Анализ размера, доли и тенденций мирового рынка классификации веб-данных – обзор отрасли и прогноз до 2032 года

Запрос на TOC Запрос на TOC Обратиться к аналитику Обратиться к аналитику Бесплатный пример отчета Бесплатный пример отчета Узнать перед покупкой Узнать перед покупкой Купить сейчас Купить сейчас

Анализ размера, доли и тенденций мирового рынка классификации веб-данных – обзор отрасли и прогноз до 2032 года

  • ICT
  • Upcoming Report
  • Dec 2020
  • Global
  • 350 Pages
  • Количество таблиц: 220
  • Количество рисунков: 60
  • Author : Megha Gupta

Обходите тарифные трудности с помощью гибкого консалтинга в области цепочки поставок

Анализ экосистемы цепочки поставок теперь является частью отчетов DBMR

Global Web Data Classification Market

Размер рынка в млрд долларов США

CAGR :  % Diagram

Chart Image USD 2.58 Billion USD 15.57 Billion 2024 2032
Diagram Прогнозируемый период
2025 –2032
Diagram Размер рынка (базовый год)
USD 2.58 Billion
Diagram Размер рынка (прогнозируемый год)
USD 15.57 Billion
Diagram CAGR
%
Diagram Основные игроки рынка
  • IBM Corporation
  • Google
  • Microsoft
  • Amazon Web ServicesInc.
  • Broadcom

Сегментация глобального рынка классификации веб-данных по компонентам (решения и услуги), методологии (классификация на основе контента, контекстная классификация и классификация на основе пользователей), вертикали (банковское дело, финансовые услуги и страхование (BFSI), здравоохранение и науки о жизни, государственное управление и оборона, образование, телекоммуникации, СМИ и развлечения и другие) — тенденции отрасли и прогноз до 2032 года

Рынок классификации веб-данных z

Размер рынка веб-классификации данных

  • Объем мирового рынка классификации веб-данных в 2024 году оценивался в 2,58 млрд долларов США , а к 2032 году , как ожидается, он достигнет 15,57 млрд долларов США при среднегодовом темпе роста 25,20% в прогнозируемый период.
  • Рост рынка во многом обусловлен растущим внедрением искусственного интеллекта, машинного обучения и облачных решений, которые позволяют организациям эффективно классифицировать и управлять большими объемами структурированных и неструктурированных данных в различных отраслях.
  • Более того, растущий спрос на безопасные, точные и автоматизированные решения для классификации данных побуждает предприятия внедрять передовые платформы, обеспечивающие соблюдение нормативных требований, конфиденциальность данных и расширенные возможности принятия решений. Эти факторы ускоряют внедрение решений для классификации веб-данных, значительно стимулируя рост рынка.

Анализ рынка классификации веб-данных

  • Классификация веб-данных включает в себя процесс категоризации данных на основе контента, контекста или поведения пользователя для улучшения управления данными, их безопасности и доступности. Решения используют искусственный интеллект, семантический анализ и машинное обучение для оптимизации управления данными, сокращения ручного труда и повышения эффективности работы в различных секторах.
  • Растущий спрос на классификацию веб-данных обусловлен, прежде всего, резким ростом объемов генерации цифровых данных, строгими правилами конфиденциальности данных и растущей потребностью организаций в получении практической информации из неструктурированной информации, тем самым способствуя принятию обоснованных бизнес-решений и повышению эксплуатационной устойчивости.
  • Северная Америка доминировала на рынке классификации веб-данных с долей 33,3% в 2024 году благодаря растущему внедрению облачных вычислений, передовой аналитики и строгим правилам конфиденциальности данных, таким как CCPA.
  • Ожидается, что Азиатско-Тихоокеанский регион станет самым быстрорастущим регионом на рынке классификации веб-данных в течение прогнозируемого периода благодаря росту цифровизации, расширению ИТ- и телекоммуникационной инфраструктуры, а также повышению осведомленности о защите данных в таких странах, как Китай, Япония и Индия.
  • Сегмент решений доминировал на рынке с долей рынка 61,8% в 2024 году благодаря растущему внедрению передовых инструментов классификации на основе искусственного интеллекта и машинного обучения, которые помогают организациям эффективно организовывать и управлять большими объемами неструктурированных и структурированных данных. Решения предлагают автоматизированные, масштабируемые и точные возможности классификации, позволяя компаниям улучшить управление данными, соответствие требованиям и аналитику. Предприятия из разных отраслей отдают приоритет решениям, которые легко интегрируются с существующими ИТ-инфраструктурами и облачными средами, тем самым сокращая объем ручного труда и эксплуатационные расходы. Растущий спрос на аналитику данных в режиме реального времени и улучшенное принятие решений также способствует внедрению комплексных решений.

