Анализ объема, доли и тенденций мирового рынка MLOps — обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Анализ объема, доли и тенденций мирового рынка MLOps — обзор отрасли и прогноз до 2032 года

  • ICT
  • Upcoming Report
  • Apr 2024
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60
  • Author : Megha Gupta

Обходите тарифные трудности с помощью гибкого консалтинга в области цепочки поставок

Анализ экосистемы цепочки поставок теперь является частью отчетов DBMR

Global Mlops Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 2.19 Billion USD 34.21 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 2.19 Billion
Diagram Размер рынка (прогнозируемый год)
USD 34.21 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • Databricks
  • Domino Data Lab
  • Kubeflow (by Google)
  • Amazon SageMaker
  • Paperspace Gradient

Сегментация мирового рынка MLOps по компонентам (платформа и сервис), способу развертывания (локально, в облаке и гибрид), размеру организации (крупные предприятия, малые и средние предприятия (МСП)), отраслевым вертикалям (финансовые услуги (BFSI), производство, информационные технологии (ИТ) и телекоммуникации, розничная торговля и электронная коммерция, здравоохранение и другие) — отраслевые тенденции и прогноз до 2032 года

Рынок MLOP z

Размер рынка MLOps

  • Объем мирового рынка MLOps в 2024 году оценивался в 2,19 млрд долларов США, а к 2032 году ,  как ожидается, он достигнет  34,21 млрд долларов США при среднегодовом темпе роста 41,00% в течение прогнозируемого периода.
  • Рост рынка во многом обусловлен растущим внедрением искусственного интеллекта (ИИ) и машинного обучения (МО) в различных отраслях, что создает потребность в оптимизированном развертывании моделей и управлении жизненным циклом.
  • Растущий спрос на автоматизацию рабочих процессов МО, включая обучение, мониторинг и переобучение моделей, еще больше ускоряет внедрение платформ и инструментов MLOps.

Анализ рынка MLOps

  • Рынок MLOps переживает стремительный рост, поскольку организации стремятся масштабировать модели машинного обучения, обеспечивая надежность, воспроизводимость и управляемость.
  • Облачные решения MLOps набирают популярность благодаря своей масштабируемости и интеграции с существующими конвейерами DevOps, что делает их привлекательными как для крупных предприятий, так и для малых и средних предприятий.
  • Северная Америка доминировала на рынке MLOps с наибольшей долей выручки в 41% в 2024 году, что обусловлено активным внедрением искусственного интеллекта и машинного обучения на предприятиях, а также наличием крупных поставщиков технологий и передовой облачной инфраструктуры.
  • Ожидается, что Азиатско-Тихоокеанский регион станет свидетелем самых высоких темпов роста мирового рынка MLOps , что обусловлено масштабным внедрением технологий ИИ, ростом инвестиций в облачные платформы, расширением ИТ-услуг и ролью региона как глобального центра цифровой трансформации и инноваций.
  • Сегмент платформ обеспечил наибольшую долю рынка в 2024 году благодаря растущему спросу на интегрированные решения, оптимизирующие подготовку данных, обучение, развертывание и мониторинг моделей машинного обучения. Эти платформы обеспечивают масштабируемость, воспроизводимость и соответствие требованиям, что делает их предпочтительным выбором для внедрения в крупных компаниях.

Область отчета и сегментация рынка MLOps      

Атрибуты

Ключевые аспекты рынка MLOps

Охваченные сегменты

  • По компонентам: платформа и сервис
  • По способу развертывания: локально, в облаке и гибридно
  • По размеру организации: крупные предприятия, малые и средние предприятия (МСП)
  • По отраслям: финансовые услуги (BFSI), производство, информационные технологии (ИТ) и телекоммуникации, розничная торговля и электронная коммерция, здравоохранение и другие

Страны действия

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальной Азиатско-Тихоокеанский регион

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

Рыночные возможности

• Интеграция MLOps с облачными платформами
• Растущее внедрение решений автоматизированного машинного обучения (AutoML)

Информационные наборы данных с добавленной стоимостью

Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, отчет о рынке, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов.

Тенденции рынка MLOps

Рост автоматизированных и масштабируемых операций машинного обучения

• Растущий переход к автоматизированным рабочим процессам в машинном обучении (МО) меняет ландшафт МЛО, обеспечивая развертывание, мониторинг и управление моделями в режиме реального времени. Масштабируемость и скорость этих платформ позволяют компаниям внедрять ИИ в больших масштабах, что приводит к ускорению инноваций и повышению эффективности принятия решений.

