Global Energy Demand Forecasting Market
Размер рынка в млрд долларов США
CAGR :
%
USD
23.00 Billion
USD
214.57 Billion
2024
2032
| 2025 –2032 | |
| USD 23.00 Billion | |
| USD 214.57 Billion | |
|
|
|
|
Прогнозирование мирового спроса на энергию. Сегментация рынка по технологиям (ветроэнергетика, электроэнергетика, гидроэнергетика, геотермальная и атомная энергетика), конечным потребителям (сельское хозяйство, строительство, транспорт, энергетика и другие) — отраслевые тенденции и прогноз до 2032 года.
Прогнозирование спроса на энергию. Размер рынка
- Объем мирового рынка прогнозирования спроса на энергию оценивался в 23,00 млрд долларов США в 2024 году и, как ожидается , достигнет 214,57 млрд долларов США к 2032 году при среднегодовом темпе роста 32,20% в течение прогнозируемого периода.
- Рост рынка во многом обусловлен растущей интеграцией возобновляемых источников энергии в энергосети и повышением сложности энергосистем, что требует использования современных моделей прогнозирования для эффективного управления спросом. Правительства и коммунальные службы уделяют особое внимание оптимизации энергопотребления для балансировки спроса и предложения, сокращения выбросов углерода и повышения стабильности энергосистем, что способствует широкому внедрению решений для прогнозирования.
- Более того, растущее внедрение искусственного интеллекта, аналитики больших данных и датчиков на базе Интернета вещей позволяет создавать высокоточные прогнозы в режиме реального времени. Эти технологии позволяют поставщикам энергии и промышленным потребителям прогнозировать модели потребления, минимизировать эксплуатационные расходы и обеспечивать надежность энергоснабжения. Такие достижения ускоряют внедрение систем прогнозирования спроса на энергию, значительно стимулируя рост отрасли.
Анализ рынка прогнозирования спроса на энергию
- Прогнозирование спроса на энергию подразумевает использование передовых моделей и вычислительных методов для прогнозирования будущего потребления энергии в таких секторах, как энергетика, транспорт, обрабатывающая промышленность и сельское хозяйство. Прогнозирование играет важнейшую роль в планировании ресурсов, разработке политики и оптимизации распределения энергии как из возобновляемых, так и из невозобновляемых источников.
- Растущий спрос на системы прогнозирования обусловлен, прежде всего, быстрой урбанизацией, глобальным переходом на возобновляемые источники энергии и растущим давлением на коммунальные службы в плане повышения энергоэффективности. Кроме того, растущая потребность в решении проблем, связанных с колебаниями пиковой нагрузки, управлении перебоями в поставках возобновляемой энергии и достижении целей устойчивого развития, дополнительно стимулирует расширение рынка.
- Северная Америка доминировала на рынке прогнозирования спроса на энергию в 2024 году благодаря росту инвестиций в инфраструктуру интеллектуальных сетей, интеграции возобновляемых источников энергии и передовой аналитике для планирования коммунальных услуг.
- Ожидается, что Азиатско-Тихоокеанский регион станет самым быстрорастущим регионом на рынке прогнозирования спроса на энергию в течение прогнозируемого периода из-за быстрой индустриализации, урбанизации и роста потребления электроэнергии в таких странах, как Китай, Индия и Япония.
- Сегмент электроэнергетики доминировал на рынке с долей 42,1% в 2024 году благодаря растущей зависимости от традиционной и возобновляемой энергетики для удовлетворения растущего мирового спроса на электроэнергию. Энергокомпании и государственные органы активно инвестируют в передовые решения для прогнозирования энергосетей, чтобы обеспечить эффективность, предотвратить отключения электроэнергии и сбалансировать колебания спроса и предложения. Рост урбанизации, индустриализации и электрификации транспортных систем дополнительно усиливают спрос на прогнозирование в этом сегменте. Возможность оптимизировать стабильность сети и улучшить эксплуатационное планирование делает прогнозирование на основе электроэнергии важнейшим компонентом стратегий энергетического перехода.
Объем отчета и прогнозирование спроса на энергию. Сегментация рынка
|
Атрибуты |
Прогнозирование спроса на энергию: ключевые аспекты рынка |
|
Охваченные сегменты |
|
|
Охваченные страны |
Северная Америка
Европа
Азиатско-Тихоокеанский регион
Ближний Восток и Африка
Южная Америка
|
|
Ключевые игроки рынка |
|
|
Рыночные возможности |
|
|
Информационные наборы данных с добавленной стоимостью |
Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, отчет о рынке, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов. |
Прогнозирование спроса на энергию: тенденции рынка
Интеграция ИИ и машинного обучения в прогнозировании энергетики
- Внедрение технологий искусственного интеллекта и машинного обучения (МО) коренным образом меняет прогнозирование спроса на энергию, позволяя делать более точные прогнозы в режиме реального времени, включающие разнообразные источники данных, такие как погодные условия, поведение потребителей и состояние электросети.
