Global Mlops Market
Размер рынка в млрд долларов США
CAGR :
%
USD
2.19 Billion
USD
34.21 Billion
2024
2032
| 2025 –2032 | |
| USD 2.19 Billion | |
| USD 34.21 Billion | |
|
|
|
|
Сегментация мирового рынка MLOps по компонентам (платформа и сервис), способу развертывания (локально, в облаке и гибрид), размеру организации (крупные предприятия, малые и средние предприятия (МСП)), отраслевым вертикалям (финансовые услуги (BFSI), производство, информационные технологии (ИТ) и телекоммуникации, розничная торговля и электронная коммерция, здравоохранение и другие) — отраслевые тенденции и прогноз до 2032 года
Размер рынка MLOps
- Объем мирового рынка MLOps в 2024 году оценивался в 2,19 млрд долларов США, а к 2032 году , как ожидается, он достигнет 34,21 млрд долларов США при среднегодовом темпе роста 41,00% в течение прогнозируемого периода.
- Рост рынка во многом обусловлен растущим внедрением искусственного интеллекта (ИИ) и машинного обучения (МО) в различных отраслях, что создает потребность в оптимизированном развертывании моделей и управлении жизненным циклом.
- Растущий спрос на автоматизацию рабочих процессов МО, включая обучение, мониторинг и переобучение моделей, еще больше ускоряет внедрение платформ и инструментов MLOps.
Анализ рынка MLOps
- Рынок MLOps переживает стремительный рост, поскольку организации стремятся масштабировать модели машинного обучения, обеспечивая надежность, воспроизводимость и управляемость.
- Облачные решения MLOps набирают популярность благодаря своей масштабируемости и интеграции с существующими конвейерами DevOps, что делает их привлекательными как для крупных предприятий, так и для малых и средних предприятий.
- Северная Америка доминировала на рынке MLOps с наибольшей долей выручки в 41% в 2024 году, что обусловлено активным внедрением искусственного интеллекта и машинного обучения на предприятиях, а также наличием крупных поставщиков технологий и передовой облачной инфраструктуры.
- Ожидается, что Азиатско-Тихоокеанский регион станет свидетелем самых высоких темпов роста мирового рынка MLOps , что обусловлено масштабным внедрением технологий ИИ, ростом инвестиций в облачные платформы, расширением ИТ-услуг и ролью региона как глобального центра цифровой трансформации и инноваций.
- Сегмент платформ обеспечил наибольшую долю рынка в 2024 году благодаря растущему спросу на интегрированные решения, оптимизирующие подготовку данных, обучение, развертывание и мониторинг моделей машинного обучения. Эти платформы обеспечивают масштабируемость, воспроизводимость и соответствие требованиям, что делает их предпочтительным выбором для внедрения в крупных компаниях.
Область отчета и сегментация рынка MLOps
|
Атрибуты |
Ключевые аспекты рынка MLOps |
|
Охваченные сегменты |
|
|
Страны действия |
Северная Америка
Европа
Азиатско-Тихоокеанский регион
Ближний Восток и Африка
Южная Америка
|
|
Ключевые игроки рынка |
|
|
Рыночные возможности |
• Интеграция MLOps с облачными платформами |
|
Информационные наборы данных с добавленной стоимостью |
Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, отчет о рынке, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов. |
Тенденции рынка MLOps
Рост автоматизированных и масштабируемых операций машинного обучения
• Растущий переход к автоматизированным рабочим процессам в машинном обучении (МО) меняет ландшафт МЛО, обеспечивая развертывание, мониторинг и управление моделями в режиме реального времени. Масштабируемость и скорость этих платформ позволяют компаниям внедрять ИИ в больших масштабах, что приводит к ускорению инноваций и повышению эффективности принятия решений.
• Высокий спрос на эффективность управления большими объёмами моделей машинного обучения ускоряет внедрение облачных решений MLOps и интегрированных конвейеров DevOps. Эти платформы особенно эффективны для предприятий, где постоянное переобучение и развертывание критически важны, обеспечивая точность и актуальность моделей.
