Отчет об анализе размера, доли и тенденций глобального рынка малых языковых моделей (SLM) – обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Отчет об анализе размера, доли и тенденций глобального рынка малых языковых моделей (SLM) – обзор отрасли и прогноз до 2032 года

  • ICT
  • Upcoming Report
  • Jun 2025
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60
  • Author : Megha Gupta

Обходите тарифные трудности с помощью гибкого консалтинга в области цепочки поставок

Анализ экосистемы цепочки поставок теперь является частью отчетов DBMR

Global Small Language Model Slm Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 5.30 Billion USD 26.70 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 5.30 Billion
Diagram Размер рынка (прогнозируемый год)
USD 26.70 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • OpenAI
  • Anthropic
  • Google DeepMind
  • Cohere
  • Reka AI

Сегментация мирового рынка малых языковых моделей (SLM) по технологиям (на основе глубокого обучения, на основе машинного обучения и сервисов), развертыванию (облачные, локальные и гибридные), применению (потребительские приложения, корпоративные приложения, здравоохранение, финансы, розничная торговля, юриспруденция, производство и другие) — отраслевые тенденции и прогноз до 2032 года

Малая языковая модель (SLM) Market Z

Размер рынка малой языковой модели (SLM)

  • Объем мирового рынка малых языковых моделей (SLM) оценивался в 5,3 млрд долларов США в 2024 году и, как ожидается , достигнет 26,70 млрд долларов США к 2032 году при среднегодовом темпе роста 22,40% в течение прогнозируемого периода.
  • Рост рынка во многом обусловлен растущим внедрением автоматизации на базе искусственного интеллекта и обработки естественного языка в различных отраслях, что приводит к повышению эффективности и улучшению пользовательского опыта в сфере обслуживания клиентов, создания контента и анализа данных.
  • Кроме того, растущий спрос на персонализированные, контекстно-зависимые приложения в здравоохранении, финансах, розничной торговле и юриспруденции превращает малые языковые модели в важные инструменты для разумного принятия решений и оптимизации рабочих процессов.

Анализ рынка малых языковых моделей (SLM)

  • Малые языковые модели (SLM), обеспечивающие расширенные возможности понимания и генерации естественного языка, становятся важнейшими компонентами современных приложений на основе искусственного интеллекта в различных отраслях, включая обслуживание клиентов, здравоохранение, финансы и розничную торговлю, благодаря их способности обеспечивать персонализированное, контекстно-зависимое взаимодействие и автоматизировать сложные языковые задачи.
  • Растущий спрос на SLM обусловлен в первую очередь быстрой цифровой трансформацией, растущим внедрением автоматизации на базе искусственного интеллекта и растущей потребностью в эффективных масштабируемых решениях, которые улучшают пользовательский опыт и оптимизируют бизнес-процессы.
  • Северная Америка доминировала на рынке малых языковых моделей (SLM) с долей 32,2% в 2024 году благодаря широкому внедрению приложений на базе ИИ в различных отраслях и значительным инвестициям в передовые исследования и инфраструктуру ИИ.
  • Ожидается, что Азиатско-Тихоокеанский регион станет самым быстрорастущим регионом на рынке малых языковых моделей (SLM) в прогнозируемый период из-за быстрой цифровизации, расширения проникновения Интернета и растущего внедрения ИИ в Китае, Японии и Индии.
  • Сегмент на основе машинного обучения доминировал на рынке с долей рынка 55,6% в 2024 году благодаря своей универсальности и экономической эффективности при обработке различных языковых задач. Его внедрение растет в отраслях, которые ищут масштабируемые решения с умеренной сложностью и более быстрым временем развертывания. Услуги, охватывающие консалтинг, интеграцию и поддержку, играют решающую роль в содействии внедрению и оптимизации небольших языковых моделей, особенно для предприятий, не имеющих внутренних экспертных знаний в области ИИ

Область отчета и сегментация рынка малой языковой модели (SLM)       

Атрибуты

Ключевые рыночные идеи модели малого языка (SLM)

Охваченные сегменты

  • По технологиям: на основе глубокого обучения, на основе машинного обучения и сервисы
  • По развертыванию: облачное, локальное и гибридное
  • По области применения: потребительские приложения, корпоративные приложения, здравоохранение, финансы, розничная торговля, юриспруденция, производство и другие

Страны, охваченные

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальная часть Азиатско-Тихоокеанского региона

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

  • OpenAI (США)
  • Антропный (США)
  • Google DeepMind (Великобритания)
  • Кохер (Канада)
  • Река AI (США)
  • Жипу АЙ (Китай)
  • Номический ИИ (США)
  • Стабильность ИИ (Великобритания)
  • LightOn (Франция)
  • Сарвам AI (Индия)
  • Арси AI (США)
  • Prem Labs (США)
  • Мета ИИ (США)
  • Майкрософт (США)
  • Salesforce ИИ (США)
  • Алибаба (Китай)
  • Мозаика ML (США)
  • Институт технологических инноваций (TII) (ОАЭ)
  • Обнимающее лицо (США)

Возможности рынка

  • Растущий спрос на решения на основе искусственного интеллекта
  • Растущее внимание к конфиденциальности данных и обработке на устройстве

Информационные наборы данных с добавленной стоимостью

Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, рыночный отчет, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов.

