North America Data Fabric Market
Размер рынка в млрд долларов США
CAGR :
%
USD
0.81 Billion
USD
5.79 Billion
2024
2032
| 2025 –2032 | |
| USD 0.81 Billion | |
| USD 5.79 Billion | |
|
|
|
|
Сегментация рынка Data Fabric в Северной Америке по развертыванию (облачное и локальное), по типу (дисковое и в памяти), по применению (обнаружение мошенничества и управление безопасностью, управление, управление рисками и соответствием требованиям, управление клиентским опытом, управление продажами и маркетингом, управление бизнес-процессами и другие), по типу предприятия (крупные и малые и средние предприятия), по отраслям (бухгалтерские и финансовые услуги, ИТ и телекоммуникации, розничная торговля и электронная коммерция, здравоохранение и науки о жизни, производство, государственный сектор, энергетика и коммунальные услуги и другие) — отраслевые тенденции и прогноз до 2032 года
Размер рынка Data Fabric
- Объем рынка Data Fabric в Северной Америке в 2024 году оценивался в 0,81 млрд долларов США , а к 2032 году , как ожидается, он достигнет 5,79 млрд долларов США при среднегодовом темпе роста 27,87% в течение прогнозируемого периода.
- Этот рост обусловлен такими факторами, как цифровая трансформация и внедрение онлайн-платформ, которые стимулировали процесс генерации данных.
Анализ рынка Data Fabric
- Data Fabric — это новая архитектура управления данными, которая обеспечивает бесперебойный доступ, интеграцию и совместное использование данных в различных средах и на различных платформах. Она играет важную роль в аналитике в реальном времени, искусственном интеллекте и управлении облачными данными.
- Спрос на решения для фабрик данных обусловлен в первую очередь быстрым ростом объемов больших данных, более широким внедрением гибридных и многооблачных стратегий, а также потребностью в гибкой и масштабируемой инфраструктуре данных на всех предприятиях.
- США лидируют на рынке фабрик данных, во многом благодаря значительному присутствию в регионе многочисленных поставщиков решений для управления данными. Этот регион признан одним из первых, кто внедрил передовые технологии.
- Ожидается, что облачный сегмент будет доминировать на рынке в 2025 году, поскольку он обеспечивает необходимую предприятиям эффективность, выбор и гибкость. Компании масштабируют свои проекты в области искусственного интеллекта и углубленной аналитики в облаке, что помогает им принимать более обоснованные решения на основе данных в условиях всё более конкурентных рынков.
Область отчета и сегментация рынка Data Fabric
|
Атрибуты |
Ключевые аспекты рынка Data Fabric |
|
Охваченные сегменты |
|
|
Охваченные страны |
Северная Америка
|
|
Ключевые игроки рынка |
|
|
Рыночные возможности |
|
|
Информационные наборы данных с добавленной стоимостью |
Помимо информации о рыночных сценариях, таких как рыночная стоимость, темпы роста, сегментация, географический охват и основные игроки, рыночные отчеты, подготовленные Data Bridge Market Research, также включают анализ импорта и экспорта, обзор производственных мощностей, анализ потребления продукции, анализ ценовых тенденций, сценарий изменения климата, анализ цепочки поставок, анализ цепочки создания стоимости, обзор сырья/расходных материалов, критерии выбора поставщиков, анализ PESTLE, анализ Портера и нормативную базу. |
Тенденции рынка Data Fabric
«Растущее внедрение решений по интеграции данных в реальном времени и интеллектуальной фабрики данных»
- Важной тенденцией на мировом рынке фабрик данных является повышенное внимание к интеграции данных в реальном времени и аналитическим возможностям в гибридных и многооблачных средах.
- Интеллектуальные структуры данных, усовершенствованные с помощью искусственного интеллекта и машинного обучения, позволяют организациям автоматизировать процессы, связанные с обнаружением, интеграцией и управлением данными.
- Например, в июне 2024 года IBM запустила Cloud Pak for Data 5.0, внедрив такие мощные функции, как Immersive Experience, Remote Data Planes, Data Product Hub и Relationship Explorer, для улучшения доступа к данным, управления и готовности к использованию ИИ. Это обновление укрепило архитектуру IBM Data Fabric, которая объединяет интеграцию данных, управление, отслеживаемость, происхождение и управление основными данными в единую компонуемую платформу. Это позволило организациям избавиться от разрозненности данных, повысить их качество, соблюдать нормативные требования и масштабировать ИИ и аналитику с использованием проверенных данных, что в конечном итоге привело к повышению производительности, сокращению затрат и ускорению получения аналитической информации в масштабах всего предприятия.