• Доступность и доступность инструментов MLOps с открытым исходным кодом делает их привлекательными для малых и средних предприятий (МСП), позволяя им более широко участвовать в трансформации на основе ИИ. Это повышает гибкость организации и одновременно снижает технические и финансовые барьеры для внедрения ИИ.
• Например, в 2023 году несколько финансовых учреждений в Северной Америке внедрили автоматизированные конвейеры MLOps для мониторинга моделей обнаружения мошенничества, что позволило сократить количество ложных срабатываний и повысить безопасность транзакций, одновременно сократив операционные расходы.
• Хотя автоматизация и масштабируемость ускоряют внедрение MLOps, их эффективность зависит от постоянных инноваций, эффективного управления данными и интеграции с существующими корпоративными ИТ-системами. Чтобы воспользоваться этим спросом, поставщикам необходимо сосредоточиться на совместимости, безопасности и удобных для пользователя решениях.
Динамика рынка MLOps
Водитель
Рост внедрения искусственного интеллекта на предприятиях и спроса на управление жизненным циклом моделей
• Быстрое внедрение искусственного интеллекта и машинного обучения в различных отраслях побуждает предприятия инвестировать в MLOps для эффективного управления жизненным циклом моделей. MLOps обеспечивает надежность, воспроизводимость и соответствие требованиям, позволяя организациям ответственно масштабировать ИИ и быстро внедрять инновации.
• Организации всё больше осознают риски, связанные с неуправляемыми моделями машинного обучения, включая предвзятость, дрейф и несоблюдение нормативных требований, что подчёркивает необходимость создания надёжных фреймворков MLOps. Решая эти проблемы, MLOps позволяет предприятиям поддерживать эффективность моделей, защищаться от репутационных рисков и обеспечивать доверие к решениям, принимаемым на основе ИИ.
• Инициативы государственного и частного секторов, такие как инвестиции в ИИ, расширение облачной инфраструктуры и нормативные требования к ответственному использованию ИИ, укрепляют экосистему MLOps. Эти усилия не только стимулируют предприятия к внедрению передового опыта, но и формируют глобальные стандарты этичного, прозрачного и безопасного внедрения ИИ.
• Например, в 2022 году правительство США объявило об увеличении финансирования инфраструктуры и управления ИИ, что привело к росту спроса на платформы многозадачности корпоративного уровня (MLOP) в таких секторах, как здравоохранение, оборона и финансы. Эта инициатива отражает более широкую глобальную тенденцию к согласованию инноваций в области ИИ с подотчётностью и долгосрочной конкурентоспособностью.
• Несмотря на рост внедрения, устойчивый рост зависит от решения таких вопросов, как стандартизация, безопасность данных и обучение персонала, чтобы обеспечить ответственное и повсеместное использование решений MLOps. Чтобы раскрыть весь преобразующий потенциал ИИ, предприятиям необходимо найти баланс между быстрым развертыванием и ответственным управлением.
Сдержанность/Вызов
Высокие затраты на внедрение и нехватка талантов в MLOps
• Высокая стоимость внедрения платформ MLOps корпоративного уровня, особенно тех, которые требуют развитой облачной инфраструктуры и инструментов мониторинга, остаётся препятствием для малых предприятий и развивающихся рынков. Эти расходы часто включают не только программное обеспечение, но и интеграцию, соответствие требованиям и текущее обслуживание, что ограничивает более широкий доступ.
• Во многих регионах также наблюдается нехватка квалифицированных специалистов, способных управлять сложными процессами многозадачности (MLOP), включая процессы развертывания моделей, мониторинга и обеспечения соответствия требованиям. Дефицит талантливых специалистов создаёт узкие места для предприятий, стремящихся масштабировать ИИ, вынуждая их полагаться на внешних консультантов или неквалифицированный персонал.
• Проникновение на рынок дополнительно ограничивается проблемами интеграции, поскольку многие предприятия по-прежнему используют устаревшие ИТ-системы, несовместимые с современными платформами MLOps. Этот разрыв приводит к увеличению сроков внедрения, увеличению расходов и задержке окупаемости инвестиций, что отпугивает небольшие компании от масштабного внедрения ИИ.
