Анализ объема, доли и тенденций глобального рынка искусственного интеллекта (ИИ) в разработке лекарственных препаратов – обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Анализ объема, доли и тенденций глобального рынка искусственного интеллекта (ИИ) в разработке лекарственных препаратов – обзор отрасли и прогноз до 2032 года

  • Healthcare
  • Upcoming Report
  • Mar 2025
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60
  • Author : Sachin Pawar

Обходите тарифные трудности с помощью гибкого консалтинга в области цепочки поставок

Анализ экосистемы цепочки поставок теперь является частью отчетов DBMR

Global Artificial Intelligence Ai In Drug Discovery Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 981.64 Million USD 1,483.82 Million 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 981.64 Million
Diagram Размер рынка (прогнозируемый год)
USD 1,483.82 Million
Diagram CAGR
%
Diagram Основные игроки рынка
  • Dummy1
  • Dummy2
  • Dummy3
  • Dummy4
  • Dummy5

Сегментация глобального рынка искусственного интеллекта (ИИ) в разработке лекарств по области применения (новые кандидаты на лекарства, оптимизация и перепрофилирование доклинических испытаний и одобрений лекарств, мониторинг лекарств, поиск новых мишеней и путей развития, понимание механизмов заболеваний, агрегация и синтез информации, формирование и проверка гипотез, разработка новых лекарств, поиск мишеней для старых лекарств и др.), технологиям (машинное обучение, глубокое обучение, обработка естественного языка и др.), типу лекарств (малые и большие молекулы), предложению (программное обеспечение и услуги), показанию (иммуноонкология, нейродегенеративные заболевания, сердечно-сосудистые заболевания, метаболические заболевания и др.), конечному использованию (контрактные исследовательские организации (CRO), фармацевтические и биотехнологические компании, исследовательские центры и академические институты и др.) — тенденции отрасли и прогноз до 2032 г.

Искусственный интеллект (ИИ) на рынке разработки лекарств

Искусственный интеллект (ИИ) в сфере разработки лекарств

  • Глобальный рынок искусственного интеллекта (ИИ) в сфере разработки лекарственных препаратов в 2024 году оценивался в 981,64 млн долларов США и, как ожидается, достигнет 1483,82 млн долларов США к 2032 году.
  • В прогнозируемый период с 2025 по 2032 год рынок, вероятно, будет расти среднегодовыми темпами на 5,30%, в первую очередь за счет повышения доступности медицинских данных.
  • Этот рост обусловлен такими факторами, как рост распространенности хронических заболеваний и достижения в области технологий искусственного интеллекта, которые улучшают процессы разработки лекарственных препаратов.

Искусственный интеллект (ИИ) в анализе рынка разработки лекарств

  • Рынок переживает стремительный рост, обусловленный достижениями в области технологий искусственного интеллекта, таких как машинное обучение и глубокое обучение, которые оптимизируют процессы разработки лекарственных препаратов и снижают затраты.
  • ИИ широко применяется для оптимизации лекарственных средств, перепрофилирования, доклинических испытаний и разработки клинических испытаний, что значительно ускоряет сроки разработки лекарств.
  • Северная Америка лидирует на рынке благодаря своему развитому фармацевтическому сектору, в то время как Азиатско-Тихоокеанский регион, как ожидается, будет расти быстрыми темпами, чему будет способствовать увеличение инвестиций в исследования и разработки.

Например, технологии искусственного интеллекта, такие как машинное обучение и глубокое обучение, используются для прогнозирования показателей успешности клинических испытаний, оптимизации потенциальных лекарственных препаратов и выявления новых терапевтических целей, что значительно сокращает время и стоимость разработки лекарств.

  • Внедрение ИИ в процесс разработки лекарственных препаратов произвело революцию в фармацевтической отрасли, решив такие проблемы, как высокие затраты, длительные сроки и низкие показатели успешности традиционных процессов разработки лекарств.

Область применения отчета и искусственный интеллект (ИИ) в сегментации рынка разработки лекарственных препаратов

Атрибуты

Искусственный интеллект (ИИ) в разработке лекарств: ключевые аспекты рынка

Охваченные сегменты

  • По области применения : новые лекарственные препараты-кандидаты, оптимизация и повторное использование лекарственных препаратов, доклинические испытания и одобрение, мониторинг лекарственных препаратов, поиск новых мишеней и путей, связанных с заболеваниями, понимание механизмов заболеваний, агрегация и синтез информации, формирование и проверка гипотез, разработка новых лекарственных препаратов, поиск мишеней для старых препаратов и другие
  • По технологиям:   машинное обучение, глубокое обучение , обработка естественного языка и другие
  • По типу препарата:  малая молекула и большая молекула
  • Предлагая:  программное обеспечение и услуги
  • Показания : иммуноонкология, нейродегенеративные заболевания, сердечно-сосудистые заболевания, метаболические заболевания и другие
  • По конечному использованию : контрактные исследовательские организации (КИО), фармацевтические и биотехнологические компании, исследовательские центры и академические институты и другие.