Область отчета и классификация веб-данных. Сегментация рынка    

Атрибуты

Ключевые аспекты рынка классификации веб-данных

Охваченные сегменты

  • По компонентам: решения и услуги
  • По методологии: классификация на основе содержания, классификация на основе контекста и классификация на основе пользователей
  • По отраслям: банковское дело, финансовые услуги и страхование (BFSI), здравоохранение и науки о жизни, государственное управление и оборона, образование, телекоммуникации, СМИ и развлечения и другие

Охваченные страны

Северная Америка

  • НАС
  • Канада
  • Мексика

Европа

  • Германия
  • Франция
  • Великобритания
  • Нидерланды
  • Швейцария
  • Бельгия
  • Россия
  • Италия
  • Испания
  • Турция
  • Остальная Европа

Азиатско-Тихоокеанский регион

  • Китай
  • Япония
  • Индия
  • Южная Корея
  • Сингапур
  • Малайзия
  • Австралия
  • Таиланд
  • Индонезия
  • Филиппины
  • Остальной Азиатско-Тихоокеанский регион

Ближний Восток и Африка

  • Саудовская Аравия
  • ОАЭ
  • ЮАР
  • Египет
  • Израиль
  • Остальной Ближний Восток и Африка

Южная Америка

  • Бразилия
  • Аргентина
  • Остальная часть Южной Америки

Ключевые игроки рынка

  • Корпорация IBM (США)
  • Google (США)
  • Microsoft (США)
  • Amazon Web Services, Inc. (США)
  • Broadcom (США)
  • Open Text Corporation (Канада)
  • БОЛДОН ДЖЕЙМС (Великобритания)
  • Варонис (США)
  • Innovative Routines International (IRI), Inc. (США)
  • MinerEye (Израиль)
  • PKWARE, Inc. (США)
  • Informatica Corporation (США)
  • Spirion, LLC (США)
  • Clearswift GmbH (Германия)
  • SECLORE (Индия)
  • Титус (Канада)
  • Корпорация Netwrix (США)
  • GTB Technologies, Inc. (США)
  • Forcepoint (США)
  • ConnectWise, LLC (США)
  • SoftWorks AI (США)
  • Janusnet Pty Limited (Австралия)

Рыночные возможности

  • Рост популярности облачных решений по классификации для малых и средних предприятий
  • Внедрение контекстно-зависимых инструментов для улучшения понимания данных

Информационные наборы данных с добавленной стоимостью

Помимо таких рыночных данных, как рыночная стоимость, темпы роста, сегменты рынка, географический охват, участники рынка и рыночный сценарий, отчет о рынке, подготовленный командой Data Bridge Market Research, включает в себя углубленный экспертный анализ, анализ импорта/экспорта, анализ цен, анализ потребления продукции и анализ пестицидов.