• Высокий спрос на эффективность управления большими объёмами моделей машинного обучения ускоряет внедрение облачных решений MLOps и интегрированных конвейеров DevOps. Эти платформы особенно эффективны для предприятий, где постоянное переобучение и развертывание критически важны, обеспечивая точность и актуальность моделей.

• Доступность и доступность инструментов MLOps с открытым исходным кодом делает их привлекательными для малых и средних предприятий (МСП), позволяя им более широко участвовать в трансформации на основе ИИ. Это повышает гибкость организации и одновременно снижает технические и финансовые барьеры для внедрения ИИ.

• Например, в 2023 году несколько финансовых учреждений в Северной Америке внедрили автоматизированные конвейеры MLOps для мониторинга моделей обнаружения мошенничества, что позволило сократить количество ложных срабатываний и повысить безопасность транзакций, одновременно сократив операционные расходы.

• Хотя автоматизация и масштабируемость ускоряют внедрение MLOps, их эффективность зависит от постоянных инноваций, эффективного управления данными и интеграции с существующими корпоративными ИТ-системами. Чтобы воспользоваться этим спросом, поставщикам необходимо сосредоточиться на совместимости, безопасности и удобных для пользователя решениях.

Динамика рынка MLOps

Водитель

Рост внедрения искусственного интеллекта на предприятиях и спроса на управление жизненным циклом моделей

• Быстрое внедрение искусственного интеллекта и машинного обучения в различных отраслях побуждает предприятия инвестировать в MLOps для эффективного управления жизненным циклом моделей. MLOps обеспечивает надежность, воспроизводимость и соответствие требованиям, позволяя организациям ответственно масштабировать ИИ и быстро внедрять инновации.

• Организации всё больше осознают риски, связанные с неуправляемыми моделями машинного обучения, включая предвзятость, дрейф и несоблюдение нормативных требований, что подчёркивает необходимость создания надёжных фреймворков MLOps. Решая эти проблемы, MLOps позволяет предприятиям поддерживать эффективность моделей, защищаться от репутационных рисков и обеспечивать доверие к решениям, принимаемым на основе ИИ.

• Инициативы государственного и частного секторов, такие как инвестиции в ИИ, расширение облачной инфраструктуры и нормативные требования к ответственному использованию ИИ, укрепляют экосистему MLOps. Эти усилия не только стимулируют предприятия к внедрению передового опыта, но и формируют глобальные стандарты этичного, прозрачного и безопасного внедрения ИИ.

• Например, в 2022 году правительство США объявило об увеличении финансирования инфраструктуры и управления ИИ, что привело к росту спроса на платформы многозадачности корпоративного уровня (MLOP) в таких секторах, как здравоохранение, оборона и финансы. Эта инициатива отражает более широкую глобальную тенденцию к согласованию инноваций в области ИИ с подотчётностью и долгосрочной конкурентоспособностью.

• Несмотря на рост внедрения, устойчивый рост зависит от решения таких вопросов, как стандартизация, безопасность данных и обучение персонала, чтобы обеспечить ответственное и повсеместное использование решений MLOps. Чтобы раскрыть весь преобразующий потенциал ИИ, предприятиям необходимо найти баланс между быстрым развертыванием и ответственным управлением.

Сдержанность/Вызов

Высокие затраты на внедрение и нехватка талантов в MLOps

• Высокая стоимость внедрения платформ MLOps корпоративного уровня, особенно тех, которые требуют развитой облачной инфраструктуры и инструментов мониторинга, остаётся препятствием для малых предприятий и развивающихся рынков. Эти расходы часто включают не только программное обеспечение, но и интеграцию, соответствие требованиям и текущее обслуживание, что ограничивает более широкий доступ.

• Во многих регионах также наблюдается нехватка квалифицированных специалистов, способных управлять сложными процессами многозадачности (MLOP), включая процессы развертывания моделей, мониторинга и обеспечения соответствия требованиям. Дефицит талантливых специалистов создаёт узкие места для предприятий, стремящихся масштабировать ИИ, вынуждая их полагаться на внешних консультантов или неквалифицированный персонал.

