Global Deep Learning Neural Networks Dnns Market
Размер рынка в млрд долларов США
CAGR :
%
USD
52.30 Billion
USD
349.40 Billion
2024
2032
| 2025 –2032 | |
| USD 52.30 Billion | |
| USD 349.40 Billion | |
|
|
|
|
Сегментация мирового рынка нейронных сетей глубокого обучения (DNN) по компонентам (оборудование, программное обеспечение и услуги), применению (распознавание изображений, обработка естественного языка, распознавание речи и интеллектуальный анализ данных), конечному пользователю (банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничная торговля, автомобилестроение, производство, аэрокосмическая и оборонная промышленность, безопасность и другие) — тенденции и прогноз развития отрасли до 2032 года
Размер рынка нейронных сетей глубокого обучения (DNN)
- Объем мирового рынка нейронных сетей глубокого обучения (DNN) оценивался в 52,3 млрд долларов США в 2024 году и, как ожидается , достигнет 349,4 млрд долларов США к 2032 году при среднегодовом темпе роста 31,2% в течение прогнозируемого периода.
- Рост рынка во многом обусловлен технологическими прорывами, повышением доступности данных и расширением отраслевых приложений. Поскольку искусственный интеллект (ИИ) все больше внедряется в такие секторы, как здравоохранение, автомобилестроение, финансы и производство, DNN выделяются своей способностью обрабатывать огромные наборы данных и извлекать сложные закономерности.
- Кроме того, облачные вычисления и достижения в области ИИ делают DNN более доступными и масштабируемыми. Правительства и предприятия по всему миру увеличивают инвестиции в НИОКР в области ИИ, еще больше стимулируя принятие решений на основе DNN.
Анализ рынка нейронных сетей глубокого обучения (DNN)
- Глобальный рынок нейронных сетей глубокого обучения (DNN) развивается за счет значительных технологических достижений в области аппаратного обеспечения для искусственного интеллекта, что позволяет быстрее и эффективнее обучать и развертывать модели.
- Рост популярности автономных систем, таких как беспилотные автомобили и сервисные роботы, в сочетании с растущей ролью глубокого обучения в обработке естественного языка и распознавании изображений стимулирует их внедрение во всех секторах.
- Северная Америка доминирует на рынке нейронных сетей глубокого обучения (DNN) с самой большой долей выручки в 39,01% в 2024 году, характеризуясь растущим внедрением в автономные транспортные средства и интеллектуальную робототехнику.
- Ожидается, что Азиатско-Тихоокеанский регион станет самым быстрорастущим регионом на рынке нейронных сетей глубокого обучения (DNN) в течение прогнозируемого периода благодаря расширению применения в обработке естественного языка (NLP) и компьютерном зрении.
- Сегмент программного обеспечения доминирует на рынке нейронных сетей глубокого обучения (DNN) с долей рынка 45,2% в 2024 году, что обусловлено распространением больших данных и растущей сложностью данных.
Область применения отчета и сегментация рынка нейронных сетей глубокого обучения (DNN)
|
Атрибуты |
Аналитика рынка нейронных сетей глубокого обучения (DNN) |
|
Охваченные сегменты |
|
|
Страны, охваченные |
Северная Америка
Европа
Азиатско-Тихоокеанский регион
Ближний Восток и Африка
Южная Америка
|
|
Ключевые игроки рынка |
|
|
Возможности рынка |
|
|
Информационные наборы данных с добавленной стоимостью |
Помимо аналитических данных о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают в себя углубленный экспертный анализ, анализ цен, анализ доли бренда, опрос потребителей, демографический анализ, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу. |
Тенденции рынка нейронных сетей глубокого обучения (DNN)
« Расширение приложений в разных отраслях »
- Основной тенденцией на мировом рынке нейронных сетей глубокого обучения (DNN) является быстрое расширение приложений DNN в различных секторах, включая здравоохранение, автомобилестроение, финансы и производство. Эти сети обеспечивают прорывы в медицинской диагностике, обнаружении мошенничества, автономном вождении и предиктивном обслуживании.
- Например, в здравоохранении DNN все чаще используются для диагностики на основе изображений, например, для обнаружения опухолей при радиологических сканированиях. Такие компании, как Aidoc и Zebra Medical Vision, используют DNN, чтобы помочь рентгенологам ставить более быстрые и точные диагнозы.