Тенденции рынка малых языковых моделей (SLM)

«Расширение облачного развертывания»:

  • Значительной и набирающей силу тенденцией на мировом рынке малых языковых моделей (SLM) является растущий переход к облачному развертыванию, обеспечивающему масштабируемый, гибкий и экономически эффективный доступ к языковым возможностям на базе ИИ в различных отраслях.
    • Например, модели GPT от OpenAI и Vertex AI от Google предоставляют облачные сервисы небольших языковых моделей, которые позволяют компаниям интегрировать расширенную языковую обработку без значительных инвестиций в локальную инфраструктуру.
  • Развертывание в облаке обеспечивает непрерывное обновление моделей, бесшовную интеграцию с другими облачными сервисами и упрощает совместную работу между командами, что значительно повышает доступность и сокращает время вывода на рынок приложений ИИ.
  • Такие компании, как Microsoft Azure и Amazon Web Services (AWS), предлагают управляемые платформы SLM, которые поддерживают быструю разработку и развертывание решений по обработке естественного языка, позволяя предприятиям использовать передовые технологии ИИ без значительных технических затрат.
  • Эта тенденция к развертыванию облачных решений SLM способствует более широкому внедрению в таких секторах, как здравоохранение, финансы, розничная торговля и обслуживание клиентов, где масштабируемые и надежные языковые решения ИИ имеют решающее значение для цифровой трансформации.
  • Растущая популярность облачных SLM-решений отражает потребность в гибких возможностях искусственного интеллекта, которые могут обрабатывать динамические рабочие нагрузки и позволяют организациям быстрее внедрять инновации и предоставлять персонализированный пользовательский опыт в нужном масштабе.

Динамика рынка малых языковых моделей (SLM)

Водитель

«Растущее внедрение автоматизации на базе искусственного интеллекта»

  • Растущее внедрение автоматизации на основе искусственного интеллекта в различных отраслях является существенным фактором растущего спроса на малые языковые модели (SLM), поскольку компании стремятся оптимизировать операции, повысить производительность и обеспечить интеллектуальное взаимодействие с пользователями на основе языка.
    • Например, в феврале 2024 года Microsoft интегрировала в свой пакет Dynamics 365 мелкомасштабные языковые модели ИИ, что позволяет автоматически отвечать клиентам, обобщать данные в реальном времени и выполнять запросы на естественном языке, позволяя пользователям управлять сложными системами с помощью простого ввода текста.
  • Поскольку предприятия стремятся сократить объем ручной работы и ускорить процессы принятия решений, SLM предоставляют эффективные решения для автоматизации таких задач, как чат-боты для обслуживания клиентов, генерация документов и языковой перевод, помогая компаниям повысить вовлеченность пользователей и операционную эффективность. Кроме того, растущее внедрение помощников ИИ и виртуальных агентов в таких секторах, как здравоохранение, финансы и розничная торговля, усиливает спрос на компактные, предметно-ориентированные языковые модели, которые могут обеспечить высокую производительность при меньшем потреблении ресурсов.
  • Возможность тонкой настройки SLM для конкретных приложений в сочетании с более низкой стоимостью развертывания по сравнению с большими языковыми моделями делает их особенно привлекательными для предприятий, впервые внедряющих ИИ или расширяющих интеграцию ИИ в различные функции.
  • Ожидается, что тенденция к автоматизации на основе искусственного интеллекта и растущая доступность предварительно обученных, размещенных в облаке SLM от таких поставщиков, как OpenAI, Google Cloud и AWS, ускорят внедрение этих моделей как среди малых и средних предприятий, так и среди крупных предприятий.

