Global Artificial Intelligence Ai In Insurance Market
Размер рынка в млрд долларов США
CAGR :
%
USD
6.44 Billion
USD
63.27 Billion
2024
2032
| 2025 –2032 | |
| USD 6.44 Billion | |
| USD 63.27 Billion | |
|
|
|
|
Сегментация мирового рынка искусственного интеллекта (ИИ) в страховании по компонентам (оборудование, программное обеспечение и услуги), технологиям (машинное и глубокое обучение, обработка естественного языка (NLP), машинное зрение и роботизированная автоматизация), модели развертывания (локальные и облачные), размеру предприятий (крупные предприятия и предприятия малого и среднего бизнеса), применению (управление претензиями, управление рисками и соответствие требованиям, чат-боты и другие), сектору (страхование жизни, медицинское страхование, титульное страхование, автострахование и другие) — тенденции отрасли и прогноз до 2032 года
Искусственный интеллект (ИИ) в размере страхового рынка
- Глобальный рынок искусственного интеллекта (ИИ) на страховом рынке оценивался в 6,44 млрд долларов США в 2024 году и, как ожидается, достигнет 63,27 млрд долларов США к 2032 году.
- В прогнозируемый период с 2025 по 2032 год рынок, вероятно, будет расти среднегодовыми темпами в 33,06%, в основном за счет достижений в области предиктивной аналитики.
- Этот рост обусловлен такими факторами, как улучшение оценки рисков и ценообразования, интеграция Интернета вещей и более быстрая обработка претензий.
Искусственный интеллект (ИИ) в анализе рынка страхования
- Искусственный интеллект в страховании подразумевает использование технологий искусственного интеллекта, таких как машинное обучение, обработка естественного языка и предиктивная аналитика, для улучшения оценки рисков, обработки претензий, обнаружения мошенничества и взаимодействия с клиентами.
- Рост рынка обусловлен растущим внедрением автоматизации на базе ИИ, растущим спросом на аналитику данных в реальном времени и потребностью в улучшенном обнаружении мошенничества. Поскольку страховщики внедряют цифровую трансформацию, решения на основе ИИ становятся необходимыми для повышения эффективности и снижения эксплуатационных расходов
- Интеграция ИИ с большими данными, Интернетом вещей и облачными вычислениями меняет ландшафт страхования. Инструменты на базе ИИ позволяют персонализировать ценообразование полисов, автоматизировать андеррайтинг и прогнозное моделирование рисков, оптимизируя процессы принятия решений.
- Например, Lemonade , первая в мире цифровая страховая компания, использует чат-ботов на основе искусственного интеллекта для обработки претензий за считанные минуты, а Allstate использует аналитику на основе искусственного интеллекта для оптимизации рекомендаций по страхованию на основе данных клиентов.
- ИИ на рынке страхования настроен на устойчивый рост, подпитываемый достижениями в области автоматизации, аналитики в реальном времени и принятия решений на основе ИИ. Увеличение инвестиций в InsurTech и спрос на бесперебойный цифровой опыт будут способствовать дальнейшему расширению рынка, при этом страховщики отдают приоритет внедрению ИИ для поддержания конкурентоспособности
Область применения отчета и искусственный интеллект (ИИ) в сегментации рынка страхования
|
Атрибуты |
Искусственный интеллект (ИИ) в страховании. Ключевые аналитики рынка |
|
Охваченные сегменты |
|
|
Страны, охваченные |
Северная Америка
Европа
Азиатско-Тихоокеанский регион
Ближний Восток и Африка
Южная Америка
|
|
Ключевые игроки рынка |
|
|
Возможности рынка |
|
|
Информационные наборы данных с добавленной стоимостью |
Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, рыночный отчет, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов. |
Искусственный интеллект (ИИ) в тенденциях рынка страхования
«Растущее использование чат-ботов и виртуальных помощников на основе искусственного интеллекта»
- Одной из заметных тенденций на мировом рынке искусственного интеллекта (ИИ) на рынке страхования является растущее использование чат-ботов и виртуальных помощников на базе ИИ.