- В автомобильном секторе Северная Америка и Европа лидируют в развертывании усовершенствованных систем помощи водителю (ADAS) на базе DNN и автономных транспортных средств. Tesla, NVIDIA и Waymo используют глубокое обучение для улучшения принятия решений и распознавания изображений в реальном времени на дороге.
- Финансовая индустрия также использует DNN для обнаружения аномалий и прогнозирования рыночных тенденций с высокой точностью. JP Morgan Chase и Goldman Sachs вкладывают значительные средства в команды ИИ, сосредоточенные на создании систем торговли и оценки рисков на основе DNN.
- В производстве DNN позволяют создавать умные фабрики посредством автоматизации визуального осмотра, обнаружения дефектов и предиктивного обслуживания оборудования. Такие компании, как Siemens и GE, являются пионерами в использовании этих интеллектуальных систем для сокращения времени простоя и повышения эффективности работы.
- Азиатско-Тихоокеанский регион становится самым быстрорастущим регионом благодаря сильным стратегиям в области ИИ в таких странах, как Китай, Южная Корея и Индия. Поддерживаемые правительством инициативы и значительное финансирование НИОКР в области ИИ способствуют масштабному внедрению DNN.
Динамика рынка нейронных сетей глубокого обучения (DNN)
Водитель
«Распространение больших данных и увеличение вычислительной мощности»
- Экспоненциальный рост объемов генерации данных из таких источников, как устройства Интернета вещей, социальные сети и корпоративные системы, стимулирует внедрение нейронных сетей глубокого обучения для таких задач, как распознавание изображений, обработка естественного языка и предиктивная аналитика.
- Например, в марте 2025 года NVIDIA представила архитектуру графического процессора Blackwell, обеспечивающую более чем 4-кратное повышение производительности для задач глубокого обучения и вывода, что позволяет использовать приложения реального времени в здравоохранении, автомобилестроении и финансовых услугах.
- Поставщики облачных услуг, включая AWS и Google Cloud, все чаще предлагают оптимизированные фреймворки DNN в качестве управляемых сервисов, упрощая развертывание и масштабирование.
- По данным IDC, по состоянию на первый квартал 2025 года более 70% предприятий по всему миру интегрировали решения на основе DNN как минимум в одну бизнес-функцию, что отражает сильную динамику рынка.
Сдержанность/Вызов
« Высокое потребление ресурсов и сложность обучения модели »
- Обучение нейронных сетей глубокого обучения часто требует значительных вычислительных ресурсов, специализированного оборудования (например, графических процессоров, тензорных процессоров) и потребления энергии, что может оказаться непомерно дорогим.
- Например, для GPT-4 компании OpenAI потребовалось несколько тысяч петафлопс/с-дней вычислений и энергии, эквивалентной тому, что ежегодно потребляют несколько сотен домохозяйств США.
- Более того, сложность настройки гиперпараметров, обработки переобучения и достижения интерпретируемости моделей продолжает бросать вызов разработчикам, особенно в таких регулируемых секторах, как финансы и здравоохранение.
- Эти барьеры особенно заметны для малых и средних предприятий, не имеющих доступа к высокопроизводительной вычислительной инфраструктуре и обширному пулу талантов в области ИИ.
Масштаб рынка нейронных сетей глубокого обучения (DNN)
Рынок сегментирован по компонентному составу, области применения и конечному пользователю.
- По компоненту
На основе компонентов рынок нейронных сетей глубокого обучения (DNN) сегментируется на оборудование, программное обеспечение и услуги. Сегмент программного обеспечения доминирует в самой большой доле рынка доходов в 48,2% в 2024 году, что обусловлено значительными технологическими достижениями в области аппаратного обеспечения для ИИ, что обеспечивает более быстрое и эффективное обучение и развертывание моделей.
Ожидается, что сегмент программного обеспечения продемонстрирует самые высокие темпы роста в 21,7% в период с 2025 по 2032 год, что обусловлено ростом числа автономных систем, таких как беспилотные автомобили и сервисные роботы, а также растущей ролью глубокого обучения в обработке естественного языка и распознавании изображений, что стимулирует его внедрение во всех секторах.
- По применению
На основе применения рынок нейронных сетей глубокого обучения (DNN) сегментируется на распознавание изображений, обработку естественного языка, распознавание речи и добычу данных. Сегмент распознавания изображений занимал самую большую долю рынка доходов в 2024 году, что обусловлено экспоненциальным ростом больших данных, которые обеспечивают богатый вклад для этих моделей, особенно в здравоохранении, где DNN революционизируют диагностику и персонализацию лечения.