- Например, такие компании, как IBM, Siemens и Schneider Electric, внедряют платформы прогнозирования на основе искусственного интеллекта, которые улучшают балансировку нагрузки, распределение ресурсов и реагирование на спрос в интеллектуальных сетях и коммунальных службах.
- Интеграция с устройствами Интернета вещей и интеллектуальными счетчиками обеспечивает получение детализированных данных о потреблении, повышая точность моделей ИИ и их адаптируемость к динамическим моделям потребления энергии.
- ИИ и МО облегчают анализ сценариев, обнаружение аномалий и предиктивное обслуживание, оптимизируя точность прогнозирования и минимизируя эксплуатационные риски.
- Расширение облачных вычислений и аналитики больших данных позволяет масштабировать развертывание сложных алгоритмов прогнозирования в коммунальном секторе и промышленности.
- Растущее внимание со стороны регулирующих органов к стабильности сети и интеграции возобновляемых источников энергии требует расширенных возможностей прогнозирования для управления изменчивостью и обеспечения надежного электроснабжения.
Прогнозирование спроса на энергию. Динамика рынка
Водитель
Растущее использование возобновляемых источников энергии
- Растущее проникновение возобновляемых источников энергии, таких как солнечная и ветровая, характеризующихся непостоянной и прерывистой генерацией, обуславливает необходимость в передовых инструментах прогнозирования спроса на энергию для эффективного балансирования спроса и предложения.
- Например, коммунальные предприятия и операторы сетей по всему миру инвестируют в решения по прогнозированию от таких поставщиков, как Vestas, Enel X и General Electric, чтобы интегрировать возобновляемые активы, сохраняя при этом надежность сети и минимизируя ограничения.
- Рост распределенных энергетических ресурсов (DER) и участие потребителей усложняют прогнозирование, требуя использования моделей на основе искусственного интеллекта для точного прогнозирования нагрузки и управления ресурсами.
- Программы реагирования на спрос и развертывание систем хранения энергии дополнительно стимулируют внедрение динамических инструментов прогнозирования для оптимизации потоков энергии и экономической эффективности.
- Децентрализация энергетических систем и расширение микросетей повышают сложность прогнозирования, увеличивая спрос на гибкие и интеллектуальные платформы прогнозирования.
Сдержанность/Вызов
Высокие затраты на внедрение и обслуживание
- Передовые технологии и инфраструктура, необходимые для систем прогнозирования спроса на энергию на базе искусственного интеллекта, влекут за собой значительные затраты на внедрение, интеграцию и постоянное обслуживание, что может ограничить их внедрение, особенно среди небольших коммунальных служб и развивающихся рынков.
- Например, получение высококачественных данных, настройка облачных или периферийных вычислительных ресурсов и привлечение квалифицированных специалистов по данным требуют значительных первоначальных инвестиций и эксплуатационных расходов для операторов сетей и энергетических компаний.
- Сложность интеграции решений прогнозирования с устаревшими системами управления энергопотреблением может привести к увеличению затрат и увеличению сроков развертывания.
- Постоянные обновления, настройка алгоритмов и меры кибербезопасности приводят к регулярным расходам, влияющим на общую стоимость владения.
- Небольшие коммунальные предприятия могут столкнуться с финансовыми ограничениями, которые задерживают внедрение, несмотря на потенциальные долгосрочные выгоды от снижения затрат на электроэнергию и улучшения управления сетями. Бюджетная неопределенность, процедуры утверждения регулирующими органами и изменчивое восприятие рентабельности инвестиций также могут влиять на инвестиционные решения в области передовых технологий прогнозирования.
Прогнозирование спроса на энергию: сфера рынка
Рынок сегментирован по признаку технологии и конечного пользователя.