- Эти инновации способствуют более гибкому принятию решений, улучшают качество обслуживания клиентов и оптимизируют операции с данными, тем самым повышая спрос на передовые решения в области обработки данных.
Динамика рынка Data Fabric
Водитель
«Быстрый рост объемов и сложности данных»
- Значительный рост производства данных с помощью устройств Интернета вещей, социальных сетей, корпоративных приложений и облачных платформ является ключевым фактором, способствующим внедрению фабрик данных.
- Организации сталкиваются с растущей необходимостью быстро извлекать полезную информацию из больших объемов структурированных и неструктурированных данных, которые часто распределены по разным средам.
Например,
- В июне 2023 года эксперты прогнозировали, что к 2025 году объём данных в Северной Америке достигнет 200 зеттабайт, причём лидирующие позиции по темпам роста занимают данные в сфере здравоохранения. Компании столкнулись с такими проблемами, как ограниченность технологий и экспертных знаний, но увидели возможности в ИИ, облачных технологиях и аналитике озёр данных. Структура данных помогла им интегрировать и управлять большими объёмами данных, предоставляя достоверную аналитику. Это позволило компаниям улучшить персонализацию, повысить эффективность и сохранить конкурентоспособность.
- Решения для обработки данных позволяют компаниям интегрировать и обрабатывать сложные наборы данных в режиме реального времени, повышая операционную эффективность и ускоряя внедрение инноваций.
Возможность
«Интеграция ИИ и МО в архитектуру Data Fabric»
- Внедрение функций искусственного интеллекта и машинного обучения в платформы обработки данных создает новые возможности в области автоматизации, качества и управления данными.
- Эти технологии облегчают интеллектуальную каталогизацию данных, обнаружение аномалий, предиктивную аналитику и динамическое применение политик, производя революцию в управлении данными и их использовании.
Например,
- В марте 2025 года в статье журнала Data Management Review сообщалось, что фабрики данных на базе искусственного интеллекта способны самостоятельно выявлять проблемы с качеством данных и предлагать оптимальные потоки данных, что значительно снижает необходимость ручного вмешательства.
- Внедрение ИИ не только сокращает время получения информации, но и повышает соответствие требованиям, масштабируемость и гибкость, открывая существенные возможности для роста в таких отраслях, как финансы, здравоохранение и розничная торговля.
Сдержанность/Вызов
«Сложности интеграции и ограничения устаревшей инфраструктуры»
- Существенным препятствием на рынке фабрик данных в Северной Америке является сложный процесс интеграции решения с текущими устаревшими системами.
- Многие организации полагаются на устаревшие инфраструктуры данных, которые не приспособлены для обработки в реальном времени или гибридных облачных конфигураций, что приводит к тому, что переход оказывается дорогостоящим и длительным.
Например,
- В отчете TechTarget, опубликованном в январе 2024 года, подчеркивается, что более 60% предприятий продолжают использовать устаревшие ERP-системы и системы хранения данных, что создает препятствия для комплексного внедрения фабрики данных.
- Более того, наличие правил конфиденциальности данных и проблем с соблюдением требований в разных регионах усложняет развертывание, препятствуя прогрессу в отраслях со строгими нормативными требованиями.
Объем рынка Data Fabric
Рынок сегментирован по принципу развертывания, типа, применения, типа предприятия, отрасли.
|
Сегментация |
Подсегментация |
|
По развертыванию |
|
|
По типу |
|
|
По применению
|
|
|
По типу предприятия
|
|
|
По отраслям
|
|
Ожидается , что к 2025 году облако будет доминировать на рынке, занимая наибольшую долю в сегменте развертывания.
Ожидается, что облачный сегмент будет доминировать на рынке в 2025 году, поскольку он обеспечивает необходимую предприятиям эффективность, выбор и гибкость. Компании масштабируют свои проекты в области искусственного интеллекта и углубленной аналитики в облаке, что помогает им принимать более обоснованные решения на основе данных в условиях всё более конкурентных рынков.
Ожидается, что наибольшую долю в сегменте типов в прогнозируемый период будут составлять дисковые накопители.
Сегмент дисковых носителей, вероятно, захватит максимальную долю рынка благодаря меньшей стоимости владения и соответствия требованиям к данным, а также постоянно растущей потребности в интеграции и управлении данными в различных хранилищах данных.