Охваченные страны

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальной Азиатско-Тихоокеанский регион

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

  • Корпорация NVIDIA (США)
  • IBM Corp. (США)
  • Atomwise Inc. (США)
  • Microsoft (США)
  • Доброжелательный ИИ (Великобритания)
  • Aria Pharmaceuticals, Inc. (США)
  • ГЛУБОКАЯ ГЕНОМИКА (Канада)
  • Exscientia (Великобритания)
  • Insilico Medicine (Гонконг)
  • Циклика (Канада)
  • NuMedii, Inc. (США)
  • Envisagenics (США)
  • Owkin Inc. (США)
  • BERG LLC (США)
  • Schrödinger, Inc. (США)
  • XtalPi Inc. (Китай)
  • BIOAGE Inc. (США)

Рыночные возможности

  • Рост инвестиций в НИОКР в фармацевтической промышленности
  • Улучшенное прогностическое моделирование для клинических испытаний

Информационные наборы данных с добавленной стоимостью

Помимо информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают анализ импорта и экспорта, обзор производственных мощностей, анализ потребления продукции, анализ ценовых тенденций, сценарий изменения климата, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу.

Искусственный интеллект (ИИ) в тенденциях рынка разработки лекарств

«Инновации на основе ИИ, революционизирующие процесс открытия лекарств»

  • Одной из заметных тенденций на рынке ИИ для разработки лекарственных препаратов является растущее внедрение технологий машинного обучения и глубокого обучения для оптимизации процессов разработки лекарственных препаратов .
  • Эти передовые технологии повышают эффективность и точность разработки новых лекарственных препаратов за счет анализа обширных наборов данных, прогнозирования свойств связывания молекул и выявления потенциальных кандидатов на новые лекарственные препараты.
  • Например, платформы на базе искусственного интеллекта используются для перепрофилирования существующих лекарств для новых терапевтических областей, что значительно сокращает время и затраты, связанные с традиционными методами разработки лекарств.
  • Интеграция ИИ также позволяет улучшить дизайн клинических испытаний за счет прогнозирования показателей успешности и определения групп пациентов, что повышает общую успешность разработки лекарственных препаратов.
  • Эта тенденция трансформирует фармацевтическую отрасль, ускоряет разработку инновационных методов лечения и решает неудовлетворенные потребности медицины, тем самым стимулируя спрос на решения на основе ИИ на рынке.

Динамика рынка разработки новых лекарств с использованием искусственного интеллекта (ИИ)

Водитель

«Рост инвестиций в НИОКР в фармацевтической промышленности»

  • Фармацевтические компании увеличивают бюджеты на НИОКР для разработки новых лекарственных препаратов и методов лечения, гарантируя свою конкурентоспособность и удовлетворение меняющихся потребностей пациентов.
  • Инструменты ИИ интегрируются в процессы НИОКР для улучшения процесса открытия новых лекарственных препаратов, позволяя быстрее идентифицировать кандидаты на лекарственные препараты, повышать показатели успешности и оптимизировать исследования на ранних стадиях.
  • ИИ обеспечивает высокопроизводительный скрининг, значительно ускоряя процесс тестирования соединений и выявления перспективных кандидатов для дальнейшей разработки.
  • ИИ может обрабатывать большие наборы данных из геномики, клинических испытаний и демографических данных пациентов для обнаружения скрытых закономерностей, ускоряя идентификацию новых терапевтических целей.
  • Благодаря алгоритмам искусственного интеллекта, оптимизирующим набор пациентов и разработку исследований, фармацевтические компании могут проводить более эффективные клинические испытания, сокращая время и затраты.

Например,

  • Sanofi сотрудничала с Exscientia , используя ИИ для разработки новых лекарственных препаратов, что ускорило их путь к клиническим испытаниям. В рамках одного из совместных проектов им удалось найти перспективный препарат для лечения аутоиммунных заболеваний, затратив на это гораздо меньше времени, чем при использовании традиционных методов.
  • GlaxoSmithKline (GSK) и 24M совместно работают над применением ИИ для оптимизации процесса НИОКР, включая выявление новых лекарственных препаратов и ускорение разработки новых методов лечения, например, редких заболеваний.
  • Растущие инвестиции в НИОКР в сочетании с возможностями искусственного интеллекта значительно повышают способность фармацевтической отрасли быстрее, эффективнее и точнее открывать новые лекарственные препараты.

Возможность

«Улучшенное прогностическое моделирование для клинических испытаний»

  • ИИ может оптимизировать дизайн клинических испытаний, определяя наиболее подходящие параметры испытаний, такие как размер выборки, конечные точки и схемы лечения, что приводит к более эффективным и результативным исследованиям.
  • Анализируя электронные медицинские карты и другие данные, ИИ может помочь определить подходящих пациентов для клинических испытаний на основе определенных критериев включения/исключения, повышая скорость и точность набора пациентов.
  • Модели ИИ способны прогнозировать вероятный успех или неудачу клинического испытания на основе исторических данных и информации в режиме реального времени, что позволяет вносить ранние корректировки в протоколы испытаний и повышать шансы на успех.
  • Используя прогностическую аналитику, ИИ может выявлять пациентов, подверженных риску отказа от участия в исследовании, и предлагать меры по поддержанию их вовлеченности, тем самым сокращая количество незавершенных исследований.
  • Способность ИИ оптимизировать процесс клинических испытаний — от отбора участников до прогнозирования результатов — может значительно сократить затраты, связанные с традиционными методами испытаний.