- Эта тенденция обусловлена тем, что страховщики интегрируют диалоговый ИИ для обработки запросов, обработки претензий и предоставления персонализированных рекомендаций по страхованию, что сокращает время реагирования и повышает эффективность.
- Например, виртуальный помощник GEICO Кейт оказывает страхователям помощь в режиме реального времени, а чат-бот на основе искусственного интеллекта Maya от Lemonade обеспечивает бесперебойную обработку претензий в течение нескольких минут.
- Растущий спрос на цифровое круглосуточное обслуживание клиентов ускоряет внедрение чат-ботов на базе искусственного интеллекта в страховой отрасли.
- Поскольку страховщики стремятся сократить операционные расходы и улучшить пользовательский опыт, роль разговорного ИИ будет продолжать расти. Ожидается, что будущие достижения в области эмоционального ИИ и распознавания голоса еще больше улучшат возможности чат-ботов, сделав взаимодействие более похожим на человеческое и персонализированным.
Искусственный интеллект (ИИ) в динамике рынка страхования
Водитель
«Растущий спрос на автоматизированную обработку претензий»
- Растущая зависимость от искусственного интеллекта (ИИ) и автоматизации является ключевым фактором роста ИИ на рынке страхования. Поскольку страховщики переходят от традиционной обработки претензий к автоматизации на основе ИИ, потребность в эффективной и точной обработке претензий становится более важной, чем когда-либо
- Этот переход особенно заметен в медицинском, автостраховании и страховании имущества, где страховщики используют автоматизацию обработки претензий на основе искусственного интеллекта для сокращения времени обработки, выявления мошенничества и повышения качества обслуживания клиентов.
- Поскольку страховщики обрабатывают огромные объемы данных по претензиям, сложность управления претензиями возросла. Компании теперь инвестируют в решения по претензиям на базе ИИ для оценки ущерба, проверки документов и обеспечения бесперебойного взаимодействия с держателями полисов, одновременно снижая операционную неэффективность
- Растущее предпочтение клиентов быстрому и цифровому урегулированию претензий еще больше подстегивает спрос на автоматизацию на основе искусственного интеллекта
- Благодаря интеграции машинного обучения (МО) и обработки естественного языка (НЛП) страховщики могут улучшить процесс принятия решений, свести к минимуму вмешательство человека и повысить доверие страхователей.
Например,
- Progressive Insurance использует инструменты оценки ущерба на базе искусственного интеллекта в автостраховании, используя компьютерное зрение для анализа фотографий аварий и предоставления оценок стоимости ремонта в режиме реального времени.
- Система обработки претензий Allstate на основе искусственного интеллекта выявляет мошеннические действия и обеспечивает более быстрое урегулирование путем автоматизации рутинных оценок претензий
- С ростом инвестиций в автоматизацию на основе ИИ и цифровую трансформацию обработка претензий на основе ИИ будет играть решающую роль в сокращении сроков рассмотрения, предотвращении мошеннических претензий и повышении удовлетворенности страхователей, что будет способствовать устойчивому росту рынка.
Возможность
«Расширение оценки рисков с использованием искусственного интеллекта»
- Растущее внедрение моделей оценки рисков на основе ИИ открывает значительные возможности на рынке ИИ в страховании. Страховщики используют аналитику больших данных, предиктивное моделирование и машинное обучение (ML) для улучшения оценки рисков, персонализации полисов и повышения точности андеррайтинга
- Традиционные методы оценки рисков опираются на исторические данные и стандартизированные критерии, что часто приводит к неэффективности ценообразования полисов и утверждения претензий. Инструменты на базе ИИ анализируют поведенческие и контекстные данные в реальном времени, позволяя страховщикам делать более точные и динамичные оценки рисков
- Оценка рисков на основе искусственного интеллекта позволяет страховщикам настраивать ставки страховых взносов на основе данных о поведении водителя в режиме реального времени (автострахование), привычек образа жизни (медицинское страхование) и моделей использования имущества (страхование жилья).
