIDDLE EAST AND AFRICA
23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE
23.1 COMPANY SHARE ANALYSIS: GLOBAL
23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
23.3 COMPANY SHARE ANALYSIS: EUROPE
23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC
23.5 MERGERS & ACQUISITIONS
23.6 NEW PRODUCT DEVELOPMENT & APPROVALS
23.7 EXPANSIONS
23.8 REGULATORY CHANGES
23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES
24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS
25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE
25.1 MICROSOFT
25.1.1 COMPANY OVERVIEW
25.1.2 REVENUE ANALYSIS
25.1.3 PRODUCT PORTFOLIO
25.1.4 RECENT DEVELOPMENTS
25.2 SHANGHAI MEDICILON INC.
25.2.1 COMPANY OVERVIEW
25.2.2 REVENUE ANALYSIS
25.2.3 PRODUCT PORTFOLIO
25.2.4 RECENT DEVELOPMENTS
25.3 NVIDIA CORPORATION + ASTRAZENECA
25.3.1 COMPANY OVERVIEW
25.3.2 REVENUE ANALYSIS
25.3.3 PRODUCT PORTFOLIO
25.3.4 RECENT DEVELOPMENTS
25.4 ATOMWISE INC.
25.4.1 COMPANY OVERVIEW
25.4.2 REVENUE ANALYSIS
25.4.3 PRODUCT PORTFOLIO
25.4.4 RECENT DEVELOPMENTS
25.5 DEEP GENOMICS
25.5.1 COMPANY OVERVIEW
25.5.2 REVENUE ANALYSIS
25.5.3 PRODUCT PORTFOLIO
25.5.4 RECENT DEVELOPMENTS
25.6 CLOUD PHARMACEUTICALS INC.
25.6.1 COMPANY OVERVIEW
25.6.2 REVENUE ANALYSIS
25.6.3 PRODUCT PORTFOLIO
25.6.4 RECENT DEVELOPMENTS
25.7 INSILICO MEDICINE
25.7.1 COMPANY OVERVIEW
25.7.2 REVENUE ANALYSIS
25.7.3 PRODUCT PORTFOLIO
25.7.4 RECENT DEVELOPMENTS
25.8 BENEVOLENTAI
25.8.1 COMPANY OVERVIEW
25.8.2 REVENUE ANALYSIS
25.8.3 PRODUCT PORTFOLIO
25.8.4 RECENT DEVELOPMENTS
25.9 EXSCIENTIA
25.9.1 COMPANY OVERVIEW
25.9.2 REVENUE ANALYSIS
25.9.3 PRODUCT PORTFOLIO
25.9.4 RECENT DEVELOPMENTS
25.1 CYCLICA
25.10.1 COMPANY OVERVIEW
25.10.2 REVENUE ANALYSIS
25.10.3 PRODUCT PORTFOLIO
25.10.4 RECENT DEVELOPMENTS
25.11 OWKIN, INC
25.11.1 COMPANY OVERVIEW
25.11.2 REVENUE ANALYSIS
25.11.3 PRODUCT PORTFOLIO
25.11.4 RECENT DEVELOPMENTS
25.12 ENVISAGENICS
25.12.1 COMPANY OVERVIEW
25.12.2 REVENUE ANALYSIS
25.12.3 PRODUCT PORTFOLIO
25.12.4 RECENT DEVELOPMENTS
25.13 NUMEDII, INC.
25.13.1 COMPANY OVERVIEW
25.13.2 REVENUE ANALYSIS
25.13.3 PRODUCT PORTFOLIO
25.13.4 RECENT DEVELOPMENTS
25.14 BIOSYNTAGMA
25.14.1 COMPANY OVERVIEW
25.14.2 REVENUE ANALYSIS
25.14.3 PRODUCT PORTFOLIO
25.14.4 RECENT DEVELOPMENTS
25.15 COLLABORATIONS PHARMACEUTICALS, INC.
25.15.1 COMPANY OVERVIEW
25.15.2 REVENUE ANALYSIS
25.15.3 PRODUCT PORTFOLIO
25.15.4 RECENT DEVELOPMENTS