Сдержанность/Вызов

«Ограниченный размер модели, ограничивающий точность и контекстное понимание»

  • Ограниченный размер модели, ограничивающий точность и контекстное понимание, представляет собой значительную проблему для более широкого внедрения малых языковых моделей (SLM), особенно в корпоративных приложениях, требующих детальных ответов, специфичных для конкретной области.
    • Например, хотя модели LLaMA компании Meta и Command R+ компании Cohere предназначены для эффективной работы в меньших масштабах, они часто испытывают трудности с пониманием длинного контекста или созданием высокоточных результатов, необходимых в таких секторах, как юриспруденция или здравоохранение.
  • Поддержание высококачественной генерации языка при сокращении вычислительных ресурсов заставляет разработчиков идти на компромиссы между эффективностью и лингвистической производительностью, особенно при развертывании SLM в режиме реального времени или на периферийных устройствах.
  • Поскольку растет спрос на компактные и экономичные инструменты ИИ , которые могут конкурировать с возможностями более крупных LLM, преодоление ограничений меньших архитектур потребует постоянного совершенствования проектирования моделей, методик обучения и стратегий тонкой настройки.
  • Решение этой проблемы посредством исследовательских инноваций, инвестиций в настройку под конкретные задачи и повышения качества данных для обучения будет иметь решающее значение для того, чтобы SLM могли соответствовать ожиданиям отрасли без ущерба для производительности.

Масштаб рынка малых языковых моделей (SLM)

Рынок сегментирован по принципу технологии, развертывания и применения.

  • По технологии

На основе технологий рынок малых языковых моделей сегментируется на Deep Learning Based, Machine Learning Based и Services. Сегмент Machine Learning Based обеспечил наибольшую долю выручки рынка в 55,6% в 2024 году, что обусловлено его универсальностью и экономической эффективностью при обработке разнообразных языковых задач. Его внедрение растет в отраслях, которые ищут масштабируемые решения с умеренной сложностью и более быстрым временем развертывания. Услуги, охватывающие консалтинг, интеграцию и поддержку, играют решающую роль в содействии внедрению и оптимизации малых языковых моделей, особенно для предприятий, не имеющих собственного опыта в области ИИ.

Ожидается, что сегмент Deep Learning Based будет демонстрировать самые высокие темпы роста с 2025 по 2032 год, что обусловлено его превосходной способностью понимать сложные языковые шаблоны и предоставлять более точные и контекстно-зависимые результаты. Эта технология извлекает выгоду из постоянного совершенствования архитектур нейронных сетей и обширных наборов данных, что делает ее предпочтительным выбором для приложений, требующих высокой точности и адаптивности.

  • По развертыванию

На основе развертывания рынок сегментируется на облачные, локальные и гибридные. Сегмент облака занимал самую большую долю рынка в 45,3% в 2024 году, что объясняется его масштабируемостью, экономической эффективностью и простотой доступа, что позволяет организациям использовать небольшие языковые модели без крупных инвестиций в инфраструктуру. Развертывание облака также поддерживает непрерывные обновления моделей и бесшовную интеграцию с другими облачными сервисами, улучшая функциональность и пользовательский опыт.

Ожидается, что гибридный сегмент будет свидетелем самого быстрого среднегодового темпа роста с 2025 по 2032 год, что обусловлено растущим спросом предприятий на сочетание гибкости облачных вычислений с безопасностью и контролем локальной инфраструктуры. Гибридное развертывание подходит для отраслей со строгими правилами конфиденциальности данных, позволяя конфиденциальным данным оставаться на месте, при этом извлекая выгоду из облачных возможностей. Локальное развертывание остается важным для секторов, требующих максимального контроля над данными и моделями, особенно в строго регулируемых средах.

  • По применению

На основе применения рынок Small Language Model сегментирован на Потребительские приложения, Корпоративные приложения, Здравоохранение, Финансы, Розничная торговля, Юридические услуги, Производство и другие. Потребительские приложения составили наибольшую долю выручки рынка в 2024 году, чему способствовало растущее внедрение виртуальных помощников, чат-ботов и создание персонализированного контента. Простота интеграции в повседневные устройства и сервисы стимулирует вовлечение и спрос потребителей.

Ожидается, что сегмент корпоративных приложений будет демонстрировать самый быстрый среднегодовой темп роста с 2025 по 2032 год, что обусловлено растущими потребностями в автоматизированной поддержке клиентов, обработке документов и управлении знаниями. Такие отрасли, как здравоохранение и финансы, извлекают выгоду из специализированных языковых моделей, разработанных для клинической документации, обнаружения мошенничества и соответствия требованиям, что еще больше ускоряет внедрение. Розничная торговля и юридический сектор все чаще используют эти модели для улучшения качества обслуживания клиентов и оптимизации рабочих процессов, в то время как производство использует языковые модели для технической документации и коммуникации в цепочке поставок. Сегмент «Другие» включает образовательные, медиа и правительственные приложения, которые также расширяются из-за растущих усилий по цифровой трансформации.