Тенденции рынка классификации веб-данных

Растущее использование ИИ для автоматизированной классификации данных

  • Рынок классификации веб-данных стремительно растёт благодаря всё более широкому внедрению технологий искусственного интеллекта (ИИ) для автоматизации процессов категоризации и маркировки данных. Организации, работающие с большими объёмами онлайн- и корпоративных веб-данных, используют алгоритмы на базе ИИ для повышения точности, снижения ручной нагрузки и ускорения принятия решений.
    • Например, IBM и Microsoft Azure интегрировали в свои облачные платформы механизмы классификации на основе машинного обучения, что позволяет автоматически маркировать конфиденциальную информацию, данные клиентов и конфиденциальный контент в соответствии с правилами конфиденциальности. Аналогичным образом, AWS Macie использует ИИ для идентификации и классификации персональных данных в облачных хранилищах, обеспечивая улучшенную прозрачность и контроль соответствия требованиям.
  • Автоматизированные системы классификации на основе искусственного интеллекта способны обрабатывать большие наборы данных в режиме реального времени, эффективно различая структурированные, полуструктурированные и неструктурированные данные. Эти решения также адаптируются к меняющимся моделям данных, обеспечивая постоянное повышение точности посредством обучения моделей и обучения с подкреплением.
  • Кроме того, классификация на основе ИИ повышает операционную эффективность в таких отраслях, как финансы, здравоохранение и розничная торговля, обеспечивая быструю идентификацию критически важных данных для аналитики, аудита соответствия и протоколов безопасности. Компании получают выгоду от снижения человеческого фактора, оптимизации рабочих процессов и улучшения управления данными.
  • Интеграция обработки естественного языка (NLP) и моделей глубокого обучения в инструменты веб-классификации улучшает понимание контекста, обеспечивая точную категоризацию сложных наборов данных, таких как отзывы клиентов, юридические документы и мультимедийный контент. Ожидается, что эта тенденция будет усиливаться по мере того, как предприятия расширяют инициативы цифровой трансформации и нуждаются в масштабируемых интеллектуальных решениях для управления данными.
  • По мере развития возможностей искусственного интеллекта автоматизированная классификация данных станет краеугольным камнем управления информацией, обеспечивая более быструю и безопасную обработку веб-данных в глобальных отраслях. Эта тенденция подчёркивает растущую зависимость от интеллектуальной автоматизации для управления крупномасштабными цифровыми активами в средах, ориентированных на регулирование и аналитику.

Динамика рынка классификации веб-данных

Водитель

Растущие потребности в соблюдении нормативных требований и обеспечении безопасности данных

  • Ужесточение глобальных правил конфиденциальности и безопасности данных является основным драйвером рынка классификации веб-данных. Организации должны обеспечить соответствие таким стандартам, как GDPR, CCPA, HIPAA и PCI DSS, которые требуют точной идентификации, маркировки и защиты конфиденциальной информации, хранящейся в Интернете и во внутренних системах.
    • Например, Forcepoint и Symantec предлагают решения для классификации, которые помогают компаниям обнаруживать и маркировать конфиденциальные бизнес-данные, персональные данные и платежные реквизиты для соблюдения нормативных требований. Эти инструменты обеспечивают автоматическое применение политик для безопасной обработки данных, одновременно снижая риск нарушений и штрафных санкций со стороны регулирующих органов.
  • Растущая распространённость киберугроз и атак программ-вымогателей обострила необходимость точной классификации веб-данных для реализации эффективных мер контроля доступа и шифрования. Выявляя конфиденциальную и ценную информацию на ранних этапах жизненного цикла данных, предприятия могут укрепить систему безопасности и улучшить реагирование на инциденты.
  • Кроме того, аудиты соответствия всё чаще требуют подтверждения мер по управлению данными. Системы классификации веб-данных обеспечивают документальное подтверждение прослеживаемости и отчётность, готовую к аудиту, что упрощает для организаций демонстрацию соблюдения правовых и отраслевых стандартов.
  • Поскольку организации сталкиваются с растущими объемами данных и ужесточением контроля за цифровыми практиками, интеграция инструментов классификации в корпоративные рабочие процессы становится важнейшим шагом на пути к обеспечению целостности бизнеса и выполнению меняющихся требований по соблюдению нормативных требований во всем мире.