Например,

  • Компания Pfizer совместно с IBM Watson Health использовала искусственный интеллект (ИИ) для оптимизации набора участников клинических исследований и оптимизации дизайна исследований по разработке лечения редкого заболевания. Подход на основе ИИ помог ускорить набор участников и улучшить результаты исследований.
  • Компания Novartis использовала ИИ для прогнозирования ответа пациентов и оптимизации дизайна исследований генной терапии. Этот подход, основанный на ИИ, позволил разработать более целевые методы лечения и повысить эффективность клинических испытаний.
  • Способность ИИ улучшать прогностическое моделирование в клинических испытаниях дает значительные преимущества, включая более эффективные проекты испытаний, более быстрый набор пациентов, снижение затрат и улучшение результатов испытаний, что в конечном итоге ускоряет разработку новых методов лечения.

Сдержанность/Вызов

«Высокие первоначальные инвестиционные затраты»

  • Инструменты на базе ИИ требуют дорогостоящей технологической инфраструктуры, включая мощные вычислительные системы, решения для хранения данных и специализированное программное обеспечение, что обуславливает высокие первоначальные инвестиции.
  • Привлечение квалифицированных специалистов, таких как специалисты по обработке данных, эксперты по ИИ и исследователи в области биофармацевтики, обладающих знаниями как в области ИИ, так и в области разработки лекарственных препаратов, требует больших затрат, что увеличивает финансовое бремя внедрения ИИ в НИОКР.
  • Интеграция инструментов ИИ в существующие рабочие процессы по разработке лекарственных препаратов, особенно в устаревшие системы, требует значительных финансовых ресурсов на адаптацию, обучение и оптимизацию.
  • Технологии искусственного интеллекта требуют постоянного обслуживания, обновления программного обеспечения и модернизации оборудования, чтобы оставаться в курсе последних достижений в области машинного обучения и аналитики данных, что приводит к долгосрочным эксплуатационным расходам.
  • Системы ИИ в разработке лекарственных препаратов зависят от обширных высококачественных наборов данных, а приобретение или лицензирование таких наборов данных может быть дорогостоящим для небольших компаний или стартапов, что еще больше увеличивает стоимость внедрения ИИ.

Например,

  • Компания BenevolentAI вложила значительные средства в платформы для разработки лекарств на основе ИИ и экспертные знания, чтобы оптимизировать процесс разработки лекарств, уделяя особое внимание онкологии. Несмотря на первоначальные высокие инвестиции, их подход позволил ускорить разработку лекарств и повысить показатели успешности.
  • Insilico Medicine , стартапу, использующему ИИ для разработки лекарств, потребовались значительные первоначальные инвестиции для создания своей платформы на базе ИИ, которая позволила им ускорить разработку лекарств от таких заболеваний, как фиброз и рак. Однако затраты были высокими и мелким конкурентам было сложно с ними конкурировать.
  • Высокие первоначальные инвестиции в ИИ для разработки лекарств создают барьер для небольших компаний и стартапов, ограничивая их способность конкурировать с крупными организациями, которые могут себе позволить эти технологии. Для решения этой проблемы могут потребоваться инновационные модели финансирования или партнерства, чтобы сделать ИИ более доступным для более широкого круга участников фармацевтической отрасли.

Искусственный интеллект (ИИ) на рынке разработки лекарств

Рынок сегментирован по принципу применения, типа продукта, технологии, типа увеличения, конечного пользователя и канала сбыта.

Сегментация

Подсегментация

По применению

  • Новые кандидаты на лекарственные препараты
  • Оптимизация и повторное использование лекарств
  • Доклинические испытания и одобрение
  • Мониторинг наркотиков
  • Поиск новых целей и путей, связанных с заболеваниями
  • Понимание механизмов заболевания
  • Агрегирование и синтез информации
  • Формирование и квалификация гипотез
  • Разработка лекарств De Novo
  • Поиск лекарственных препаратов-мишеней для старого препарата
  • Другие

По технологии

  • Машинное обучение
  • Глубокое обучение
  • Обработка естественного языка
  • Другие

По типу препарата

  • Малая молекула
  • Большая молекула

Предлагая

  • Программное обеспечение
  • Услуги

По показаниям

  • Иммуноонкология
  • Нейродегенеративные заболевания
  • Сердечно-сосудистые заболевания
  • Метаболические заболевания
  • Другие

По конечному использованию

 

  • Контрактные исследовательские организации (КИО)
  • Фармацевтические и биотехнологические компании
  • Научно-исследовательские центры и академические институты
  • Другие

Искусственный интеллект (ИИ) в региональном анализе рынка разработки лекарств

«Северная Америка является доминирующим регионом на рынке искусственного интеллекта (ИИ) для разработки новых лекарств»

  • Северная Америка доминирует на рынке искусственного интеллекта (ИИ) в разработке лекарственных препаратов , чему способствуют развитая инфраструктура здравоохранения, широкое внедрение передовых медицинских технологий и сильное присутствие ключевых игроков рынка.
  • В США расположены крупнейшие фармацевтические компании, такие как Pfizer , Johnson & Johnson , Merck и Eli Lilly , которые являются лидерами в области внедрения ИИ для разработки лекарственных препаратов. Эти компании вкладывают значительные средства в ИИ, чтобы оптимизировать процесс разработки лекарств и улучшить результаты.
  • В Северной Америке существует хорошо развитая технологическая экосистема, где такие крупные игроки в области ИИ, как IBM Watson Health и Google DeepMind, стимулируют инновации в области разработки лекарственных препаратов. Эти компании лидируют в исследованиях ИИ и предоставляют мощные инструменты ИИ для фармацевтических исследований и разработок.
  • Северная Америка стабильно инвестирует значительную часть своего ВВП в исследования и разработки (НИОКР). Это финансирование стимулирует внедрение передовых технологий искусственного интеллекта в разработку лекарственных препаратов, поскольку компании ищут способы ускорить разработку новых лекарств и методов лечения.
  • В Северной Америке наблюдается множество партнерств между фармацевтическими компаниями и стартапами или технологическими компаниями, работающими в сфере ИИ. Например, такие примеры сотрудничества, как сотрудничество Novartis и Microsoft по использованию ИИ для разработки лекарственных препаратов, подчеркивают лидерство региона в использовании ИИ для инноваций в разработке лекарств.