• По технологии
В зависимости от технологий рынок прогнозирования спроса на энергию сегментируется на следующие сегменты: ветроэнергетика, электроэнергетика, гидроэнергетика, геотермальная энергетика и атомная энергетика. В 2024 году на долю энергетического сегмента пришлась наибольшая доля выручки – 42,1%, что обусловлено растущей зависимостью от традиционной и возобновляемой энергетики для удовлетворения растущего мирового спроса на электроэнергию. Энергокомпании и государственные органы активно инвестируют в передовые решения для прогнозирования спроса на электросети, чтобы обеспечить эффективность, предотвратить отключения электроэнергии и сбалансировать колебания спроса и предложения. Рост урбанизации, индустриализации и электрификации транспортных систем дополнительно усиливают спрос на прогнозирование в этом сегменте. Возможность оптимизировать стабильность работы сетей и улучшить эксплуатационное планирование делает прогнозирование спроса на электроэнергию критически важным компонентом стратегий энергетического перехода.
Ожидается, что сектор ветроэнергетики будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено ускорением темпов внедрения ветроэнергетики в глобальном масштабе и изменчивостью ветровых ресурсов, требующих высокоточных моделей прогнозирования спроса. Интеграция ветроэнергетики в национальные сети сопряжена с трудностями из-за нестабильности, что делает прогнозирование в режиме реального времени необходимым для поддержания бесперебойности поставок. Государственные и частные инвесторы всё чаще поддерживают передовые платформы прогнозирования на основе искусственного интеллекта и Интернета вещей для максимального использования энергии ветра и снижения её сокращения. Рост числа проектов по морской и наземной ветроэнергетике по всему миру дополнительно повышает потребность в прогностических моделях, создавая мощный импульс роста в этом сегменте.
• Конечным пользователем
По типу конечного потребителя рынок прогнозирования спроса на энергию сегментируется на сельское хозяйство, строительство, транспорт, энергетику и другие. Электроэнергетический сектор занимал наибольшую долю рынка в 2024 году, что обусловлено критической необходимостью прогнозирования энергетических нагрузок в сетях генерации, передачи и распределения. Коммунальные предприятия внедряют решения для прогнозирования для оптимизации распределения ресурсов, интеграции возобновляемых источников энергии и управления пиковым спросом, напрямую влияя на эксплуатационную эффективность и рентабельность. Рост инвестиций в инфраструктуру интеллектуальных сетей и цифровую трансформацию энергетических компаний еще больше укрепляет это доминирование. Зависимость сектора от точного прогнозирования для долгосрочного планирования и принятия решений в режиме реального времени укрепляет его лидирующие позиции на рынке.
Прогнозируется, что транспортный сектор будет демонстрировать самые высокие среднегодовые темпы роста в период с 2025 по 2032 год, что обусловлено быстрой электрификацией транспорта и ростом популярности электромобилей (ЭМ). Модели прогнозирования становятся жизненно важными для прогнозирования спроса на зарядку электромобилей, оптимизации зарядной инфраструктуры и балансировки нагрузки на сеть в периоды пиковой нагрузки. Государственные и частные компании активно инвестируют в инфраструктуру электромобилей, что делает точное прогнозирование спроса необходимым для предотвращения перегрузки сети и повышения эффективности. Рост числа интеллектуальных зарядных станций и экосистем подключенных транспортных средств еще больше усиливает важность прогнозирования в этом секторе, делая транспорт самым быстрорастущим конечным потребителем.
Прогнозирование спроса на энергию. Региональный анализ рынка
- Северная Америка заняла лидирующие позиции на рынке прогнозирования спроса на энергию, получив наибольшую долю выручки в 2024 году благодаря росту инвестиций в инфраструктуру интеллектуальных сетей, интеграции возобновляемых источников энергии и передовой аналитике для планирования коммунальных услуг.
- Регион получает выгоду от раннего внедрения инструментов прогнозирования на основе искусственного интеллекта и Интернета вещей, которые помогают коммунальным предприятиям управлять колебаниями спроса на электроэнергию и повышать эксплуатационную эффективность.
- Растущая зависимость от чистых источников энергии и быстрая электрификация транспорта также стимулируют спрос на точные модели прогнозирования, делая Северную Америку ведущим рыночным центром инновационных решений.
Прогнозирование спроса на энергоносители в США: обзор рынка
Рынок прогнозирования спроса на энергоносители в США в 2024 году обеспечил наибольшую долю выручки в Северной Америке благодаря быстрому внедрению интеллектуальных сетей и стремлению к декарбонизации. Рост потребления электроэнергии в центрах обработки данных, электромобилях и городской инфраструктуре обострил потребность в высокоточных моделях прогнозирования. Коммунальные компании внедряют предиктивную аналитику для повышения стабильности сетей и эффективного управления пиковым спросом. Кроме того, федеральные инициативы, поддерживающие переход на чистую энергетику и инвестиции в цифровую инфраструктуру, ускоряют внедрение технологий прогнозирования в США.