Сдержанность/Вызов

Управление быстрым ростом неструктурированных данных

  • Одной из наиболее серьёзных проблем на рынке классификации веб-данных является управление экспоненциальным ростом объёма неструктурированных данных, таких как электронные письма, мультимедийные файлы, контент социальных сетей и сообщения клиентов. Неструктурированные наборы данных часто не имеют единого форматирования, что затрудняет их анализ и точную классификацию.
    • Например, такие компании, как OpenText и Informatica, постоянно сталкиваются с трудностями при классификации больших неструктурированных архивов, обеспечивая при этом точность данных на разных языках, в разных форматах и ​​с постоянно меняющейся структурой контента. Динамичность текстовых, видео- и графических данных требует использования передовых аналитических моделей и их постоянного совершенствования для эффективной классификации.
  • Огромный объём неструктурированных веб-данных также может создавать нагрузку на вычислительные ресурсы, что приводит к увеличению затрат на обработку и времени классификации. Для эффективного управления такими рабочими нагрузками предприятиям часто требуются значительные инвестиции в инфраструктуру ИИ, облачное хранилище и масштабируемые вычислительные мощности.
  • Кроме того, неточная классификация неструктурированных данных может привести к ненадлежащему управлению конфиденциальной информацией, создавая риски нарушения требований и подрывая протоколы безопасности. Обеспечение точности маркировки требует высококачественных обучающих наборов данных, разработка которых может быть дорогостоящей и трудоёмкой.
  • Несмотря на то, что достижения в области искусственного интеллекта, обработки естественного языка и глубокого обучения расширяют возможности, непредсказуемость и огромное разнообразие неструктурированных данных по-прежнему представляют собой серьёзные препятствия. Преодоление этих проблем потребует инноваций в адаптивных моделях классификации, гибридных системах управления данными и инструментах обработки в режиме реального времени для поддержания точности при обработке быстро растущих объёмов данных.

Сфера применения рынка классификации веб-данных

Рынок сегментирован по принципу компонентов, методологии и вертикали.

  • По компонентам

По компонентному составу рынок классификации веб-данных сегментируется на решения и услуги. Сегмент решений занял наибольшую долю рынка – 61,8% – в 2024 году благодаря растущему внедрению передовых инструментов классификации на основе искусственного интеллекта и машинного обучения, которые помогают организациям эффективно организовывать и управлять большими объемами неструктурированных и структурированных данных. Решения предлагают автоматизированные, масштабируемые и точные возможности классификации, позволяя компаниям улучшить управление данными, соответствие требованиям и аналитику. Предприятия из разных отраслей отдают приоритет решениям, которые легко интегрируются с существующими ИТ-инфраструктурами и облачными средами, тем самым сокращая объем ручного труда и эксплуатационные расходы. Растущий спрос на аналитику данных в режиме реального времени и улучшенный процесс принятия решений также способствует внедрению комплексных решений.

Ожидается, что сегмент услуг будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, что обусловлено растущей зависимостью от профессионального консалтинга, внедрения и управления проектами классификации данных. Сервисы предоставляют индивидуальные решения, адаптированные к конкретной среде данных организации, обеспечивая более высокую точность и соответствие отраслевым стандартам. Компании, которым не хватает собственных специалистов, предпочитают услуги по развертыванию, мониторингу и постоянной оптимизации систем классификации. Более того, управляемые услуги и предложения на основе подписки делают внедрение расширенных возможностей классификации экономически выгодным для малых и средних предприятий.

  • По методологии

По методологии рынок классификации веб-данных сегментируется на классификацию на основе контента, контекстную классификацию и пользовательскую классификацию. Сегмент классификации на основе контента занял наибольшую долю рынка в 2024 году благодаря своей способности анализировать внутренние свойства данных, включая ключевые слова, метаданные и структуру документов, для точной категоризации и тегирования контента. Эта методология широко используется компаниями, которым требуются автоматизированные масштабируемые решения для классификации, минимизирующие вмешательство человека и обеспечивающие соответствие нормативным требованиям. Эффективность этой методологии при работе с большими наборами данных в сфере банковских и финансовых услуг, здравоохранения и государственного сектора обеспечивает её доминирующее положение на рынке.