Ожидается, что сегмент обработки естественного языка продемонстрирует самые быстрые темпы среднегодового роста в период с 2025 по 2032 год, что обусловлено конвергенцией глубокого обучения с передовыми технологиями, такими как квантовые вычисления и нейроморфные чипы, что обещает переопределить потолки производительности, открыв новые коммерческие и научные горизонты .
- Конечным пользователем
На основе конечного пользователя рынок нейронных сетей глубокого обучения (DNN) сегментируется на банковское дело, финансовые услуги и страхование (BFSI), ИТ и телекоммуникации, здравоохранение, розничную торговлю, автомобилестроение, производство, аэрокосмическую и оборонную промышленность, безопасность и др. Банковский сегмент занимал самую большую долю рынка доходов в 2024 году, что обусловлено инновациями в области оборудования, такими как разработка специализированных чипов ИИ, таких как графические процессоры и тензорные процессоры, которые повышают эффективность процессов глубокого обучения.
Ожидается, что в здравоохранении будут наблюдаться самые быстрые темпы среднегодового роста в период с 2025 по 2032 год, что обусловлено экспоненциальным ростом генерации данных из таких источников, как устройства Интернета вещей, социальные сети и корпоративные системы, что стимулирует внедрение нейронных сетей глубокого обучения для таких задач, как распознавание изображений, обработка естественного языка и предиктивная аналитика.
Региональный анализ рынка нейронных сетей глубокого обучения (DNN)
- Северная Америка доминирует на рынке нейронных сетей глубокого обучения (DNN) с самой большой долей выручки в 39,01% в 2024 году, что обусловлено технологическими прорывами, повышением доступности данных и расширением отраслевых приложений. Поскольку искусственный интеллект (ИИ) все больше внедряется в такие секторы, как здравоохранение, автомобилестроение, финансы и производство, DNN выделяются своей способностью обрабатывать огромные наборы данных и извлекать сложные закономерности.
- Это открыло многочисленные драйверы и возможности для роста. Главным из них является растущий спрос на персонализированные услуги, улучшенную автоматизацию и прогнозную аналитику. Кроме того, облачные вычисления и достижения в области ИИ на периферии делают DNN более доступными и масштабируемыми.
- Правительства и предприятия по всему миру увеличивают инвестиции в НИОКР в области ИИ, что еще больше стимулирует внедрение решений на основе DNN. Еще одним важным фактором является распространение интеллектуальных устройств и датчиков IoT, которые передают данные в режиме реального времени, подпитывающие обучение DNN.
Обзор рынка нейронных сетей глубокого обучения (DNN) в США
Рынок нейронных сетей глубокого обучения (DNN) в США получил наибольшую долю дохода в 81% в 2024 году в Северной Америке, чему способствовало государственное и институциональное финансирование исследований ИИ, особенно в секторах обороны, здравоохранения и образования. Глубокое обучение все чаще применяется в различных отраслях. В здравоохранении оно используется для предиктивной аналитики и раннего выявления заболеваний. Автомобильная промышленность использует DNN для усовершенствований в области автономных транспортных средств, в то время как сектор розничной торговли использует их для распознавания изображений и анализа поведения клиентов.
Обзор европейского рынка нейронных сетей глубокого обучения (DNN)
Прогнозируется, что рынок нейронных сетей глубокого обучения (DNN) в Европе будет расширяться со значительным среднегодовым темпом роста в течение прогнозируемого периода, в первую очередь за счет инноваций в области оборудования, таких как разработка специализированных чипов ИИ, таких как GPU и TPU, которые повышают эффективность процессов глубокого обучения. Кроме того, появление платформ Deep Learning as a Service (DLaaS) делает эти технологии более доступными для бизнеса, снижая необходимость в значительных первоначальных инвестициях в инфраструктуру.
Обзор рынка нейронных сетей глубокого обучения (DNN) в Великобритании
Ожидается, что рынок нейронных сетей глубокого обучения (DNN) в Великобритании будет расти с заметным среднегодовым темпом роста в течение прогнозируемого периода, обусловленным мощными технологическими достижениями в области аппаратного обеспечения, специфичного для ИИ, что позволит быстрее и эффективнее обучать и развертывать модели. Всплеск автономных систем, таких как беспилотные автомобили и сервисные роботы, в сочетании с растущей ролью глубокого обучения в обработке естественного языка и распознавании изображений, подпитывает внедрение во всех секторах. Экспоненциальный рост больших данных обеспечивает богатый вклад в эти модели, особенно в здравоохранении, где DNN революционизируют диагностику и персонализацию лечения.