«Прогнозируется, что в Азиатско-Тихоокеанском регионе будут зафиксированы самые высокие темпы роста»

  • Ожидается, что Азиатско-Тихоокеанский регион станет свидетелем самых высоких темпов роста в области искусственного интеллекта (ИИ) в области разработки лекарственных препаратов , что будет обусловлено быстрым расширением инфраструктуры здравоохранения, повышением осведомленности о здоровье глаз и увеличением объемов хирургических операций.
  • Такие страны, как Китай , Индия и Япония, активно инвестируют в ИИ и биотехнологии , стремясь улучшить свой фармацевтический сектор и удовлетворить растущие потребности здравоохранения. Эти инвестиции ускоряют внедрение ИИ в разработку лекарственных препаратов.
  • Правительства стран Азиатско-Тихоокеанского региона активно продвигают цифровое здравоохранение и интеграцию ИИ посредством различных инициатив. Например, Китай внедрил национальные стратегии по внедрению ИИ в здравоохранение, способствуя росту использования ИИ в разработке лекарственных препаратов.
  • Страны Азиатско-Тихоокеанского региона обладают большой численностью населения и огромными объёмами медицинских данных, которые можно использовать для разработки лекарств с помощью ИИ. Мощная цифровая инфраструктура региона поддерживает интеграцию технологий ИИ в разработку лекарств.
  • Азиатско -Тихоокеанский регион (АТР) является самым быстрорастущим на рынке ИИ для разработки лекарственных препаратов, чему способствуют увеличение инвестиций, поддерживающая государственная политика, большой массив данных и расширение биотехнологических компаний, использующих технологию ИИ.

Доля искусственного интеллекта (ИИ) на рынке разработки лекарств

В разделе «Конкурентная среда рынка» представлена подробная информация по конкурентам. В неё включены: описание компании, её финансовые показатели, полученная выручка, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, глобальное присутствие, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, широта и разнообразие продуктов, доминирующие области применения. Представленные выше данные относятся только к рыночным интересам компаний.

Основными лидерами рынка, работающими на рынке, являются:

  • Корпорация NVIDIA (США)
  • IBM Corp. (США)
  • Atomwise Inc. (США)
  • Microsoft (США)
  • Доброжелательный ИИ (Великобритания)
  • Aria Pharmaceuticals, Inc. (США)
  • ГЛУБОКАЯ ГЕНОМИКА (Канада)
  • Exscientia (Великобритания)
  • Insilico Medicine (Гонконг)
  • Циклика (Канада)
  • NuMedii, Inc. (США)
  • Envisagenics (США)
  • Owkin Inc. (США)
  • BERG LLC (США)
  • Schrödinger, Inc. (США)
  • XtalPi Inc. (Китай)
  • BIOAGE Inc. (США)

Последние разработки в области глобального искусственного интеллекта (ИИ) на рынке разработки лекарственных препаратов

  • В мае 2024 года компания Google DeepMind представила третью версию своей модели искусственного интеллекта AlphaFold, предназначенную для оптимизации разработки лекарств и повышения эффективности таргетирования заболеваний. Эта усовершенствованная версия позволяет исследователям DeepMind и Isomorphic Labs анализировать поведение любых молекул, включая ДНК человека.
  • В апреле 2024 года Xaira Therapeutics, инновационная компания, специализирующаяся на разработке и поиске лекарственных препаратов с использованием искусственного интеллекта, привлекла более 1 миллиона долларов США в рамках совместного раунда финансирования с ARCH Venture Partners и Foresite Labs. Используя машинное обучение, модели генерации данных и разработку терапевтических продуктов, компания фокусируется на решении задач, которые традиционно представляли сложность для лекарственных препаратов.
  • В декабре 2023 года MilliporeSigma, подразделение Merck в области естественных наук, запустило AIDDISON — передовое программное обеспечение для разработки лекарственных препаратов. Эта платформа стирает разрыв между виртуальным проектированием молекул и реальным производством, интегрируя API-интерфейс Synthia для ретросинтеза. Она сочетает в себе генеративный ИИ, машинное обучение и автоматизированное проектирование лекарственных препаратов для оптимизации процессов разработки.
  • В мае 2023 года Google запустила два инновационных инструмента на основе искусственного интеллекта, призванных помочь биотехнологическим и фармацевтическим компаниям ускорить разработку новых лекарственных препаратов и усовершенствовать методы прецизионной медицины. Эти решения призваны сократить время и затраты, связанные с выводом новых препаратов на рынок США. Среди первых, кто внедрил эти инструменты, — Cerevel Therapeutics, Pfizer и Colossal Biosciences .