25.16 INVENIAI LLC
25.16.1 COMPANY OVERVIEW
25.16.2 REVENUE ANALYSIS
25.16.3 PRODUCT PORTFOLIO
25.16.4 RECENT DEVELOPMENTS
25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION
25.17.1 COMPANY OVERVIEW
25.17.2 REVENUE ANALYSIS
25.17.3 PRODUCT PORTFOLIO
25.17.4 RECENT DEVELOPMENTS
25.18 VALO HEALTH
25.18.1 COMPANY OVERVIEW
25.18.2 REVENUE ANALYSIS
25.18.3 PRODUCT PORTFOLIO
25.18.4 RECENT DEVELOPMENTS
25.19 AIFORIA
25.19.1 COMPANY OVERVIEW
25.19.2 REVENUE ANALYSIS
25.19.3 PRODUCT PORTFOLIO
25.19.4 RECENT DEVELOPMENTS
25.2 CHEMALIVE
25.20.1 COMPANY OVERVIEW
25.20.2 REVENUE ANALYSIS
25.20.3 PRODUCT PORTFOLIO
25.20.4 RECENT DEVELOPMENTS
25.21 DEEPMATTER GROUP LIMITED
25.21.1 COMPANY OVERVIEW
25.21.2 REVENUE ANALYSIS
25.21.3 PRODUCT PORTFOLIO
25.21.4 RECENT DEVELOPMENTS
25.22 MABSILICO.
25.22.1 COMPANY OVERVIEW
25.22.2 REVENUE ANALYSIS
25.22.3 PRODUCT PORTFOLIO
25.22.4 RECENT DEVELOPMENTS
25.23 OPTIBRIUM, LTD.
25.23.1 COMPANY OVERVIEW
25.23.2 REVENUE ANALYSIS
25.23.3 PRODUCT PORTFOLIO
25.23.4 RECENT DEVELOPMENTS
25.24 ABBVIE AND BIGHAT BIOSCIENCES
25.24.1 COMPANY OVERVIEW
25.24.2 REVENUE ANALYSIS
25.24.3 PRODUCT PORTFOLIO
25.24.4 RECENT DEVELOPMENTS
25.25 ADAGENE
25.25.1 COMPANY OVERVIEW
25.25.2 REVENUE ANALYSIS
25.25.3 PRODUCT PORTFOLIO
25.25.4 RECENT DEVELOPMENTS
25.26 PEPTICOM LTD.
25.26.1 COMPANY OVERVIEW
25.26.2 REVENUE ANALYSIS
25.26.3 PRODUCT PORTFOLIO
25.26.4 RECENT DEVELOPMENTS
25.27 DEARGEN INC.
25.27.1 COMPANY OVERVIEW
25.27.2 REVENUE ANALYSIS
25.27.3 PRODUCT PORTFOLIO
25.27.4 RECENT DEVELOPMENTS
25.28 GERO.AI
25.28.1 COMPANY OVERVIEW
25.28.2 REVENUE ANALYSIS
25.28.3 PRODUCT PORTFOLIO
25.28.4 RECENT DEVELOPMENTS
25.29 3BIGS CO. LTD.
25.29.1 COMPANY OVERVIEW
25.29.2 REVENUE ANALYSIS
25.29.3 PRODUCT PORTFOLIO
25.29.4 RECENT DEVELOPMENTS
25.3 BPGBIO INC.
25.30.1 COMPANY OVERVIEW
25.30.2 REVENUE ANALYSIS
25.30.3 PRODUCT PORTFOLIO
25.30.4 RECENT DEVELOPMENTS
25.31 SCHRÖDINGER, INC.
25.31.1 COMPANY OVERVIEW
25.31.2 REVENUE ANALYSIS
25.31.3 PRODUCT PORTFOLIO
25.31.4 RECENT DEVELOPMENTS
25.32 XTALPI INC.
25.32.1 COMPANY OVERVIEW
25.32.2 REVENUE ANALYSIS
25.32.3 PRODUCT PORTFOLIO
25.32.4 RECENT DEVELOPMENTS
25.33 BIOAGE INC.
25.33.1 COMPANY OVERVIEW
25.33.2 REVENUE ANALYSIS
25.33.3 PRODUCT PORTFOLIO
25.33.4 RECENT DEVELOPMENTS
26 RELATED REPORTS
27 QUESTIONNAIRE
28 CONCLUSION
29 ABOUT DATA BRIDGE MARKET RESEARCH
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