Региональный анализ рынка малых языковых моделей (SLM)

  • Северная Америка доминировала на рынке малых языковых моделей (SLM) с наибольшей долей выручки в 32,2% в 2024 году, что обусловлено широким внедрением приложений на базе ИИ в отраслях и значительными инвестициями в передовые исследования и инфраструктуру ИИ.
  • Организации в регионе высоко ценят интеграцию небольших языковых моделей для повышения автоматизации, улучшения взаимодействия с клиентами и оптимизации рабочих процессов в таких секторах, как здравоохранение, финансы и розничная торговля.
  • Этому внедрению также способствуют технологический опыт, высокие расходы на ИТ и присутствие ведущих компаний в сфере ИИ, что делает Северную Америку ключевым центром инноваций и внедрения решений SLM.

Анализ рынка моделей малого языка в США

Рынок SLM в США получил наибольшую долю выручки в Северной Америке в 2024 году, чему способствовала быстрая цифровая трансформация и спрос на инструменты на основе ИИ для оптимизации бизнес-процессов. Рост использования виртуальных помощников, чат-ботов и автоматизированной генерации контента способствует росту рынка. Растущее внимание к пониманию естественного языка и улучшению клиентского опыта в сочетании с мощной государственной поддержкой инициатив в области ИИ еще больше ускоряет рынок. Более того, американские технологические гиганты постоянно инвестируют в разработку сложных малых языковых моделей, поддерживая широкое внедрение во многих секторах.

Обзор рынка малой языковой модели в Европе

Ожидается, что рынок SLM в Европе будет стабильно расти в течение прогнозируемого периода, что обусловлено растущей осведомленностью о приложениях ИИ и поддерживающими нормами, способствующими конфиденциальности данных и ответственному использованию ИИ. Увеличение инвестиций в исследовательские центры ИИ и сотрудничество между промышленностью и академическими кругами стимулируют инновации. Европейские предприятия внедряют SLM для повышения операционной эффективности, взаимодействия с клиентами и управления соответствием требованиям, особенно в секторах финансов, здравоохранения и права.

Анализ рынка моделей малого языка в Великобритании

Ожидается, что рынок SLM в Великобритании значительно вырастет в течение прогнозируемого периода, что обусловлено сильным вниманием правительства к стратегии ИИ и цифровым инновациям. Рост внедрения ИИ в секторах государственных услуг, финансов и розничной торговли повышает спрос на малые языковые модели. Кроме того, растущие стартапы и технологические инкубаторы ускоряют инновации и интеграцию языковых решений на базе ИИ.

Анализ рынка малой языковой модели в Германии

Ожидается, что рынок SLM в Германии будет расширяться с устойчивым среднегодовым темпом роста, поддерживаемым его сильной промышленной базой и акцентом на ИИ для Индустрии 4.0. Растущее внимание к безопасности данных, конфиденциальности и этическим приложениям ИИ поощряет внедрение в производственном, юридическом и здравоохранительном секторах. Хорошо зарекомендовавшие себя исследовательские институты ИИ в Германии и правительственные инициативы, продвигающие инновации ИИ, еще больше усиливают рост рынка.

Анализ рынка малых языковых моделей в Азиатско-Тихоокеанском регионе

Рынок SLM в Азиатско-Тихоокеанском регионе готов к самому быстрому росту с CAGR в период с 2025 по 2032 год, обусловленному быстрой цифровизацией, расширением проникновения интернета и растущим внедрением ИИ в Китае, Японии и Индии. Правительственные инициативы, способствующие развитию ИИ и интеллектуальных технологий, ускоряют развертывание. Увеличение инвестиций в стартапы ИИ и технологическую инфраструктуру расширяет доступность и финансовую доступность решений для малых языковых моделей в регионе.

Анализ рынка моделей малого языка в Японии

Рынок SLM в Японии набирает обороты благодаря своей передовой технологической экосистеме и фокусу на автоматизации. Растущее использование ИИ в потребительской электронике, робототехнике и корпоративных приложениях стимулирует спрос. Старение населения Японии также подпитывает потребность в решениях ИИ, которые повышают доступность и эффективность, особенно в секторах здравоохранения и обслуживания клиентов. Интеграция SLM с устройствами IoT и интеллектуальными системами поддерживает непрерывный рост рынка.

Анализ рынка моделей малого языка в Китае

Китай обеспечил наибольшую долю выручки на рынке SLM в Азиатско-Тихоокеанском регионе в 2024 году, что обусловлено государственной поддержкой развития ИИ, расширяющейся цифровой экономикой и большой базой технологических компаний, инвестирующих в языковой ИИ. Стремление к умным городам, рост электронной коммерции и широкое внедрение мобильных устройств поддерживают спрос во всех отраслях. Конкурентное ценообразование и быстрые инновации от отечественных ИИ-компаний являются ключевыми факторами, поддерживающими лидерство на рынке в Китае.