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Содержание

1 INTRODUCTION

1.1 OBJECTIVES OF THE STUDY

1.2 MARKET DEFINITION

1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET

1.4 CURRENCY AND PRICING

1.5 LIMITATION

1.6 MARKETS COVERED

2 MARKET SEGMENTATION

2.1 KEY TAKEAWAYS

2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET SIZE

2.3 VENDOR POSITIONING GRID

2.4 MARKETS COVERED

2.5 GEOGRAPHIC SCOPE

2.6 YEARS CONSIDERED FOR THE STUDY

2.7 RESEARCH METHODOLOGY

2.8 TECHNOLOGY LIFE LINE CURVE

2.9 MULTIVARIATE MODELLING

2.1 PRIMARY INTERVIEWS WITH KEY OPINION LEADERS

2.11 DBMR MARKET POSITION GRID

2.12 MARKET APPLICATION COVERAGE GRID

2.13 DBMR MARKET CHALLENGE MATRIX

2.14 SECONDARY SOURCES

2.15 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET: RESEARCH SNAPSHOT

2.16 ASSUMPTIONS

3 MARKET OVERVIEW

3.1 DRIVERS

3.2 RESTRAINTS

3.3 OPPORTUNITIES

3.4 CHALLENGES

4 EXECUTIVE SUMMARY

5 PREMIUM INSIGHTS

5.1 PESTEL ANALYSIS

5.2 PORTER’S FIVE FORCES MODEL

6 INDUSTRY INSIGHTS

6.1 MICRO AND MACRO ECONOMIC FACTORS

6.2 PENETRATION AND GROWTH PROSPECT MAPPING

6.3 KEY PRICING STRATEGIES

6.4 INTERVIEWS WITH SPECIALIST

6.5 ANALYIS AND RECOMMENDATION

7 INTELLECTUAL PROPERTY (IP) PORTFOLIO

7.1 PATENT QUALITY AND STRENGTH

7.2 PATENT FAMILIES

7.3 LICENSING AND COLLABORATIONS

7.4 COMPETITIVE LANDSCAPE

7.5 IP STRATEGY AND MANAGEMENT

7.6 OTHER

8 COST ANALYSIS BREAKDOWN

9 TECHNONLOGY ROADMAP

10 INNOVATION TRACKER AND STRATEGIC ANALYSIS

10.1 MAJOR DEALS AND STRATEGIC ALLIANCES ANALYSIS

10.1.1 JOINT VENTURES

10.1.2 MERGERS AND ACQUISITIONS

10.1.3 LICENSING AND PARTNERSHIP

10.1.4 TECHNOLOGY COLLABORATIONS

10.1.5 STRATEGIC DIVESTMENTS

10.2 NUMBER OF PRODUCTS IN DEVELOPMENT

10.3 STAGE OF DEVELOPMENT

10.4 TIMELINES AND MILESTONES

10.5 INNOVATION STRATEGIES AND METHODOLOGIES

10.6 RISK ASSESSMENT AND MITIGATION

10.7 FUTURE OUTLOOK

11 REGULATORY COMPLIANCE

11.1 REGULATORY AUTHORITIES

11.2 REGULATORY CLASSIFICATIONS

11.2.1 CLASS I

11.2.2 CLASS II

11.2.3 CLASS III

11.3 REGULATORY SUBMISSIONS

11.4 INTERNATIONAL HARMONIZATION

11.5 COMPLIANCE AND QUALITY MANAGEMENT SYSTEMS

11.6 REGULATORY CHALLENGES AND STRATEGIES

12 REIMBURSEMENT FRAMEWORK

13 OPPUTUNITY MAP ANALYSIS

14 VALUE CHAIN ANALYSIS

15 HEALTHCARE ECONOMY

15.1 HEALTHCARE EXPENDITURE

15.2 CAPITAL EXPENDITURE

15.3 CAPEX TRENDS

15.4 CAPEX ALLOCATION

15.5 FUNDING SOURCES

15.6 INDUSTRY BENCHMARKS

15.7 GDP RATION IN OVERALL GDP

15.8 HEALTHCARE SYSTEM STRUCTURE

15.9 GOVERNMENT POLICIES

15.1 ECONOMIC DEVELOPMENT

16 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY OFFERING

16.1 OVERVIEW

16.2 SOFTWARE

16.2.1 INTEGRATED

16.2.2 STANDALONE

16.3 SERVICES

17 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY TECHNOLOGY

17.1 OVERVIEW

17.2 MACHINE LEARNING (ML)

17.2.1 SUPERVISED LEARNING

17.2.2 UNSUPERVISED LEARNING