Региональный анализ рынка Data Fabric
«США занимают самую большую долю на рынке Data Fabric»
- США занимают значительную долю рынка благодаря растущей потребности в интеграции данных в режиме реального времени в таких секторах, как здравоохранение, финансы и розничная торговля, а также значительным инвестициям в проекты цифровой трансформации.
- В регионе имеется хорошо развитая ИТ-экосистема и высокая плотность поставщиков облачных услуг, что дополнительно облегчает внедрение масштабируемых и гибких решений по обработке данных.
- Более того, требования по соблюдению нормативных требований, такие как HIPAA, GDPR и SOX, побуждают компании внедрять платформы обработки данных для безопасного и централизованного управления данными, тем самым способствуя общему расширению рынка.
«Прогнозируется, что Канада будет демонстрировать самый высокий среднегодовой темп роста на рынке фабрик данных»
- Ожидается, что регион Канады будет демонстрировать самые быстрые темпы роста рынка Data Fabric, чему будут способствовать быстрая цифровизация, рост внедрения облачных технологий и растущая ориентация предприятий на аналитику и принятие решений в режиме реального времени.
- Канада продолжает лидировать в освоении передовых технологий интеграции данных, чему способствуют технологически развитый корпоративный сектор и благоприятные государственные инициативы в отношении Индустрии 4.0.
Доля рынка Data Fabric
В разделе «Конкурентная среда на рынке» представлена подробная информация по конкурентам. В неё включены: описание компании, её финансовые показатели, полученная выручка, рыночный потенциал, инвестиции в исследования и разработки, новые рыночные инициативы, присутствие в Северной Америке, производственные площадки и объекты, производственные мощности, сильные и слабые стороны компании, запуск продукта, широта и разнообразие продуктов, доминирующие области применения. Представленные выше данные относятся только к рыночным интересам компаний.
Основными лидерами рынка, работающими на рынке, являются:
- Корпорация IBM (США)
- Корпорация Oracle (США)
- Компания Hewlett Packard Enterprise (США)
- SAP SE (Германия)
- NetApp, Inc. (США)
- TIBCO Software Inc. (США)
- Talend Inc. (США)
- Denodo Technologies Inc. (США)
- Cloudera, Inc. (США)
- ClueIn (Дания)
Последние разработки на рынке Data Fabric в Северной Америке
- В июле 2024 года корпорация IBM приобрела StreamSets, ведущую компанию по интеграции данных в режиме реального времени. Это приобретение расширяет возможности IBM в области решений для обработки данных нового поколения, позволяя предприятиям работать с фрагментированными стеками данных, оптимизировать интеграцию и управление, а также ускорить подготовку к внедрению генеративного ИИ.
- В августе 2024 года SAP SE и Collibra расширили своё партнёрство, добавив нативную интеграцию в SAP Datasphere. Цель этого сотрудничества — предоставлять достоверную, контролируемую информацию всем предприятиям, предоставляя пользователям надежную аналитику и поддерживая принятие решений на основе ИИ в средах, управляемых данными.
- В мае 2023 года компания Talend интегрировала новые инновации в свою платформу Data Fabric, чтобы предоставить специалистам по работе с данными высокопроизводительную интеграцию с ведущими платформами облачной аналитики. Улучшения включают возможности совместного управления данными, портал самообслуживания API и приватные соединения между Microsoft Azure и Amazon AWS для обеспечения безопасности данных.
- В марте 2025 года французская рекламная компания Publicis объявила о приобретении группы компаний Lotame, специализирующейся на технологиях обработки данных и идентификации. Это приобретение позволит интегрировать её в подразделение целевого маркетинга Epsilon, что позволит удвоить охват индивидуальных профилей потребителей до 4 миллиардов и охватить 91% всех взрослых пользователей интернета.
- В сентябре 2024 года корпорация Oracle и Amazon Web Services (AWS) объявили о запуске Oracle Database@AWS — сервиса, обеспечивающего бесперебойный доступ к Oracle Autonomous Database и Exadata Database Service в среде AWS. Эта интеграция упрощает миграцию данных, повышает гибкость и поддерживает унифицированное управление данными — ключевые компоненты решений для фабрик данных. Целью сотрудничества является предоставление компаниям комплексной архитектуры данных, которая упрощает аналитику в реальном времени и упрощает операции с данными в гибридных облачных средах.