• Проникновение на рынок дополнительно ограничивается проблемами интеграции, поскольку многие предприятия по-прежнему используют устаревшие ИТ-системы, несовместимые с современными платформами MLOps. Этот разрыв приводит к увеличению сроков внедрения, увеличению расходов и задержке окупаемости инвестиций, что отпугивает небольшие компании от масштабного внедрения ИИ.

• Например, в 2023 году несколько производственных компаний в Азиатско-Тихоокеанском регионе сообщили о трудностях с внедрением MLOps из-за нехватки квалифицированной рабочей силы и высоких расходов, связанных с миграцией в облако и интеграцией платформ. Эти трудности подчеркивают неравномерность темпов внедрения MLOps на развитых и развивающихся рынках.

• Несмотря на продолжающееся развитие технологий MLOps, решение проблем, связанных со стоимостью, интеграцией и кадрами, по-прежнему крайне важно. Поставщики и предприятия должны отдавать приоритет решениям с минимальным написанием кода, программам обучения и гибридным моделям развертывания, чтобы устранить пробелы, снизить сложность и раскрыть весь потенциал глобального рынка MLOps.

Объем рынка MLOps

Рынок сегментирован по принципу компонентов, способа развертывания, размера организации и отраслевых вертикалей.

  • По компонентам

По компонентному составу рынок MLOps сегментируется на платформы и сервисы. Сегмент платформ занял наибольшую долю рынка в 2024 году благодаря растущему спросу на интегрированные решения, оптимизирующие подготовку данных, обучение, развертывание и мониторинг моделей машинного обучения. Эти платформы обеспечивают масштабируемость, воспроизводимость и соответствие требованиям, что делает их предпочтительным выбором для внедрения в крупных компаниях.

Ожидается, что сегмент услуг будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено растущей зависимостью от консалтинга, интеграции и управляемых услуг. Предприятия всё чаще обращаются к поставщикам услуг для преодоления дефицита квалифицированных специалистов и решения сложных задач по развертыванию, что позволяет им ускорить внедрение ИИ, оптимизируя затраты и повышая эксплуатационную эффективность.

  • По режиму развертывания

По способу развертывания рынок MLOps сегментируется на локальные, облачные и гибридные решения. Облачный сегмент занимал наибольшую долю рынка в 2024 году благодаря растущему внедрению масштабируемой облачной инфраструктуры, которая позволяет организациям быстрее обучать и развертывать модели машинного обучения, минимизируя первоначальные затраты. Облачные решения MLOps также легко интегрируются с современными конвейерами данных, обеспечивая гибкость и доступность.

Ожидается, что гибридный сегмент будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено стремлением предприятий к балансу между масштабируемостью облака и безопасностью локальной инфраструктуры. Гибридные модели MLOps всё чаще внедряются в таких строго регулируемых отраслях, как банковское дело, оборона и здравоохранение, где обработка конфиденциальных данных критически важна, при этом сохраняя преимущества облачных инноваций.

  • По размеру организации

В зависимости от размера организации рынок MLOps сегментируется на крупные предприятия и малые и средние предприятия (МСП). Крупные предприятия обеспечили наибольшую долю выручки в 2024 году, поскольку они являются одними из первых, кто внедрил решения корпоративного уровня в области ИИ и обладают ресурсами для инвестиций в передовые платформы MLOps. Эти организации получают выгоду от возможности масштабировать инициативы в области ИИ на несколько отделов, повышая производительность и инновации.

Ожидается, что сегмент малого и среднего бизнеса будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будет способствовать повышение доступности облачных решений MLOps и платформ с минимальным написанием кода. Малые и средние предприятия внедряют MLOps для повышения эффективности процесса принятия решений, оптимизации операций и получения конкурентного преимущества без высоких затрат на инфраструктуру, что способствует дальнейшей демократизации внедрения ИИ во всем мире.

  • По отраслевым вертикалям

По отраслевому признаку рынок MLOps сегментирован на следующие сферы: финансовые услуги (BFSI), производство, информационные технологии (ИТ) и телекоммуникации, розничная торговля и электронная коммерция, здравоохранение и другие. Сегмент BFSI доминировал на рынке в 2024 году благодаря растущему использованию ИИ для выявления мошенничества, оценки рисков и мониторинга соответствия требованиям. Необходимость в надежном управлении моделями и мониторинге в режиме реального времени дополнительно усиливает спрос на MLOps в этом секторе.