17.2.3 REINFORCEMENT LEARNING

17.3 DEEP LEARNING

17.4 NATURAL LANGUAGE PROCESSING (NLP)

17.5 OTHERS

18 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY DRUG TYPE

18.1 OVERVIEW

18.2 SMALL MOLECULE

18.3 LARGE MOLECULE

19 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY APPLICATION

19.1 OVERVIEW

19.2 NOVEL DRUG CANDIDATES

19.2.1 IDENTIFY BIOLOGICS TARGET

19.2.2 PREDICT BIOACTIVITY OF SMALL MOLECULE

19.2.3 OTHERS

19.3 DRUG OPTIMISATION AND REPURPOSING PRECLINICAL TESTING AND APPROVAL

19.4 DRUG MONITORING

19.5 FINDING NEW DISEASES ASSOCIATED TARGETS AND PATHWAYS

19.6 UNDERSTANDING DISEASE MECHANISMS

19.7 AGGREGATING AND SYNTHESIZING INFORMATION

19.8 FORM ATION & QUALIFICATION OF HYPOTHESES

19.9 DE NOVO DRUG DESIGN

19.1 FINDING DRUG TARGETS OF AN OLD DRUG

19.11 OTHERS

20 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY INDICATION

20.1 OVERVIEW

20.2 IMMUNO-ONCOLOGY

20.2.1 PROSTATE CANCER

20.2.2 BREAST CANCER

20.2.3 BRAIN CANCER

20.2.4 LUNG CANCER

20.2.5 PANCREATIC CANCER

20.2.6 COLORECTAL CANCER

20.2.7 LEUKEMIA

20.2.8 OTHERS

20.3 NEURODEGENERATIVE DISEASES

20.4 CARDIOVASCULAR DISEASES

20.5 METABOLIC DISEASES

20.6 OTHERS

21 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY END USER

21.1 OVERVIEW

21.2 PHARMACEUTICAL & BIOTECHNOLOGY COMPANIES

21.3 CONTRACT RESEARCH ORGANIZATIONS

21.4 RESEARCH CENTRES AND ACADEMIC INSTITUTES

21.5 OTHERS

22 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, BY REGION, 2022-2031, (USD MILLION)

GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)

22.1 OVERVIEW

22.2 NORTH AMERICA

22.2.1 U.S.

22.2.2 CANADA

22.2.3 MEXICO

22.3 EUROPE

22.3.1 GERMANY

22.3.2 U.K.

22.3.3 ITALY

22.3.4 FRANCE

22.3.5 SPAIN

22.3.6 SWITZERLAND

22.3.7 RUSSIA

22.3.8 TURKEY

22.3.9 BELGIUM

22.3.10 NETHERLANDS

22.3.11 REST OF EUROPE

22.4 ASIA-PACIFIC

22.4.1 JAPAN

22.4.2 CHINA

22.4.3 SOUTH KOREA

22.4.4 INDIA

22.4.5 AUSTRALIA & NEW ZEALAND

22.4.6 SINGAPORE

22.4.7 THAILAND

22.4.8 INDONESIA

22.4.9 MALAYSIA

22.4.10 PHILIPPINES

22.4.11 REST OF ASIA-PACIFIC

22.5 SOUTH AMERICA

22.5.1 BRAZIL

22.5.2 ARGENTINA

22.5.3 REST OF SOUTH AMERICA

22.6 MIDDLE EAST AND AFRICA

22.6.1 SOUTH AFRICA

22.6.2 EGYPT

22.6.3 SAUDI ARABIA

22.6.4 UNITED ARAB EMIRATES

22.6.5 ISRAEL

22.6.6 REST OF MIDDLE EAST AND AFRICA

23 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY LANDSCAPE

23.1 COMPANY SHARE ANALYSIS: GLOBAL

23.2 COMPANY SHARE ANALYSIS: NORTH AMERICA

23.3 COMPANY SHARE ANALYSIS: EUROPE

23.4 COMPANY SHARE ANALYSIS: ASIA-PACIFIC

23.5 MERGERS & ACQUISITIONS

23.6 NEW PRODUCT DEVELOPMENT & APPROVALS

23.7 EXPANSIONS

23.8 REGULATORY CHANGES

23.9 PARTNERSHIP AND OTHER STRATEGIC UPDATES

24 SWOT ANALYSIS AND DATA BRIDGE MARKET RESEARCH ANALYSIS

25 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN DRUG DISCOVERY MARKET, COMPANY PROFILE