Ожидается, что сегмент контекстной классификации будет демонстрировать самые высокие среднегодовые темпы роста в период с 2025 по 2032 год, что обусловлено растущим спросом на интеллектуальные системы классификации, учитывающие контекст, взаимосвязи и семантическое значение данных. Контекстно-ориентированные подходы позволяют организациям получать более глубокий анализ, улучшать персонализацию и эффективнее выявлять аномалии. Предприятия, обрабатывающие сложные наборы данных, такие как финансовые транзакции или истории болезни пациентов, все чаще внедряют контекстно-ориентированные методологии для повышения точности, снижения количества ошибок и оптимизации рабочих процессов.

  • По вертикали

По вертикали рынок классификации веб-данных сегментируется на следующие сферы: BFSI, здравоохранение и науки о жизни, государственное управление и оборона, образование, телекоммуникации, СМИ и индустрия развлечений и другие. Вертикаль BFSI заняла наибольшую долю рынка в 2024 году, что обусловлено острой потребностью в безопасной, эффективной и соответствующей требованиям обработке конфиденциальных финансовых данных. Банки, страховые и инвестиционные компании все чаще используют автоматизированные системы классификации для оптимизации оценки рисков, соблюдения нормативных требований, выявления мошенничества и аналитики данных клиентов. Большой объем транзакционных и генерируемых клиентами данных дополнительно усиливает спрос на передовые решения в этом секторе.

Ожидается, что сектор здравоохранения и наук о жизни будет демонстрировать самые высокие темпы роста в период с 2025 по 2032 год, чему будет способствовать растущая оцифровка медицинских карт, исследовательских данных и информации клинических испытаний. Медицинские организации внедряют веб-классификацию данных для улучшения управления данными пациентов, ускорения исследований и обеспечения соответствия таким нормативным требованиям, как HIPAA и GDPR. Передовые методологии классификации помогают упорядочивать неструктурированные медицинские карты, облегчая анализ данных в режиме реального времени, предиктивную аналитику и персонализированный уход за пациентами. Растущее внедрение технологий искусственного интеллекта и машинного обучения в больницах, лабораториях и фармацевтических компаниях дополнительно ускоряет рост в этом секторе.

Региональный анализ рынка классификации веб-данных

  • Северная Америка доминировала на рынке классификации веб-данных с наибольшей долей выручки в 33,3% в 2024 году, что обусловлено растущим внедрением облачных вычислений, передовой аналитики и строгими правилами конфиденциальности данных, такими как CCPA.
  • Предприятия региона уделяют первостепенное внимание управлению данными и соблюдению нормативных требований, чтобы справиться с растущей обеспокоенностью по поводу киберугроз и неправомерного использования информации.
  • Сильное присутствие крупных поставщиков технологий, раннее внедрение инструментов классификации данных на основе ИИ и крупные инвестиции в инфраструктуру безопасности данных еще больше усиливают региональное доминирование.

Обзор рынка классификации веб-данных в США

Рынок классификации веб-данных в США в 2024 году занял наибольшую долю выручки в Северной Америке благодаря быстрому внедрению инициатив цифровой трансформации и усилению внимания к соблюдению нормативных требований. Резкий рост генерации неструктурированных данных в сочетании с расширением использования облачных технологий на предприятиях является драйвером роста рынка. Более того, присутствие крупных технологических компаний и растущее внедрение в сфере бизнес-финансирования, здравоохранения и государственного сектора продолжают стимулировать расширение рынка.

Обзор европейского рынка классификации веб-данных

Ожидается, что европейский рынок классификации веб-данных будет расти значительными среднегодовыми темпами в течение прогнозируемого периода, что обусловлено, главным образом, строгими правилами защиты данных, такими как GDPR, и растущим вниманием к защите корпоративных данных. Рост цифровизации в отраслях и растущее внедрение автоматизированных решений для управления данными способствуют их внедрению. Европейские организации делают акцент на системах классификации на основе искусственного интеллекта для оптимизации соблюдения нормативных требований, повышения прозрачности и снижения рисков утечки данных.

Обзор рынка классификации веб-данных в Великобритании

Ожидается, что рынок классификации веб-данных в Великобритании будет расти значительными среднегодовыми темпами в течение прогнозируемого периода, что обусловлено ужесточением законов о конфиденциальности данных и расширением использования цифровых технологий в финансовом, государственном секторах и здравоохранении. Рост инвестиций в инфраструктуру данных в регионе в сочетании с растущим спросом на автоматизированные инструменты обработки данных и обеспечения соответствия требованиям стимулирует рост рынка.