Например,
- Swiss Re использует прогностические модели на основе искусственного интеллекта для оценки климатических рисков, помогая страховщикам более точно оформлять страхование имущества и страхование от катастроф
- Lemonade Inc., страховая технологическая компания, работающая на основе искусственного интеллекта, использует поведенческие данные и алгоритмы искусственного интеллекта для оценки рисков и оптимизации андеррайтинга, что позволяет мгновенно утверждать полисы
- Поскольку страховая отрасль переходит на модели, основанные на данных и ориентированные на клиента, решения по оценке рисков на базе искусственного интеллекта продолжат повышать эффективность, сокращать убытки и повышать удовлетворенность страхователей, создавая значительные возможности для роста для участников рынка.
Сдержанность/Вызов
«Конфиденциальность данных и соблюдение нормативных требований»
- Широкое внедрение решений на основе ИИ в страховании вызывает серьезные опасения относительно конфиденциальности данных, безопасности и соответствия нормативным требованиям. Страховщики полагаются на огромные объемы персональных, финансовых и поведенческих данных для улучшения оценки рисков, обработки претензий и обнаружения мошенничества, что делает защиту данных критической проблемой
- Строгие правила, такие как Общий регламент по защите данных (GDPR) в Европе, Закон штата Калифорния о защите прав потребителей (CCPA) в США и отраслевые законы, такие как Закон о переносимости и подотчетности медицинского страхования (HIPAA), устанавливают строгие правила в отношении того, как страховщики собирают, обрабатывают и хранят данные клиентов.
- Кроме того, принятие решений на основе искусственного интеллекта в андеррайтинге и обработке претензий вызвало опасения по поводу предвзятости алгоритмов и отсутствия прозрачности.
Например,
- Закон Китая о защите персональных данных (PIPL) ввел строгие правила для иностранных страховщиков, работающих в стране, что повлияло на аналитику данных на основе ИИ и индивидуальную настройку полисов.
- Эти проблемы регулирования и конфиденциальности могут замедлить внедрение ИИ в страховании, увеличивая расходы на соответствие и ограничивая инновации. Страховщикам придется сбалансировать достижения ИИ со строгим соблюдением нормативных требований, что может привести к более медленному расширению рынка и осторожным стратегиям внедрения ИИ в ближайшие годы
Искусственный интеллект (ИИ) в сфере страхового рынка
Рынок сегментирован по компонентам, технологиям, модели развертывания, размеру предприятий, области применения и сектору.
|
Сегментация |
Субсегментация |
|
По компоненту |
|
|
По технологии |
|
|
По модели развертывания |
|
|
По размеру предприятия
|
|
|
По применению |
|
|
По сектору |
|
Искусственный интеллект (ИИ) в региональном анализе рынка страхования
«Северная Америка — доминирующий регион на рынке искусственного интеллекта (ИИ) на страховом рынке»
- Северная Америка доминирует на рынке искусственного интеллекта (ИИ) на страховом рынке , что обусловлено ранним внедрением технологий на основе ИИ, сильной нормативной базой и присутствием ведущих поставщиков решений ИИ в регионе.
- США занимают значительную долю благодаря значительным инвестициям в андеррайтинг на основе искусственного интеллекта, автоматизацию обработки претензий и выявление мошенничества со стороны крупных страховых компаний .
- Передовая ИТ-инфраструктура региона и высокие показатели внедрения ИИ среди страховщиков еще больше способствуют его лидерству на рынке. Компании в США и Канаде используют машинное обучение, обработку естественного языка и прогнозную аналитику для улучшения клиентского опыта и операционной эффективности
- Кроме того, регулирующие инициативы, направленные на обеспечение прозрачности и этичного использования ИИ, побудили страховщиков интегрировать принятие решений на основе ИИ, обеспечивая при этом соблюдение нормативных требований, что укрепило позицию Северной Америки как доминирующего игрока на рынке.