25.1 MICROSOFT

25.1.1 COMPANY OVERVIEW

25.1.2 REVENUE ANALYSIS

25.1.3 PRODUCT PORTFOLIO

25.1.4 RECENT DEVELOPMENTS

25.2 SHANGHAI MEDICILON INC.

25.2.1 COMPANY OVERVIEW

25.2.2 REVENUE ANALYSIS

25.2.3 PRODUCT PORTFOLIO

25.2.4 RECENT DEVELOPMENTS

25.3 NVIDIA CORPORATION + ASTRAZENECA

25.3.1 COMPANY OVERVIEW

25.3.2 REVENUE ANALYSIS

25.3.3 PRODUCT PORTFOLIO

25.3.4 RECENT DEVELOPMENTS

25.4 ATOMWISE INC.

25.4.1 COMPANY OVERVIEW

25.4.2 REVENUE ANALYSIS

25.4.3 PRODUCT PORTFOLIO

25.4.4 RECENT DEVELOPMENTS

25.5 DEEP GENOMICS

25.5.1 COMPANY OVERVIEW

25.5.2 REVENUE ANALYSIS

25.5.3 PRODUCT PORTFOLIO

25.5.4 RECENT DEVELOPMENTS

25.6 CLOUD PHARMACEUTICALS INC.

25.6.1 COMPANY OVERVIEW

25.6.2 REVENUE ANALYSIS

25.6.3 PRODUCT PORTFOLIO

25.6.4 RECENT DEVELOPMENTS

25.7 INSILICO MEDICINE

25.7.1 COMPANY OVERVIEW

25.7.2 REVENUE ANALYSIS

25.7.3 PRODUCT PORTFOLIO

25.7.4 RECENT DEVELOPMENTS

25.8 BENEVOLENTAI

25.8.1 COMPANY OVERVIEW

25.8.2 REVENUE ANALYSIS

25.8.3 PRODUCT PORTFOLIO

25.8.4 RECENT DEVELOPMENTS

25.9 EXSCIENTIA

25.9.1 COMPANY OVERVIEW

25.9.2 REVENUE ANALYSIS

25.9.3 PRODUCT PORTFOLIO

25.9.4 RECENT DEVELOPMENTS

25.1 CYCLICA

25.10.1 COMPANY OVERVIEW

25.10.2 REVENUE ANALYSIS

25.10.3 PRODUCT PORTFOLIO

25.10.4 RECENT DEVELOPMENTS

25.11 OWKIN, INC

25.11.1 COMPANY OVERVIEW

25.11.2 REVENUE ANALYSIS

25.11.3 PRODUCT PORTFOLIO

25.11.4 RECENT DEVELOPMENTS

25.12 ENVISAGENICS

25.12.1 COMPANY OVERVIEW

25.12.2 REVENUE ANALYSIS

25.12.3 PRODUCT PORTFOLIO

25.12.4 RECENT DEVELOPMENTS

25.13 NUMEDII, INC.

25.13.1 COMPANY OVERVIEW

25.13.2 REVENUE ANALYSIS

25.13.3 PRODUCT PORTFOLIO

25.13.4 RECENT DEVELOPMENTS

25.14 BIOSYNTAGMA

25.14.1 COMPANY OVERVIEW

25.14.2 REVENUE ANALYSIS

25.14.3 PRODUCT PORTFOLIO

25.14.4 RECENT DEVELOPMENTS

25.15 COLLABORATIONS PHARMACEUTICALS, INC.

25.15.1 COMPANY OVERVIEW

25.15.2 REVENUE ANALYSIS

25.15.3 PRODUCT PORTFOLIO

25.15.4 RECENT DEVELOPMENTS

25.16 INVENIAI LLC

25.16.1 COMPANY OVERVIEW

25.16.2 REVENUE ANALYSIS

25.16.3 PRODUCT PORTFOLIO

25.16.4 RECENT DEVELOPMENTS

25.17 RECURSION PHARMACEUTICALS, INC. + NVIDIA CORPORATION

25.17.1 COMPANY OVERVIEW

25.17.2 REVENUE ANALYSIS

25.17.3 PRODUCT PORTFOLIO

25.17.4 RECENT DEVELOPMENTS

25.18 VALO HEALTH

25.18.1 COMPANY OVERVIEW

25.18.2 REVENUE ANALYSIS

25.18.3 PRODUCT PORTFOLIO

25.18.4 RECENT DEVELOPMENTS

25.19 AIFORIA

25.19.1 COMPANY OVERVIEW

25.19.2 REVENUE ANALYSIS

25.19.3 PRODUCT PORTFOLIO

25.19.4 RECENT DEVELOPMENTS

25.2 CHEMALIVE

25.20.1 COMPANY OVERVIEW

25.20.2 REVENUE ANALYSIS

25.20.3 PRODUCT PORTFOLIO

25.20.4 RECENT DEVELOPMENTS

25.21 DEEPMATTER GROUP LIMITED

25.21.1 COMPANY OVERVIEW

25.21.2 REVENUE ANALYSIS

25.21.3 PRODUCT PORTFOLIO

25.21.4 RECENT DEVELOPMENTS

25.22 MABSILICO.

25.22.1 COMPANY OVERVIEW

25.22.2 REVENUE ANALYSIS

25.22.3 PRODUCT PORTFOLIO

25.22.4 RECENT DEVELOPMENTS

25.23 OPTIBRIUM, LTD.

25.23.1 COMPANY OVERVIEW

25.23.2 REVENUE ANALYSIS

25.23.3 PRODUCT PORTFOLIO

25.23.4 RECENT DEVELOPMENTS

25.24 ABBVIE AND BIGHAT BIOSCIENCES

25.24.1 COMPANY OVERVIEW

25.24.2 REVENUE ANALYSIS

25.24.3 PRODUCT PORTFOLIO

25.24.4 RECENT DEVELOPMENTS

25.25 ADAGENE

25.25.1 COMPANY OVERVIEW

25.25.2 REVENUE ANALYSIS

25.25.3 PRODUCT PORTFOLIO

25.25.4 RECENT DEVELOPMENTS

25.26 PEPTICOM LTD.

25.26.1 COMPANY OVERVIEW

25.26.2 REVENUE ANALYSIS

25.26.3 PRODUCT PORTFOLIO

25.26.4 RECENT DEVELOPMENTS

25.27 DEARGEN INC.

25.27.1 COMPANY OVERVIEW

25.27.2 REVENUE ANALYSIS

25.27.3 PRODUCT PORTFOLIO

25.27.4 RECENT DEVELOPMENTS

25.28 GERO.AI

25.28.1 COMPANY OVERVIEW

25.28.2 REVENUE ANALYSIS

25.28.3 PRODUCT PORTFOLIO

25.28.4 RECENT DEVELOPMENTS

25.29 3BIGS CO. LTD.