Обзор рынка прогнозирования спроса на энергоносители в Европе
Ожидается, что европейский рынок прогнозирования спроса на энергию будет расти со значительным среднегодовым темпом роста в течение прогнозируемого периода, в первую очередь благодаря строгим нормам энергоэффективности и амбициозным целям ЕС в области возобновляемой энергетики. Растущее проникновение солнечной, ветровой и распределенной энергии делает прогнозирование спроса критически важным для балансировки нестабильного предложения. Рост урбанизации и переход на электрифицированный транспорт также стимулируют внедрение прогнозирования. Европейские поставщики энергии делают акцент на инфраструктуре интеллектуальных сетей и передовой аналитике для обеспечения надежного энергоснабжения, превращая регион в быстрорастущий центр решений для прогнозирования.
Прогнозирование спроса на энергоносители в Великобритании: обзор рынка
Ожидается, что рынок прогнозирования спроса на энергию в Великобритании будет расти значительными среднегодовыми темпами, чему способствуют амбициозные цели страны по достижению нулевого уровня выбросов и расширение структуры возобновляемой энергетики. Растущее внедрение электромобилей и технологий «умного дома» усиливает потребность в моделях прогнозирования спроса на энергию. Коммунальные компании и государственные учреждения инвестируют в системы прогнозирования на основе искусственного интеллекта для оптимизации планирования энергопотребления и предотвращения дисбалансов в энергосистемах. Более того, британское законодательство стремится к устойчивому использованию энергии и модернизации энергетической инфраструктуры, что дополнительно стимулирует рост рынка.
Прогнозирование спроса на энергоносители в Германии: обзор рынка
Ожидается, что рынок прогнозирования спроса на энергию в Германии будет расти значительными среднегодовыми темпами, что обусловлено акцентом страны на инновациях, цифровизации и интеграции возобновляемых источников энергии. Политика Германии «Energiewende» (энергетический переход) усилила важность точного прогнозирования для балансировки непостоянных возобновляемых источников энергии, таких как ветер и солнце. Обладая развитой промышленной базой, Германия также сталкивается с растущими потребностями в энергии, которые требуют заблаговременного прогнозирования спроса. Растущая зависимость от интеллектуальных счётчиков и систем управления энергопотреблением на основе Интернета вещей способствует внедрению прогнозирования как в жилом, так и в промышленном секторе.
Прогнозирование спроса на энергоносители в Азиатско-Тихоокеанском регионе: анализ рынка
Рынок прогнозирования спроса на энергоносители в Азиатско-Тихоокеанском регионе, как ожидается, будет расти самыми быстрыми среднегодовыми темпами в период с 2025 по 2032 год, что обусловлено быстрой индустриализацией, урбанизацией и ростом потребления электроэнергии в таких странах, как Китай, Индия и Япония. Растущее внедрение возобновляемых источников энергии в регионе и государственные инициативы по цифровизации создают широкие возможности для развития современных систем прогнозирования. Рост инвестиций в проекты интеллектуальных сетей и расширение инфраструктуры электромобилей также ускоряют рост спроса. В связи с тем, что Азиатско-Тихоокеанский регион становится крупным центром как энергопотребления, так и развития чистой энергетики, технологии прогнозирования набирают обороты.
Прогнозирование спроса на энергоносители в Японии: обзор рынка
Рынок прогнозирования спроса на энергию в Японии набирает обороты благодаря высокой зависимости страны от технологий, развитой инфраструктуры и растущему проникновению возобновляемых источников энергии. Решения для прогнозирования жизненно важны в Японии для балансировки колебаний спроса на солнечную и ветровую энергию, обеспечивая при этом надежность энергосистемы. Растущая электрификация транспорта и рост числа «умных домов» стимулируют спрос на точные прогнозные модели. Кроме того, старение населения Японии формирует уникальные модели потребления энергии, что делает передовые инструменты прогнозирования необходимыми для эффективного планирования и распределения.
Обзор рынка прогнозирования спроса на энергоносители в Китае
Рынок прогнозирования спроса на энергоносители в Китае обеспечил наибольшую долю выручки в Азиатско-Тихоокеанском регионе в 2024 году благодаря огромному спросу на электроэнергию в стране, быстрому росту промышленности и значительным инвестициям в возобновляемую энергетику. Китай является одним из крупнейших потребителей энергии в мире, и интеграция моделей прогнозирования критически важна для управления его обширными сетевыми сетями. Государственные инициативы, поддерживающие проекты «умных городов» и расширение инфраструктуры электромобилей, дополнительно усиливают рост рынка. Наличие отечественных поставщиков технологий и крупных установок возобновляемой энергетики гарантирует Китаю лидирующие позиции в области внедрения прогнозирования.