Доля рынка малой языковой модели (SLM)

Индустрию малых языковых моделей (SLM) в основном возглавляют хорошо зарекомендовавшие себя компании, в том числе:

  • OpenAI (США)
  • Антропный (США)
  • Google DeepMind (Великобритания)
  • Кохер (Канада)
  • Река AI (США)
  • Жипу АЙ (Китай)
  • Номический ИИ (США)
  • Стабильность ИИ (Великобритания)
  • LightOn (Франция)
  • Сарвам AI (Индия)
  • Арси AI (США)
  • Prem Labs (США)
  • Мета ИИ (США)
  • Майкрософт (США)
  • Salesforce ИИ (США)
  • Алибаба (Китай)
  • Мозаика ML (США)
  • Институт технологических инноваций (TII) (ОАЭ)
  • Обнимающее лицо (США)

Последние разработки на мировом рынке малых языковых моделей (SLM)

  • В феврале 2025 года Microsoft расширила свое присутствие на рынке SLM, выпустив серию Phi-4, включая Phi-4-mini-instruct и Phi-4-multimodal. Эти модели предлагают расширенные возможности в рассуждениях, многоязычном понимании и кодировании, что делает их идеальными как для корпоративного использования, так и для использования разработчиками. Ожидается, что их доступность на таких платформах, как Hugging Face, Azure AI Foundry и Ollama, значительно расширит доступ пользователей и ускорит внедрение в различных секторах
  • В феврале 2025 года IBM расширила свою линейку моделей Granite, включив в нее мультимодальные и ориентированные на рассуждения модели, предназначенные для корпоративных приложений. С Granite Multimodal и Granite Reasoning IBM удовлетворяет критическую потребность в интерпретируемом и логически поддерживаемом ИИ, потенциально захватывая большую долю корпоративно-ориентированного сегмента рынка SLM. Эти инструменты предназначены для бесшовной интеграции и ответственного внедрения, улучшая принятие решений и автоматизацию на основе ИИ
  • В январе 2025 года Arcee AI укрепила свои конкурентные позиции, выпустив два новых SLM — Virtuoso-Lite и Virtuoso-Medium-v2 — на основе DeepSeek-V3. Эти модели, особенно Virtuoso-Medium-v2, превзошедшие предыдущие бенчмарки Arcee, повышают производительность в математических и кодовых приложениях. Их передовая архитектура и фирменные методы, вероятно, подтолкнут инновации в академических и технических вариантах использования на рынке SLM
  • В ноябре 2024 года Amazon усилила свое присутствие в сфере ИИ, инвестировав дополнительно 4 млрд долларов США в Anthropic. Этот шаг в сочетании с обучением на базе AWS Trainium для моделей Claude, таких как Claude 3.5 Haiku и Claude 3.5 Sonnet, подчеркивает амбиции Amazon стать лидером в области высокопроизводительных агентских моделей. Высокая производительность серии Claude в задачах кодирования позиционирует ее как важного участника коммерческого ландшафта SLM, особенно в приложениях, ориентированных на разработчиков.
  • В апреле 2024 года Microsoft представила «Phi-3-mini», легкую модель ИИ, нацеленную на предоставление расширенных языковых возможностей более широкому кругу пользователей по более низкой цене. Сделав ее доступной через такие платформы, как Microsoft Azure AI Model Catalog, Hugging Face, Ollama и NVIDIA NIM, Microsoft укрепляет свои позиции на рынке малых языковых моделей (SLM). Этот запуск знаменует начало ее открытой серии SLM, значительно повышая доступность и способствуя широкому внедрению в различных отраслях


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация мирового рынка малых языковых моделей (SLM) по технологиям (на основе глубокого обучения, на основе машинного обучения и сервисов), развертыванию (облачные, локальные и гибридные), применению (потребительские приложения, корпоративные приложения, здравоохранение, финансы, розничная торговля, юриспруденция, производство и другие) — отраслевые тенденции и прогноз до 2032 года .
Размер Отчет об анализе размера, доли и тенденций глобального рынка малых языковых моделей (SLM) – обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 5.30 USD Billion долларов США.
Ожидается, что Отчет об анализе размера, доли и тенденций глобального рынка малых языковых моделей (SLM) – обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 22.4% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают OpenAI, Anthropic, Google DeepMind, Cohere, Reka AI .
Testimonial