Ожидается, что сектор здравоохранения будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будет способствовать растущее внедрение ИИ в области медицинской визуализации, диагностики и персонализированного лечения. Решения MLOps обеспечивают точность моделей, соблюдение нормативных требований и безопасность данных пациентов, что делает их критически важными для масштабирования приложений ИИ в здравоохранении. Другие отрасли, такие как производство и розничная торговля, также быстро внедряют MLOps для повышения операционной эффективности, управления цепочками поставок и качества обслуживания клиентов.

Региональный анализ рынка MLOps

• Северная Америка доминировала на рынке MLOps с наибольшей долей выручки в 41% в 2024 году, что обусловлено активным внедрением искусственного интеллекта и машинного обучения на предприятиях, а также наличием основных поставщиков технологий и передовой облачной инфраструктуры.

• Предприятия региона ценят надежность, масштабируемость и соответствие требованиям платформ MLOps, обеспечивая безопасное и эффективное управление жизненным циклом модели ИИ.

• Это лидерство дополнительно подкрепляется крупными инвестициями в инновации в области ИИ, благоприятной государственной политикой и высоким спросом со стороны таких отраслей, как финансы, здравоохранение и ИТ, что укрепляет позиции Северной Америки как ведущего центра внедрения MLOps.

Обзор рынка MLOps в США

Рынок MLOps в США в 2024 году занял наибольшую долю выручки в Северной Америке благодаря быстрой цифровой трансформации, более широкому внедрению облачных решений на основе ИИ и высокому спросу предприятий на автоматизацию. Компании всё чаще используют MLOps для оптимизации рабочих процессов ИИ, снижения операционных рисков и обеспечения соответствия меняющимся нормативным требованиям к данным. Более того, интеграция MLOps с передовыми облачными экосистемами, такими как AWS, Microsoft Azure и Google Cloud, продолжает стимулировать рост в различных отраслях, включая бизнес-финансирование, розничную торговлю и здравоохранение.

Обзор европейского рынка MLOps

Ожидается, что европейский рынок MLOps будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено, главным образом, строгими правилами защиты данных, такими как GDPR, и растущей потребностью в безопасных и объяснимых моделях ИИ. Расширение внедрения ИИ в финансовых услугах, производстве и государственном секторе повышает спрос на масштабируемые платформы MLOps. Европейские предприятия также делают акцент на ответственном развертывании ИИ, устойчивом развитии и этичных практиках ИИ, способствуя широкой интеграции MLOps как в государственном, так и в частном секторах.

Обзор рынка MLOps в Великобритании

Ожидается, что рынок MLOps в Великобритании будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будут способствовать значительные инвестиции в исследования искусственного интеллекта, финтех-инновации и цифровые бизнес-стратегии. Растущее внимание к соблюдению нормативных требований, прозрачности моделей и безопасному управлению данными стимулирует спрос на решения MLOps корпоративного уровня. Кроме того, процветающий сектор ИТ-услуг в Великобритании и широкое внедрение гибридной облачной инфраструктуры дополнительно ускоряют рост рынка.

Обзор рынка MLOps в Германии

Ожидается, что рынок MLOps в Германии будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено акцентом страны на Индустрию 4.0, интеллектуальное производство и автоматизацию. Немецкие предприятия всё активнее интегрируют MLOps в свои ИИ-системы для повышения операционной эффективности, предиктивной аналитики и оптимизации цепочек поставок. Акцент на устойчивом развитии, соблюдении нормативных требований и безопасности данных также формирует спрос на решения MLOps, особенно в промышленности, автомобилестроении и здравоохранении.

Обзор рынка MLOps в Азиатско-Тихоокеанском регионе

Ожидается, что рынок MLOps в Азиатско-Тихоокеанском регионе будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будут способствовать стремительная цифровизация, рост внедрения облачных технологий и расширение инвестиций в ИИ в таких странах, как Китай, Япония и Индия. Предприятия региона всё чаще внедряют MLOps для управления крупномасштабными приложениями, основанными на данных, оптимизации развертывания ИИ и повышения масштабируемости. Поскольку Азиатско-Тихоокеанский регион становится одновременно и потребителем, и производителем технологий ИИ, ожидается, что доступность платформ MLOps ускорит их внедрение как среди малых и средних предприятий, так и среди крупных предприятий.