• Например, в 2023 году несколько производственных компаний в Азиатско-Тихоокеанском регионе сообщили о трудностях с внедрением MLOps из-за нехватки квалифицированной рабочей силы и высоких расходов, связанных с миграцией в облако и интеграцией платформ. Эти трудности подчеркивают неравномерность темпов внедрения MLOps на развитых и развивающихся рынках.
• Несмотря на продолжающееся развитие технологий MLOps, решение проблем, связанных со стоимостью, интеграцией и кадрами, по-прежнему крайне важно. Поставщики и предприятия должны отдавать приоритет решениям с минимальным написанием кода, программам обучения и гибридным моделям развертывания, чтобы устранить пробелы, снизить сложность и раскрыть весь потенциал глобального рынка MLOps.
Объем рынка MLOps
Рынок сегментирован по принципу компонентов, способа развертывания, размера организации и отраслевых вертикалей.
- По компонентам
По компонентному составу рынок MLOps сегментируется на платформы и сервисы. Сегмент платформ занял наибольшую долю рынка в 2024 году благодаря растущему спросу на интегрированные решения, оптимизирующие подготовку данных, обучение, развертывание и мониторинг моделей машинного обучения. Эти платформы обеспечивают масштабируемость, воспроизводимость и соответствие требованиям, что делает их предпочтительным выбором для внедрения в крупных компаниях.
Ожидается, что сегмент услуг будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено растущей зависимостью от консалтинга, интеграции и управляемых услуг. Предприятия всё чаще обращаются к поставщикам услуг для преодоления дефицита квалифицированных специалистов и решения сложных задач по развертыванию, что позволяет им ускорить внедрение ИИ, оптимизируя затраты и повышая эксплуатационную эффективность.
- По режиму развертывания
По способу развертывания рынок MLOps сегментируется на локальные, облачные и гибридные решения. Облачный сегмент занимал наибольшую долю рынка в 2024 году благодаря растущему внедрению масштабируемой облачной инфраструктуры, которая позволяет организациям быстрее обучать и развертывать модели машинного обучения, минимизируя первоначальные затраты. Облачные решения MLOps также легко интегрируются с современными конвейерами данных, обеспечивая гибкость и доступность.
Ожидается, что гибридный сегмент будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено стремлением предприятий к балансу между масштабируемостью облака и безопасностью локальной инфраструктуры. Гибридные модели MLOps всё чаще внедряются в таких строго регулируемых отраслях, как банковское дело, оборона и здравоохранение, где обработка конфиденциальных данных критически важна, при этом сохраняя преимущества облачных инноваций.
- По размеру организации
В зависимости от размера организации рынок MLOps сегментируется на крупные предприятия и малые и средние предприятия (МСП). Крупные предприятия обеспечили наибольшую долю выручки в 2024 году, поскольку они являются одними из первых, кто внедрил решения корпоративного уровня в области ИИ и обладают ресурсами для инвестиций в передовые платформы MLOps. Эти организации получают выгоду от возможности масштабировать инициативы в области ИИ на несколько отделов, повышая производительность и инновации.
Ожидается, что сегмент малого и среднего бизнеса будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будет способствовать повышение доступности облачных решений MLOps и платформ с минимальным написанием кода. Малые и средние предприятия внедряют MLOps для повышения эффективности процесса принятия решений, оптимизации операций и получения конкурентного преимущества без высоких затрат на инфраструктуру, что способствует дальнейшей демократизации внедрения ИИ во всем мире.
- По отраслевым вертикалям
По отраслевому признаку рынок MLOps сегментирован на следующие сферы: финансовые услуги (BFSI), производство, информационные технологии (ИТ) и телекоммуникации, розничная торговля и электронная коммерция, здравоохранение и другие. Сегмент BFSI доминировал на рынке в 2024 году благодаря растущему использованию ИИ для выявления мошенничества, оценки рисков и мониторинга соответствия требованиям. Необходимость в надежном управлении моделями и мониторинге в режиме реального времени дополнительно усиливает спрос на MLOps в этом секторе.