25.29.1 COMPANY OVERVIEW

25.29.2 REVENUE ANALYSIS

25.29.3 PRODUCT PORTFOLIO

25.29.4 RECENT DEVELOPMENTS

25.3 BPGBIO INC.

25.30.1 COMPANY OVERVIEW

25.30.2 REVENUE ANALYSIS

25.30.3 PRODUCT PORTFOLIO

25.30.4 RECENT DEVELOPMENTS

25.31 SCHRÖDINGER, INC.

25.31.1 COMPANY OVERVIEW

25.31.2 REVENUE ANALYSIS

25.31.3 PRODUCT PORTFOLIO

25.31.4 RECENT DEVELOPMENTS

25.32 XTALPI INC.

25.32.1 COMPANY OVERVIEW

25.32.2 REVENUE ANALYSIS

25.32.3 PRODUCT PORTFOLIO

25.32.4 RECENT DEVELOPMENTS

25.33 BIOAGE INC.

25.33.1 COMPANY OVERVIEW

25.33.2 REVENUE ANALYSIS

25.33.3 PRODUCT PORTFOLIO

25.33.4 RECENT DEVELOPMENTS

26 RELATED REPORTS

27 QUESTIONNAIRE

28 CONCLUSION

29 ABOUT DATA BRIDGE MARKET RESEARCH

View Detailed Information Right Arrow

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

The global artificial intelligence (ai) in drug discovery market size was valued at USD 981.64 million in 2024.
The global artificial intelligence (ai) in drug discovery market is to grow at a CAGR of 5.30 % during the forecast period of 2025 to 2032.
The artificial intelligence (ai) in drug discovery market is segmented on the basis of application, technology, drug type, offering, indication, and end use. On the basis of application, the market is segmented into novel drug candidates, drug optimization and repurposing preclinical testing and approval, drug monitoring, finding new diseases associated targets and pathways, understanding disease mechanisms, aggregating and synthesizing information, formation and qualification of hypotheses, de novo drug design, finding drug targets of an old drug and others. On the basis of technology, the market is segmented into machine learning, deep learning, natural language processing, and others. On the basis of drug type, the market is segmented into small molecule and large molecule. On the basis of offering, the market is segmented into software and services. On the basis of indication, the market is segmented into immuno-oncology, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and others. On the basis of end use, the market is segmented into direct contract research organizations (CROS), pharmaceutical and biotechnology companies, research centers and academic institutes, and others.
Companies such as NVIDIA Corporation (U.S.), IBM Corp. (U.S.), Atomwise Inc. (U.S.), Microsoft (U.S.), Benevolent AI (U.K.) are the major companies in the artificial intelligence (ai) in drug discovery market.
In January 2025, Bausch + Lomb Corporation, a global leader in eye health, has announced the commercial launch of its enVista Aspire monofocal and toric intraocular lenses (IOLs) in the European Union, following the receipt of a CE Mark. In September 2024, Haag-Streit announced the launch of METIS, its cutting-edge ophthalmic microscope system, which brings superior optical performance into the operating room with exceptional clarity, a brilliant coaxial red reflex, and optimized optics for precise color reproduction, high light transmission, and an expansive depth of field, making it ideal for delicate ophthalmic procedures. It will be officially launched in Q1 2025
The countries covered in the artificial intelligence (ai) in drug discovery market are U.S., Canada, Mexico, Germany, France, U.K., Italy, Spain, Russia, Turkey, Netherlands, Switzerland, Austria, Poland, Norway, Ireland, Hungary, Lithuania, rest of Europe, China, Japan, India, South Korea, Australia, Taiwan, Philippines, Thailand, Malaysia, Vietnam, Indonesia, Singapore, rest of Asia-Pacific, Brazil, Argentina, Chili, Colombia, Peru, Venezuela, Ecuador, Uruguay, Paraguay ,Bolivia, Trinidad And Tobago, Curaçao, rest Of South America, South Africa, Saudi Arabia, U.A.E, Egypt, Israel, Kuwait, rest of Middle East and Africa, Guatemala, Costa Rica, Honduras, EL Salvador, Nicaragua, and rest of Central America.
The Asia-Pacific (APAC) region is projected to be the fastest-growing market for artificial intelligence (AI) in drug discovery, with a notable compound annual growth rate (CAGR) expected in the coming years. This growth is driven by increasing investments in healthcare infrastructure, rising adoption of AI technologies, and a growing focus on drug discovery and development in the region.
U.S. is expected to dominate the artificial intelligence (AI) in drug discovery market. This is due to its well-established pharmaceutical and biotechnology sectors, significant investments in AI research, and strong collaborations between tech companies and healthcare organizations.
North America holds the largest share in the global artificial intelligence (AI) in drug discovery market. This dominance is attributed to its well-established pharmaceutical industry, significant investments in AI research, and the presence of leading pharmaceutical and biotechnology companies.
China, is expected to witness the highest compound annual growth rate (CAGR) in the artificial intelligence (AI) in drug discovery market. This growth is driven by increasing investments in AI technologies, expanding pharmaceutical industries, and government initiatives supporting innovation in healthcare.
AI-Driven innovations revolutionizing drug discovery, is emerging as a pivotal trend driving the global artificial intelligence (AI) in drug discovery market.
The major factors driving the growth of the artificial intelligence (ai) in drug discovery market is rising R&D investments in pharmaceutical industry.
The primary challenges include high initial investment costs.
The oncology segment is currently dominating the artificial intelligence (AI) in drug discovery market.
Testimonial