SKU-
Get online access to the report on the World's First Market Intelligence Cloud
- Интерактивная панель анализа данных
- Панель анализа компании для возможностей с высоким потенциалом роста
- Доступ аналитика-исследователя для настройки и запросов
- Анализ конкурентов с помощью интерактивной панели
- Последние новости, обновления и анализ тенденций
- Используйте возможности сравнительного анализа для комплексного отслеживания конкурентов
Содержание
1 INTRODUCTION
1.1 OBJECTIVES OF THE STUDY
1.2 MARKET DEFINITION
1.3 OVERVIEW OF NORTH AMERICA DATA FABRIC MARKET
1.4 CURRENCY AND PRICING
1.5 IMPACT OF COVID-19 PANDEMIC ON THE MARKET
1.5.1 PRICE IMPACT
1.5.2 IMPACT ON DEMAND
1.5.3 IMPACT ON SUPPLY CHAIN
1.5.4 CONCLUSION
1.6 LIMITATION
1.7 MARKETS COVERED
2 MARKET SEGMENTATION
2.1 KEY TAKEAWAYS
2.2 ARRIVING AT THE NORTH AMERICA DATA FABRIC MARKET
2.2.1 VENDOR POSITIONING GRID
2.2.2 TECHNOLOGY LIFE LINE CURVE
2.2.3 MARKET GUIDE
2.2.4 COMPANY POSITIONING GRID
2.2.5 COMAPANY MARKET SHARE ANALYSIS
2.2.6 MULTIVARIATE MODELLING
2.2.7 TOP TO BOTTOM ANALYSIS
2.2.8 STANDARDS OF MEASUREMENT
2.2.9 VENDOR SHARE ANALYSIS
2.2.10 DATA POINTS FROM KEY PRIMARY INTERVIEWS
2.2.11 DATA POINTS FROM KEY SECONDARY DATABASES
2.3 NORTH AMERICA DATA FABRIC MARKET: RESEARCH SNAPSHOT
2.4 ASSUMPTIONS
3 MARKET OVERVIEW AND INDUSTRY TRENDS
3.1 DRIVERS
3.2 RESTRAINTS
3.3 OPPORTUNITIES
3.4 CHALLENGES
4 EXECUTIVE SUMMARY
5 PREMIUM INSIGHT
5.1 INTEGRATION OF TECHNOLOGIES SUCH AS MACHINE LEARNING AND AI IN DATA FABRIC SOLUTIONS
6 IMPACT OF COVID-19 PANDEMIC ON THE MARKET
6.1 ANALYSIS ON IMPACT OF COVID-19 ON THE MARKET
6.2 AFTER MATH OF COVID-19 AND GOVERNMENT INITIATIVE TO BOOST THE MARKET
6.3 STRATEGIC DECISIONS FOR MANUFACTURERS AFTER COVID-19 TO GAIN COMPETITIVE MARKET SHARE
6.4 PRICE IMPACT/PRICING ANALYSIS
6.5 IMPACT ON DEMAND
6.6 IMPACT ON SUPPLY CHAIN
6.7 CONCLUSION
7 NORTH AMERICA DATA FABRIC MARKET, BY OFFERING
7.1 OVERVIEW
7.2 SOFTWARE
7.2.1 DATA MANAGEMENT
7.2.2 DATA INTEGRATION
7.2.3 DATA GOVERNANCE
7.2.4 DATA VIRTUALIZATION
7.2.5 OTHERS
7.3 SERVICES
7.3.1 IMPLEMENTATION AND INSTALLATION
7.3.2 CONSULTING
7.3.3 SUPPORT AND MAINTENANCE
8 NORTH AMERICA DATA FABRIC MARKET, BY ORGANIZATION SIZE
8.1 OVERVIEW
8.2 LARGE ENTERPRISES
8.3 SMES
9 NORTH AMERICA DATA FABRIC MARKET, BY TYPE
9.1 OVERVIEW
9.2 DISK-BASED DATA FABRIC
9.3 IN-MEMORY DATA FABRIC
10 NORTH AMERICA DATA FABRIC MARKET, BY DEPLOYMENT MODE
10.1 OVERVIEW
10.2 CLOUD
10.3 ON-PREMISES
11 NORTH AMERICA DATA FABRIC MARKET, BY APPLICATION
11.1 OVERVIEW
11.2 FRAUD DETECTION AND SECURITY
11.3 MANAGEMENT
11.4 SALES AND MARKETING MANAGEMENT
11.5 DATA GOVERNANCE AND COMPLIANCE
11.6 MANAGEMENT
11.7 BUSINESS PROCESS AMANGEMENT
11.8 CUSTOMER EXPERIENCE MANAGEMENT
11.9 OTHERS