Ожидается, что сектор здравоохранения будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будет способствовать растущее внедрение ИИ в области медицинской визуализации, диагностики и персонализированного лечения. Решения MLOps обеспечивают точность моделей, соблюдение нормативных требований и безопасность данных пациентов, что делает их критически важными для масштабирования приложений ИИ в здравоохранении. Другие отрасли, такие как производство и розничная торговля, также быстро внедряют MLOps для повышения операционной эффективности, управления цепочками поставок и качества обслуживания клиентов.
Региональный анализ рынка MLOps
• Северная Америка доминировала на рынке MLOps с наибольшей долей выручки в 41% в 2024 году, что обусловлено активным внедрением искусственного интеллекта и машинного обучения на предприятиях, а также наличием основных поставщиков технологий и передовой облачной инфраструктуры.
• Предприятия региона ценят надежность, масштабируемость и соответствие требованиям платформ MLOps, обеспечивая безопасное и эффективное управление жизненным циклом модели ИИ.
• Это лидерство дополнительно подкрепляется крупными инвестициями в инновации в области ИИ, благоприятной государственной политикой и высоким спросом со стороны таких отраслей, как финансы, здравоохранение и ИТ, что укрепляет позиции Северной Америки как ведущего центра внедрения MLOps.
Обзор рынка MLOps в США
Рынок MLOps в США в 2024 году занял наибольшую долю выручки в Северной Америке благодаря быстрой цифровой трансформации, более широкому внедрению облачных решений на основе ИИ и высокому спросу предприятий на автоматизацию. Компании всё чаще используют MLOps для оптимизации рабочих процессов ИИ, снижения операционных рисков и обеспечения соответствия меняющимся нормативным требованиям к данным. Более того, интеграция MLOps с передовыми облачными экосистемами, такими как AWS, Microsoft Azure и Google Cloud, продолжает стимулировать рост в различных отраслях, включая бизнес-финансирование, розничную торговлю и здравоохранение.
Обзор европейского рынка MLOps
Ожидается, что европейский рынок MLOps будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено, главным образом, строгими правилами защиты данных, такими как GDPR, и растущей потребностью в безопасных и объяснимых моделях ИИ. Расширение внедрения ИИ в финансовых услугах, производстве и государственном секторе повышает спрос на масштабируемые платформы MLOps. Европейские предприятия также делают акцент на ответственном развертывании ИИ, устойчивом развитии и этичных практиках ИИ, способствуя широкой интеграции MLOps как в государственном, так и в частном секторах.
Обзор рынка MLOps в Великобритании
Ожидается, что рынок MLOps в Великобритании будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будут способствовать значительные инвестиции в исследования искусственного интеллекта, финтех-инновации и цифровые бизнес-стратегии. Растущее внимание к соблюдению нормативных требований, прозрачности моделей и безопасному управлению данными стимулирует спрос на решения MLOps корпоративного уровня. Кроме того, процветающий сектор ИТ-услуг в Великобритании и широкое внедрение гибридной облачной инфраструктуры дополнительно ускоряют рост рынка.
Обзор рынка MLOps в Германии
Ожидается, что рынок MLOps в Германии будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено акцентом страны на Индустрию 4.0, интеллектуальное производство и автоматизацию. Немецкие предприятия всё активнее интегрируют MLOps в свои ИИ-системы для повышения операционной эффективности, предиктивной аналитики и оптимизации цепочек поставок. Акцент на устойчивом развитии, соблюдении нормативных требований и безопасности данных также формирует спрос на решения MLOps, особенно в промышленности, автомобилестроении и здравоохранении.
Обзор рынка MLOps в Азиатско-Тихоокеанском регионе
Ожидается, что рынок MLOps в Азиатско-Тихоокеанском регионе будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будут способствовать стремительная цифровизация, рост внедрения облачных технологий и расширение инвестиций в ИИ в таких странах, как Китай, Япония и Индия. Предприятия региона всё чаще внедряют MLOps для управления крупномасштабными приложениями, основанными на данных, оптимизации развертывания ИИ и повышения масштабируемости. Поскольку Азиатско-Тихоокеанский регион становится одновременно и потребителем, и производителем технологий ИИ, ожидается, что доступность платформ MLOps ускорит их внедрение как среди малых и средних предприятий, так и среди крупных предприятий.