«Прогнозируется, что в Азиатско-Тихоокеанском регионе будут зарегистрированы самые высокие темпы роста»
- Ожидается, что Азиатско-Тихоокеанский регион станет свидетелем самых высоких темпов роста рынка искусственного интеллекта (ИИ) на рынке страхования , что будет обусловлено государственными инициативами по цифровой трансформации и ростом инвестиций в технологии страхования на основе ИИ.
- Такие страны, как Китай, Индия и Япония, переживают стремительную цифровизацию, что приводит к внедрению чат-ботов на базе искусственного интеллекта, автоматизированной обработки претензий и персонализированных моделей ценообразования полисов для улучшения взаимодействия с клиентами и повышения операционной эффективности.
- Расширение стартапов в сфере страховых технологий, растущее проникновение решений по оценке рисков на основе Интернета вещей и растущий спрос на обнаружение мошенничества на основе искусственного интеллекта еще больше стимулируют рост рынка в регионе.
- Поскольку страховщики в Азиатско-Тихоокеанском регионе продолжают интегрировать аналитику, телематику и прогнозное моделирование на основе ИИ, регион открывает значительные возможности для поставщиков решений на основе ИИ, стремящихся выйти на развивающиеся рынки страхования.
Искусственный интеллект (ИИ) на рынке страхования
Конкурентная среда рынка содержит сведения о конкурентах. Включены сведения о компании, ее финансах, полученном доходе, рыночном потенциале, инвестициях в исследования и разработки, новых рыночных инициативах, глобальном присутствии, производственных площадках и объектах, производственных мощностях, сильных и слабых сторонах компании, запуске продукта, широте и широте продукта, доминировании приложений. Приведенные выше данные касаются только фокуса компаний на рынке.
Основными лидерами рынка, работающими на рынке, являются:
- Майкрософт (США)
- Infosys Limited (Индия)
- Складной (Великобритания)
- Insurify, Inc. (США)
- Slice Insurance Technologies Inc (США)
- Google (США)
- Оракул (США)
- Amazon Web Services Inc. (США)
- IBM (США)
- Аваамо (США)
- CAPE Аналитика (США)
- Wipro (Индия)
- Acko General Insurance (Индия)
- Shift Technology (Франция)
- Quantemplate (Великобритания)
- Цюрих (Швейцария)
- Lemonade Inc. (США)
Последние разработки в области глобального искусственного интеллекта (ИИ) на рынке страхования
- В июне 2023 года компания Simplifai , специализирующаяся на решениях по автоматизации ИИ, представила Simplifai InsuranceGPT , первый фирменный инструмент GPT, специально разработанный для страховой отрасли. Это новаторское новшество создано на платформе Simplifai, работающей на основе ИИ и не требующей написания кода, что еще больше расширяет возможности автоматизации бизнес-процессов компании.
- В январе 2023 года компания AI inside Inc. , занимающаяся демократизацией ИИ с помощью инфраструктуры и консалтинговых услуг, запустила новое решение DX . Это решение облегчает разработку новых страховых продуктов, используя оцифрованные с помощью OCR полуструктурированные медицинские сертификаты, специально разработанные для сектора страхования жизни.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Содержание
1. INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
1.4 CURRENCY AND PRICING
1.5 LIMITATION
1.6 MARKETS COVERED
2. MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMAPANY MARKET SHARE ANALYSIS
2.2.5 MULTIVARIATE MODELLING
2.2.6 TOP TO BOTTOM ANALYSIS
2.2.7 STANDARDS OF MEASUREMENT
2.2.8 VENDOR SHARE ANALYSIS
2.2.9 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.10 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3. MARKET OVERVIEW