Прогнозирование спроса на энергию. Доля рынка.
Отрасль прогнозирования спроса на энергию в основном возглавляют хорошо зарекомендовавшие себя компании, в том числе:
- Hitachi Energy (Швейцария)
- IBM (США)
- Oracle (США)
- Schneider Electric (Франция)
- Сименс (Германия)
- General Electric (США)
- АББ (Швейцария)
- Институт SAS (США)
- Tata Consultancy Services (Индия)
- Autogrid Systems (США)
Последние события на мировом рынке прогнозирования спроса на энергию
- В августе 2025 года компания ENGIE India интегрировала инструменты прогнозирования на основе искусственного интеллекта в свою платформу Smart & Energy Management (S&EM) для оптимизации распределения электроэнергии, управления колебаниями в сети и поддержки интеграции возобновляемых источников энергии. В условиях быстрого роста спроса на электроэнергию в Индии и рекордного расширения мощностей возобновляемых источников энергии такие решения на основе искусственного интеллекта помогают коммунальным службам прогнозировать модели потребления с большей точностью, минимизировать сокращение солнечной и ветровой энергии и повысить стабильность энергосистемы. Это развитие выводит Индию на лидирующие позиции в области внедрения прогнозирования нового поколения для достижения целей перехода к чистой энергии.
- В июне 2025 года компания RWE заключила стратегическое партнерство с Amazon Web Services (AWS) для повышения эффективности прогнозирования возобновляемой энергии и торговли. В то время как RWE поставляет чистую энергию для нужд Amazon, AWS использует технологии искусственного интеллекта, машинного обучения и облачной аналитики для повышения возможностей RWE в прогнозировании переменчивой выработки возобновляемой энергии. Это сотрудничество демонстрирует, как крупные технологические и энергетические гиганты объединяют усилия для решения проблем, связанных с нестабильностью энергосетей, и подчеркивает растущую зависимость от облачного прогнозирования для энергосистем с высокой долей возобновляемой энергии.
- В мае 2025 года компания Nextracker приобрела корпорацию Bentek за 78 миллионов долларов, расширив свою деятельность в сфере электрификации солнечных проектов и обеспечения электрического баланса системы (eBOS). Объединяя опыт в области аппаратного обеспечения с передовыми программными решениями по оптимизации энергопотребления, Nextracker укрепляет свои позиции в сфере предоставления комплексных решений для солнечной инфраструктуры. Это приобретение улучшает мониторинг в режиме реального времени, прогнозирование распределения энергии и эффективность проектов солнечной энергетики коммунального масштаба, делая прогнозирование неотъемлемой частью процесса развертывания солнечных проектов.
- В марте 2025 года компания Apollo Global Management приобрела контрольный пакет акций OEG Energy Group для ускорения развития её услуг в области возобновляемой энергетики, в частности, морской ветроэнергетики и солнечной энергетики. Этот шаг укрепляет портфель проектов OEG в области возобновляемых источников энергии, а также расширяет её возможности в области управления энергопотреблением и прогнозирования. Для Apollo эти инвестиции символизируют уверенность в ценности цифровых платформ прогнозирования для максимального повышения эффективности использования возобновляемых источников энергии, снижения операционных рисков и повышения рентабельности крупномасштабных проектов в области чистой энергии.
- В ноябре 2024 года компания Hitachi Energy запустила Nostradamus AI — передовое облачное решение для прогнозирования, сочетающее в себе аналитику сетей, мониторинг активов и предиктивное моделирование. Этот инструмент позволяет операторам сетей и коммунальным службам с большей точностью прогнозировать скачки спроса, отказы оборудования и колебания в секторе возобновляемых источников энергии. Его запуск знаменует собой значительный прорыв в области цифрового прогнозирования в сфере энергетики, предоставляя заинтересованным сторонам более эффективный способ балансировки возобновляемых источников энергии, обеспечивая при этом устойчивость к отключениям и волатильности цен.
- В октябре 2024 года Google заключила партнерское соглашение с Kairos Power для совместной разработки малых модульных реакторов (ММР), способных вырабатывать до 500 МВт безуглеродной электроэнергии. Для Google это гарантирует долгосрочное и надежное энергоснабжение для своей инфраструктуры, управляемой искусственным интеллектом. С точки зрения прогнозирования, ММР обеспечивают предсказуемое и стабильное энергоснабжение, дополняющее непостоянные возобновляемые источники энергии, снижая неопределенность прогнозирования и стабилизируя планирование спроса на энергию.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