Обзор рынка MLOps в Японии
Ожидается, что рынок MLOps в Японии будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год благодаря фокусу страны на автоматизации, робототехнике и высокотехнологичных инновациях. Японские предприятия используют MLOps для приложений в производстве, розничной торговле и здравоохранении, уделяя особое внимание эффективности, точности и безопасности. Интеграция MLOps с проектами Интернета вещей и интеллектуальной инфраструктуры также способствует их внедрению. Кроме того, старение рабочей силы в Японии подталкивает компании к внедрению автоматизации на основе ИИ, что стимулирует дальнейший спрос на платформы MLOps.
Обзор рынка MLOps в Китае
В 2024 году китайский рынок MLOps обеспечил наибольшую долю выручки в Азиатско-Тихоокеанском регионе благодаря масштабным государственным инвестициям в ИИ, расширению облачной инфраструктуры и быстрому внедрению технологий в таких отраслях, как электронная коммерция, финансы и производство. Китай становится мировым лидером в области инноваций в области ИИ, а MLOps служат важнейшей основой для масштабирования и развертывания приложений машинного обучения. Рост числа умных городов в сочетании с сильными отечественными поставщиками технологий дополнительно стимулирует внедрение MLOps, делая Китай ключевым игроком на мировом рынке.
Доля рынка MLOps
Лидерами отрасли MLOps в первую очередь являются хорошо зарекомендовавшие себя компании, в том числе:
- Databricks (США)
- Domino Data Lab (США)
- Kubeflow (от Google) (США)
- Amazon SageMaker (США)
- Градиент Paperspace (США)
- Fiddler AI (США)
- MLflow (от Databricks) (США)
- Валохай (Финляндия)
- Толстокожее животное (США)
- ZenML (Германия)
Последние события на мировом рынке MLOps
- В марте 2025 года компания Hewlett Packard Enterprise (HPE) совместно с NVIDIA представила новые корпоративные решения на основе ИИ в рамках портфолио NVIDIA AI Computing by HPE, включая HPE Private Cloud AI, интегрированную с платформой NVIDIA AI Data Platform. Эти решения, основанные на архитектуре NVIDIA Blackwell, обеспечивают улучшенную производительность, безопасность и инструменты для наблюдения, а также способствуют быстрой разработке и развертыванию ИИ. Эта инициатива направлена на ускорение внедрения генеративного и агентного ИИ в компаниях, сокращение времени окупаемости инвестиций и стимулирование инноваций, тем самым повышая конкурентоспособность обеих компаний в сфере ИИ и многозадачности (MLOps).
- В июле 2024 года Microsoft представила архитектурную платформу MLOps v2 для Azure — комплексное решение, разработанное для оптимизации операций машинного обучения в рамках классических рабочих нагрузок машинного обучения, машинного зрения и обработки естественного языка. Эта платформа объединяет лучшие отраслевые практики, предлагая модульные компоненты для управления данными, разработки, развертывания и мониторинга моделей. Обеспечивая повторяемые, безопасные и готовые к использованию рабочие процессы ИИ, этот запуск позволяет предприятиям ускорить свои инициативы в области ИИ благодаря улучшенной масштабируемости и эффективности, укрепляя позиции Azure на мировом рынке MLOps.
- В мае 2021 года Google Cloud представила Vertex AI — управляемую платформу машинного обучения, объединяющую множество сервисов для создания, обучения и развертывания моделей машинного обучения. Платформа была разработана для упрощения жизненного цикла ИИ, снижения сложности эксплуатации и ускорения разработки моделей. Предоставляя организациям возможность более простого, быстрого и масштабируемого внедрения ИИ, Vertex AI сыграла значительную роль в укреплении позиций Google на рынке корпоративного ИИ и многозадачных вычислений (ML-операций).
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