Обзор рынка нейронных сетей глубокого обучения (DNN) в Германии
Ожидается, что рынок нейронных сетей глубокого обучения (DNN) в Германии будет расширяться со значительным среднегодовым темпом роста в течение прогнозируемого периода, подпитываемый возможностями, изобилующими в приложениях ИИ, где интеграция DNN в интеллектуальные устройства может давать информацию в реальном времени с низкой задержкой. Кроме того, конвергенция глубокого обучения с передовыми технологиями, такими как квантовые вычисления и нейроморфные чипы, обещает переопределить потолки производительности, открывая новые коммерческие и научные границы.
Обзор рынка нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе
Рынок нейронных сетей глубокого обучения (DNN) в Азиатско-Тихоокеанском регионе, как ожидается, будет расти самыми быстрыми темпами среднегодового темпа роста в 24% в прогнозируемый период с 2025 по 2032 год, что обусловлено стремительным развитием аппаратного обеспечения GPU/TPU и квантовых вычислений, что позволит повысить эффективность и скорость обработки DNN.
Обзор рынка нейронных сетей глубокого обучения (DNN) в Японии
Рынок нейронных сетей глубокого обучения (DNN) в Японии набирает обороты из-за высокотехнологичной культуры страны, быстрой урбанизации и спроса на удобство. Японский рынок уделяет большое внимание безопасности, а внедрение интеллектуальных замков обусловлено расширением автономных систем (например, беспилотных автомобилей, дронов, робототехники), в значительной степени полагающихся на алгоритмы глубокого обучения.
Обзор рынка нейронных сетей глубокого обучения (DNN) в Китае
На китайский рынок нейронных сетей глубокого обучения (DNN) в 2024 году пришлась самая большая доля выручки в Азиатско-Тихоокеанском регионе, поскольку этичный и объяснимый ИИ становится предметом беспокойства, а возможность разработки интерпретируемых моделей нейронных сетей также создает новые каналы роста.
Доля рынка нейронных сетей глубокого обучения (DNN)
Рынок нейронных сетей глубокого обучения (DNN) в основном возглавляют хорошо зарекомендовавшие себя компании, в том числе:
- АЛЮДА РЕСЕРЧ, ООО
- ИБМ
- Micron Technologies, Inc.
- Нейронные Технологии Лимитед
- НЕЙРОДИМЕНШН, ИНК.
- НЕЙРОПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ
- NVIDIA КОРПОРАЦИЯ
- SKYMIND INC
- SAMSUNG
- Qualcomm Technologies, Inc.
- Корпорация Intel
- Amazon Web Services, Inc.
- Майкрософт
- ООО «ГМДХ».
- Сенсорная Inc.
- Ward Systems Group, Inc.
- Xilinx Inc.
- Звездный разум
Последние разработки на мировом рынке нейронных сетей глубокого обучения (DNN)
- В апреле 2025 года Google DeepMind Лидер в области исследований ИИ, DeepMind разработала передовые модели, такие как Gemma и PaliGemma 2, фокусирующиеся на языковых и зрительных задачах. Их инновации, такие как Ithaca, помогают восстанавливать древние тексты, демонстрируя универсальность приложений глубокого обучения.
- В марте 2024 года IBM Имея наследие в области ИИ, платформа Watson от IBM интегрирует машинное обучение в бизнес-процессы, предлагая такие решения, как чат-боты для обслуживания клиентов. Их приверженность исследованиям ИИ продолжает оказывать влияние на различные отрасли.
- В марте 2025 года Intel расширила свои возможности в области ИИ за счет приобретений таких компаний, как Nervana и Movidius, улучшив программное обеспечение для глубокого обучения и внедрив приложения ИИ на маломощные устройства. Сотрудничество, например, с Microsoft для ускорения ИИ в Bing, подчеркивает их влияние на рынок.
- В феврале 2025 года Microsoft интегрирует ИИ во все свои продукты, от помощника Cortana до сервисов машинного обучения Azure. Их инвестиции в стартапы и инструменты ИИ демонстрируют надежный подход к продвижению технологий глубокого обучения.
- В январе 2025 года OpenAI Известная разработкой передовых моделей ИИ, OpenAI фокусируется на создании ИИ, приносящего пользу человечеству. Их подход с открытым исходным кодом и сотрудничество с такими компаниями, как Microsoft и Amazon, подчеркивают их влияние в сообществе ИИ.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