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4. EXECUTIVE SUMMARY
5. PREMIUM INSIGHT
5.1 PORTERS FIVE FORCES
5.2 REGULATORY STANDARDS
5.3 TECHNOLOGICAL TRENDS
5.4 PATENT ANALYSIS
5.5 CASE STUDY
5.6 VALUE CHAIN ANALYSIS
5.7 COMPANY COMPARITIVE ANALYSIS
5.8 THE IMPACT OF AI ON THE FUTURE OF INSURANCE
5.9 AI DRIVEN INNOVATION IN THE INSURANCE SECTOR
6. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY COMPONENT
6.1 OVERVIEW
6.2 HARDWARE
6.2.1 PROCESSORS
6.2.1.1. MICROPROCESSING UNIT
6.2.1.2. GRAPHICS PROCESSING UNIT
6.2.1.3. FIELD PROGRAMMABLE GATE ARRAYS
6.2.1.4. OTHERS
6.2.2 MEMORY
6.2.3 NETWORK
6.3 SOFTWARE
6.3.1 SOFTWARE TOOL
6.3.1.1. DATA DISCOVERY
6.3.1.2. DATA QUALITY AND DATA GOVERNANCE
6.3.1.3. DATA VISUALIZATION
6.3.2 PLATFORM
6.4 SERVICES
6.4.1 MANAGED SERVICES
6.4.2 PROFESSIONAL SERVICES
7. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY TECHNOLOGY
7.1 OVERVIEW
7.2 MACHINE LEARNING
7.2.1 DEEP LEARNING
7.2.1.1. CONVOLUTIONAL NEURAL NETWORK (CNN)
7.2.1.2. RECURRENT NEURAL NETWORK (RNN)
7.2.1.3. GENERATIVE ADVERSARIAL NETWORKS (GAN)
7.2.2 SUPERVISED LEARNING
7.2.3 UNSUPERVISED LEARNING
7.2.4 REINFORCEMENT LEARNING
7.3 NATURAL LANGUAGE PROCESSING (NLP)
7.4 COMPUTER VISION
7.5 CONTEXT AWARENESS
7.6 ROBOTIC AUTOMATION
7.7 OTHERS
8. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY DEPLOYMENT MODE
8.1 OVERVIEW
8.2 CLOUD
8.3 ON-PREMISE
9. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY ENTERPRISE SIZE
9.1 OVERVIEW
9.2 SMALL & MEDIUM SIZE ENTERPRISE
9.2.1 BY DEPLOYMENT MODE
9.2.1.1. CLOUD
9.2.1.2. ON-PREMISE
9.3 LARGE SIZE ENTERPRISE
9.3.1 BY DEPLOYMENT MODE
9.3.1.1. CLOUD
9.3.1.2. ON-PREMISE
10. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY APPLICATION
10.1 OVERVIEW
10.2 CLAIMS MANAGEMENT
10.3 RISK MANAGEMENT AND COMPLIANCE
10.4 CHATBOTS
10.5 FRAUD DETECTION
10.6 CUSTOMER RELATIONSHIP MANAGEMENT
10.7 CYBERSECURITY
10.8 OTHERS
11. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY END USER
11.1 OVERVIEW
11.2 INSURANCE COMPANIES
11.3 BROKERS
11.4 AGENTS
12. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY SECTOR
12.1 OVERVIEW
12.2 LIFE INSURANCE
12.2.1 BY COMPONENT
12.2.1.1. HARDWARE
12.2.1.2. SOFTWARE
12.2.1.3. SERVICES
12.3 HEALTH INSURANCE
12.3.1 BY COMPONENT
12.3.1.1. HARDWARE
12.3.1.2. SOFTWARE
12.3.1.3. SERVICES
12.4 TITLE INSURANCE
12.4.1 BY COMPONENT
12.4.1.1. HARDWARE
12.4.1.2. SOFTWARE
12.4.1.3. SERVICES
12.5 AUTO INSURANCE
12.5.1 BY COMPONENT
12.5.1.1. HARDWARE
12.5.1.2. SOFTWARE
12.5.1.3. SERVICES
12.6 OTHERS
13. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, BY GEOGRAPHY
13.1 GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
13.1.1 NORTH AMERICA
13.1.1.1. U.S.
13.1.1.2. CANADA
13.1.1.3. MEXICO
13.1.2 EUROPE
13.1.2.1. GERMANY
13.1.2.2. FRANCE
13.1.2.3. U.K.
13.1.2.4. ITALY
13.1.2.5. SPAIN
13.1.2.6. RUSSIA
13.1.2.7. TURKEY
13.1.2.8. BELGIUM
13.1.2.9. NETHERLANDS
13.1.2.10. NORWAY
13.1.2.11. FINLAND
13.1.2.12. SWITZERLAND
13.1.2.13. DENMARK
13.1.2.14. SWEDEN
13.1.2.15. POLAND
13.1.2.16. REST OF EUROPE
13.1.3 ASIA PACIFIC
13.1.3.1. JAPAN
13.1.3.2. CHINA
13.1.3.3. SOUTH KOREA
13.1.3.4. INDIA
13.1.3.5. AUSTRALIA
13.1.3.6. NEW ZEALAND
13.1.3.7. SINGAPORE
13.1.3.8. THAILAND
13.1.3.9. MALAYSIA
13.1.3.10. INDONESIA
13.1.3.11. PHILIPPINES
13.1.3.12. TAIWAN
13.1.3.13. VIETNAM
13.1.3.14. REST OF ASIA PACIFIC
13.1.4 SOUTH AMERICA
13.1.4.1. BRAZIL
13.1.4.2. ARGENTINA
13.1.4.3. REST OF SOUTH AMERICA
13.1.5 MIDDLE EAST AND AFRICA
13.1.5.1. SOUTH AFRICA
13.1.5.2. EGYPT
13.1.5.3. SAUDI ARABIA
13.1.5.4. U.A.E
13.1.5.5. OMAN
13.1.5.6. BAHRAIN
13.1.5.7. ISRAEL
13.1.5.8. KUWAIT
13.1.5.9. QATAR
13.1.5.10. REST OF MIDDLE EAST AND AFRICA
13.2 KEY PRIMARY INSIGHTS: BY MAJOR COUNTRIES
14. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET,COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: GLOBAL