Обзор рынка классификации веб-данных в Германии

Ожидается, что рынок классификации веб-данных в Германии будет расти значительными среднегодовыми темпами в течение прогнозируемого периода, чему будет способствовать особое внимание, уделяемое страной кибербезопасности, соблюдению нормативных требований и цифровизации промышленности. Предприятия производственного и государственного секторов внедряют платформы классификации на основе искусственного интеллекта для эффективного управления большими объемами данных. Особое внимание Германии к суверенитету данных и инновационной ИТ-политике продолжает способствовать устойчивому расширению рынка.

Обзор рынка классификации веб-данных в Азиатско-Тихоокеанском регионе

Рынок классификации веб-данных в Азиатско-Тихоокеанском регионе, как ожидается, будет расти самыми быстрыми темпами в год в период с 2025 по 2032 год, что обусловлено ростом цифровизации, развитием ИТ- и телекоммуникационной инфраструктуры, а также растущей осведомлённостью о защите данных в таких странах, как Китай, Япония и Индия. Стремительный рост электронной коммерции и облачных сервисов, а также государственные инициативы по продвижению цифрового управления, ускоряют внедрение этих технологий. Ожидается, что большой объём данных в регионе и развивающиеся возможности искусственного интеллекта будут способствовать поддержанию устойчивой динамики роста.

Обзор рынка классификации веб-данных в Китае

Рынок классификации веб-данных в Китае в 2024 году обеспечил наибольшую долю выручки в Азиатско-Тихоокеанском регионе благодаря строгим государственным требованиям к безопасности данных и быстрому внедрению этой технологии в электронной коммерции, финансах и государственном секторе. Акцент Китая на создании безопасных цифровых экосистем, поддерживаемый отечественными поставщиками ИИ и достижениями в области облачных технологий, продолжает стимулировать рост рынка.

Обзор рынка классификации веб-данных в Японии

Рынок классификации веб-данных в Японии набирает обороты благодаря технологическому прогрессу страны, высоким стандартам соответствия нормативным требованиям и растущему внедрению искусственного интеллекта и аналитики больших данных. Рост числа инициатив цифровой трансформации в здравоохранении, банковских и финансовых учреждениях (BFSI) и государственном секторе, а также спрос на безопасное и эффективное управление данными способствуют устойчивому росту рынка.

Доля рынка веб-классификации данных

Лидерами отрасли классификации веб-данных являются в основном хорошо зарекомендовавшие себя компании, в том числе:

  • Корпорация IBM (США)
  • Google (США)
  • Microsoft (США)
  • Amazon Web Services, Inc. (США)
  • Broadcom (США)
  • Open Text Corporation (Канада)
  • БОЛДОН ДЖЕЙМС (Великобритания)
  • Варонис (США)
  • Innovative Routines International (IRI), Inc. (США)
  • MinerEye (Израиль)
  • PKWARE, Inc. (США)
  • Informatica Corporation (США)
  • Spirion, LLC (США)
  • Clearswift GmbH (Германия)
  • SECLORE (Индия)
  • Титус (Канада)
  • Корпорация Netwrix (США)
  • GTB Technologies, Inc. (США)
  • Forcepoint (США)
  • ConnectWise, LLC (США)
  • SoftWorks AI (США)
  • Janusnet Pty Limited (Австралия)