Обзор рынка MLOps в Японии

Ожидается, что рынок MLOps в Японии будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год благодаря фокусу страны на автоматизации, робототехнике и высокотехнологичных инновациях. Японские предприятия используют MLOps для приложений в производстве, розничной торговле и здравоохранении, уделяя особое внимание эффективности, точности и безопасности. Интеграция MLOps с проектами Интернета вещей и интеллектуальной инфраструктуры также способствует их внедрению. Кроме того, старение рабочей силы в Японии подталкивает компании к внедрению автоматизации на основе ИИ, что стимулирует дальнейший спрос на платформы MLOps.

Обзор рынка MLOps в Китае

В 2024 году китайский рынок MLOps обеспечил наибольшую долю выручки в Азиатско-Тихоокеанском регионе благодаря масштабным государственным инвестициям в ИИ, расширению облачной инфраструктуры и быстрому внедрению технологий в таких отраслях, как электронная коммерция, финансы и производство. Китай становится мировым лидером в области инноваций в области ИИ, а MLOps служат важнейшей основой для масштабирования и развертывания приложений машинного обучения. Рост числа умных городов в сочетании с сильными отечественными поставщиками технологий дополнительно стимулирует внедрение MLOps, делая Китай ключевым игроком на мировом рынке.

Доля рынка MLOps

Лидерами отрасли MLOps в первую очередь являются хорошо зарекомендовавшие себя компании, в том числе:

  • Databricks (США)
  • Domino Data Lab (США)
  • Kubeflow (от Google) (США)
  • Amazon SageMaker (США)
  • Градиент Paperspace (США)
  • Fiddler AI (США)
  • MLflow (от Databricks) (США)
  • Валохай (Финляндия)
  • Толстокожее животное (США)
  • ZenML (Германия)

Последние события на мировом рынке MLOps

  • В марте 2025 года компания Hewlett Packard Enterprise (HPE) совместно с NVIDIA представила новые корпоративные решения на основе ИИ в рамках портфолио NVIDIA AI Computing by HPE, включая HPE Private Cloud AI, интегрированную с платформой NVIDIA AI Data Platform. Эти решения, основанные на архитектуре NVIDIA Blackwell, обеспечивают улучшенную производительность, безопасность и инструменты для наблюдения, а также способствуют быстрой разработке и развертыванию ИИ. Эта инициатива направлена ​​на ускорение внедрения генеративного и агентного ИИ в компаниях, сокращение времени окупаемости инвестиций и стимулирование инноваций, тем самым повышая конкурентоспособность обеих компаний в сфере ИИ и многозадачности (MLOps).
  • В июле 2024 года Microsoft представила архитектурную платформу MLOps v2 для Azure — комплексное решение, разработанное для оптимизации операций машинного обучения в рамках классических рабочих нагрузок машинного обучения, машинного зрения и обработки естественного языка. Эта платформа объединяет лучшие отраслевые практики, предлагая модульные компоненты для управления данными, разработки, развертывания и мониторинга моделей. Обеспечивая повторяемые, безопасные и готовые к использованию рабочие процессы ИИ, этот запуск позволяет предприятиям ускорить свои инициативы в области ИИ благодаря улучшенной масштабируемости и эффективности, укрепляя позиции Azure на мировом рынке MLOps.
  • В мае 2021 года Google Cloud представила Vertex AI — управляемую платформу машинного обучения, объединяющую множество сервисов для создания, обучения и развертывания моделей машинного обучения. Платформа была разработана для упрощения жизненного цикла ИИ, снижения сложности эксплуатации и ускорения разработки моделей. Предоставляя организациям возможность более простого, быстрого и масштабируемого внедрения ИИ, Vertex AI сыграла значительную роль в укреплении позиций Google на рынке корпоративного ИИ и многозадачных вычислений (ML-операций).


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация мирового рынка MLOps по компонентам (платформа и сервис), способу развертывания (локально, в облаке и гибрид), размеру организации (крупные предприятия, малые и средние предприятия (МСП)), отраслевым вертикалям (финансовые услуги (BFSI), производство, информационные технологии (ИТ) и телекоммуникации, розничная торговля и электронная коммерция, здравоохранение и другие) — отраслевые тенденции и прогноз до 2032 года .
Размер Анализ объема, доли и тенденций мирового рынка MLOps — обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 2.19 USD Billion долларов США.
Ожидается, что Анализ объема, доли и тенденций мирового рынка MLOps — обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 41% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают Databricks, Domino Data Lab, Kubeflow (by Google), Amazon SageMaker, Paperspace Gradient .
Testimonial