14.2 COMPANY SHARE ANALYSIS: NORTH AMERICA
14.3 COMPANY SHARE ANALYSIS: EUROPE
14.4 COMPANY SHARE ANALYSIS: ASIA PACIFIC
14.5 MERGERS & ACQUISITIONS
14.6 NEW PRODUCT DEVELOPMENT AND APPROVALS
14.7 EXPANSIONS
14.8 REGULATORY CHANGES
14.9 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, SWOT & DBMR ANALYSIS
16. GLOBAL ARTIFICIAL INTELLIGENCE (AI) IN INSURANCE MARKET, COMPANY PROFILE
16.1 IBM
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 PRODUCT PORTFOLIO
16.1.4 RECENT DEVELOPMENT
16.2 DAMCO GROUP
16.2.1 COMPANY SNAPSHOT
16.2.2 REVENUE ANALYSIS
16.2.3 PRODUCT PORTFOLIO
16.2.4 RECENT DEVELOPMENT
16.3 MICROSOFT
16.3.1 COMPANY SNAPSHOT
16.3.2 REVENUE ANALYSIS
16.3.3 PRODUCT PORTFOLIO
16.3.4 RECENT DEVELOPMENT
16.4 AMAZON WEB SERVICES, INC.
16.4.1 COMPANY SNAPSHOT
16.4.2 REVENUE ANALYSIS
16.4.3 PRODUCT PORTFOLIO
16.4.4 RECENT DEVELOPMENT
16.5 ORACLE
16.5.1 COMPANY SNAPSHOT
16.5.2 REVENUE ANALYSIS
16.5.3 PRODUCT PORTFOLIO
16.5.4 RECENT DEVELOPMENT
16.6 AVAAMO
16.6.1 COMPANY SNAPSHOT
16.6.2 REVENUE ANALYSIS
16.6.3 PRODUCT PORTFOLIO
16.6.4 RECENT DEVELOPMENT
16.7 SAP
16.7.1 COMPANY SNAPSHOT
16.7.2 REVENUE ANALYSIS
16.7.3 PRODUCT PORTFOLIO
16.7.4 RECENT DEVELOPMENT
16.8 CAPE ANALYTICS
16.8.1 COMPANY SNAPSHOT
16.8.2 REVENUE ANALYSIS
16.8.3 PRODUCT PORTFOLIO
16.8.4 RECENT DEVELOPMENT
16.9 WIPRO
16.9.1 COMPANY SNAPSHOT
16.9.2 REVENUE ANALYSIS
16.9.3 PRODUCT PORTFOLIO
16.9.4 RECENT DEVELOPMENT
16.10 SHIFT TECHNOLOGY
16.10.1 COMPANY SNAPSHOT
16.10.2 REVENUE ANALYSIS
16.10.3 PRODUCT PORTFOLIO
16.10.4 RECENT DEVELOPMENT
16.11 QUANTEMPLATE
16.11.1 COMPANY SNAPSHOT
16.11.2 REVENUE ANALYSIS
16.11.3 PRODUCT PORTFOLIO
16.11.4 RECENT DEVELOPMENT
16.12 ZURICH
16.12.1 COMPANY SNAPSHOT
16.12.2 REVENUE ANALYSIS
16.12.3 PRODUCT PORTFOLIO
16.12.4 RECENT DEVELOPMENT
16.13 LEMONADE, INC.
16.13.1 COMPANY SNAPSHOT
16.13.2 REVENUE ANALYSIS
16.13.3 PRODUCT PORTFOLIO
16.13.4 RECENT DEVELOPMENT
16.14 SLICE INSURANCE TECHNOLOGIES INC
16.14.1 COMPANY SNAPSHOT
16.14.2 REVENUE ANALYSIS
16.14.3 PRODUCT PORTFOLIO
16.14.4 RECENT DEVELOPMENT
16.15 INSURIFY, INC.
16.15.1 COMPANY SNAPSHOT
16.15.2 REVENUE ANALYSIS
16.15.3 PRODUCT PORTFOLIO
16.15.4 RECENT DEVELOPMENT
16.16 INSURMI
16.16.1 COMPANY SNAPSHOT
16.16.2 REVENUE ANALYSIS
16.16.3 PRODUCT PORTFOLIO
16.16.4 RECENT DEVELOPMENT
16.17 PLANCK RESOLUTION LTD.
16.17.1 COMPANY SNAPSHOT
16.17.2 REVENUE ANALYSIS
16.17.3 PRODUCT PORTFOLIO
16.17.4 RECENT DEVELOPMENT
16.18 TRACTABLE LTD.
16.18.1 COMPANY SNAPSHOT
16.18.2 REVENUE ANALYSIS
16.18.3 PRODUCT PORTFOLIO
16.18.4 RECENT DEVELOPMENT
16.19 GOOGLE
16.19.1 COMPANY SNAPSHOT
16.19.2 REVENUE ANALYSIS
16.19.3 PRODUCT PORTFOLIO
16.19.4 RECENT DEVELOPMENT
16.20 INFOSYS LIMITED
16.20.1 COMPANY SNAPSHOT
16.20.2 REVENUE ANALYSIS
16.20.3 PRODUCT PORTFOLIO
16.20.4 RECENT DEVELOPMENT
16.21 FLYREEL, INC. ( A PART OF LEXISNEXIS® RISK SOLUTIONS)
16.21.1 COMPANY SNAPSHOT
16.21.2 REVENUE ANALYSIS
16.21.3 PRODUCT PORTFOLIO
16.21.4 RECENT DEVELOPMENT
16.22 ANADEA, INC
16.22.1 COMPANY SNAPSHOT
16.22.2 REVENUE ANALYSIS
16.22.3 PRODUCT PORTFOLIO
16.22.4 RECENT DEVELOPMENT
16.23 WORKFUSION, INC.
16.23.1 COMPANY SNAPSHOT
16.23.2 REVENUE ANALYSIS
16.23.3 PRODUCT PORTFOLIO
16.23.4 RECENT DEVELOPMENT
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
17. CONCLUSION
18. QUESTIONNAIRE
19. RELATED REPORTS
20. ABOUT DATA BRIDGE MARKET RESEARCH
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