Последние разработки на мировом рынке классификации веб-данных

  • В октябре 2025 года компания Clarivate запустила свой классификатор на основе искусственного интеллекта (ИИ) Innography, предлагающий возможности классификации патентов с точностью до 97% с первого прохода. Это достижение отражает растущую потребность в системах классификации на основе искусственного интеллекта для автоматизации категоризации больших объемов данных и повышения точности принятия решений в компаниях. Сокращая объем ручного вмешательства и повышая эффективность бенчмаркинга, это нововведение усиливает интеграцию интеллектуальной классификации данных в стратегические бизнес-операции.
  • В сентябре 2025 года компания Squirro, мировой лидер в области корпоративных решений для генеративного искусственного интеллекта и графов знаний, объявила о выпуске новейшего обновления своей платформы, представляющего классификатор Squirro. Это обновление улучшает управление корпоративными данными благодаря автоматизированной классификации, соответствующей организационной таксономии, расширенному обнаружению персональных данных (PII) и маскированию для соблюдения конфиденциальности. Эти обновления значительно повышают точность данных, их безопасность и контекстную аналитику, позволяя организациям получать более глубокий анализ неструктурированных данных.
  • В июне 2025 года компания Zscaler представила новые функции классификации данных на базе искусственного интеллекта, предназначенные для идентификации и категоризации более 200 типов конфиденциальных данных с точностью, сравнимой с человеческой. Это достижение подчёркивает ускоряющуюся интеграцию искусственного интеллекта в системы безопасности данных, улучшая контекстный анализ и эффективность классификации в режиме реального времени. Расширение функций знаменует собой важный шаг на пути к обеспечению безопасной и интеллектуальной обработки больших объёмов конфиденциальной информации для предприятий.
  • В июне 2025 года компания Progress выпустила расширенное обновление своей платформы Semaphore, включающее возможности семантического ИИ, автоматизирующие извлечение и классификацию структурированных и неструктурированных данных. Этот выпуск демонстрирует продолжающуюся конвергенцию управления знаниями и управления данными, предоставляя предприятиям возможность более эффективно управлять, интерпретировать и защищать данные. Интеграция с семантическим интеллектом способствует повышению уровня соответствия требованиям, прозрачности операционной деятельности и формированию аналитической информации.
  • В августе 2024 года компания Varonis представила решение для обнаружения и классификации данных на базе искусственного интеллекта (ИИ), расширяющее возможности предприятий по обнаружению, мониторингу и классификации конфиденциальной информации в различных средах хранения. Это решение отражает растущий спрос на интеллектуальную автоматизацию для выявления высокорисковых данных и применения протоколов защиты. Повышая прозрачность и контроль над корпоративными данными, решение способствует повышению уровня соответствия нормативным требованиям и безопасности в различных отраслях.


SKU-

Get online access to the report on the World's First Market Intelligence Cloud

  • Интерактивная панель анализа данных
  • Панель анализа компании для возможностей с высоким потенциалом роста
  • Доступ аналитика-исследователя для настройки и запросов
  • Анализ конкурентов с помощью интерактивной панели
  • Последние новости, обновления и анализ тенденций
  • Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Запросить демонстрацию

Методология исследования

Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.

Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.

Доступна настройка

Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

Часто задаваемые вопросы

Рынок сегментирован на основе Сегментация глобального рынка классификации веб-данных по компонентам (решения и услуги), методологии (классификация на основе контента, контекстная классификация и классификация на основе пользователей), вертикали (банковское дело, финансовые услуги и страхование (BFSI), здравоохранение и науки о жизни, государственное управление и оборона, образование, телекоммуникации, СМИ и развлечения и другие) — тенденции отрасли и прогноз до 2032 года .
Размер Анализ размера, доли и тенденций мирового рынка классификации веб-данных – обзор отрасли и прогноз до 2032 года в 2024 году оценивался в 2.58 USD Billion долларов США.
Ожидается, что Анализ размера, доли и тенденций мирового рынка классификации веб-данных – обзор отрасли и прогноз до 2032 года будет расти со среднегодовым темпом роста (CAGR) 25.2% в течение прогнозируемого периода 2025–2032.
Основные участники рынка включают IBM Corporation, Google, Microsoft, Amazon Web ServicesInc., Broadcom, Open Text Corporation., BOLDON JAMES, Varonis, Innovative Routines International Inc., MinerEye, PKWAREInc., Informatica Corporation., SpirionLLC., Clearswift GmbH, SECLORE, Titus, Netwrix Corporation, GTB TechnologiesInc., Forcepoint, ConnectWiseLLC., SoftWorks AI., Janusnet Pty Limited., .
Testimonial