12 NORTH AMERICA DATA FABRIC MARKET, BY INDUSTRY
12.1 OVERVIEW
12.2 BFSI
12.2.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.2.2 SALES AND MARKETING AMANGEMENT
12.2.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.2.4 BUSINESS PROCESS MANAGEMENT
12.2.5 CUSTOMER EXPERIENCE MANAGEMENT
12.2.6 OTHERS
12.3 HEALTHCARE AND LIDE SCIENCES
12.3.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.3.2 SALES AND MARKETING AMANGEMENT
12.3.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.3.4 BUSINESS PROCESS MANAGEMENT
12.3.5 CUSTOMER EXPERIENCE MANAGEMENT
12.3.6 OTHERS
12.4 IT AND TELECOM
12.4.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.4.2 SALES AND MARKETING AMANGEMENT
12.4.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.4.4 BUSINESS PROCESS MANAGEMENT
12.4.5 CUSTOMER EXPERIENCE MANAGEMENT
12.4.6 OTHERS
12.5 MANUFACTURING
12.5.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.5.2 SALES AND MARKETING AMANGEMENT
12.5.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.5.4 BUSINESS PROCESS MANAGEMENT
12.5.5 CUSTOMER EXPERIENCE MANAGEMENT
12.5.6 OTHERS
12.6 RETAIL AND ECOMMERCE
12.6.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.6.2 SALES AND MARKETING AMANGEMENT
12.6.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.6.4 BUSINESS PROCESS MANAGEMENT
12.6.5 CUSTOMER EXPERIENCE MANAGEMENT
12.6.6 OTHERS
12.7 GOVERNMENT
12.7.1 FRAUD DETECTION AND SECURITY MANAGEMENT
12.7.2 SALES AND MARKETING AMANGEMENT
12.7.3 DATA GOVERNANCE AND COMPLAINCE MAANGEMENT
12.7.4 BUSINESS PROCESS MANAGEMENT
12.7.5 CUSTOMER EXPERIENCE MANAGEMENT
12.7.6 OTHERS
12.8 OTHERS
13 NORTH AMERICA DATA FABRIC MARKET, BY GEOGRAPHY
NORTH AMERICA DATA FABRIC MARKET, (ALL SEGMENTATION PROVIDED ABOVE IS REPRESENTED IN THIS CHAPTER BY COUNTRY)
13.1.1 NORTH AMERICA
13.1.1.1. U.S.
13.1.1.2. CANADA
13.1.1.3. MEXICO
14 NORTH AMERICA DATA FABRIC MARKET,COMPANY LANDSCAPE
14.1 COMPANY SHARE ANALYSIS: NORTH AMERICA
14.2 COMPANY SHARE ANALYSIS: U.S.
14.3 MERGERS & ACQUISITIONS
14.4 NEW PRODUCT DEVELOPMENT AND APPROVALS
14.5 EXPANSIONS
14.6 REGULATORY CHANGES
14.7 PARTNERSHIP AND OTHER STRATEGIC DEVELOPMENTS
15 NORTH AMERICA DATA FABRIC MARKET , SWOT & DBMR ANALYSIS
16 NORTH AMERICA DATA FABRIC MARKET, COMPANY PROFILE
16.1 ORACLE
16.1.1 COMPANY SNAPSHOT
16.1.2 REVENUE ANALYSIS
16.1.3 GEOGRAPHIC PRESENCE
16.1.4 PRODUCT PORTFOLIO
16.1.5 RECENT DEVELOPMENTS
16.2 VMWARE INC.
16.2.1 COMPANY SNAPSHOT
16.2.2 REVENUE ANALYSIS
16.2.3 GEOGRAPHIC PRESENCE
16.2.4 PRODUCT PORTFOLIO
16.2.5 RECENT DEVELOPMENTS
16.3 NETAPP
16.3.1 COMPANY SNAPSHOT
16.3.2 REVENUE ANALYSIS
16.3.3 GEOGRAPHIC PRESENCE
16.3.4 PRODUCT PORTFOLIO
16.3.5 RECENT DEVELOPMENTS
16.4 TERADATA CORPORATION
16.4.1 COMPANY SNAPSHOT
16.4.2 REVENUE ANALYSIS
16.4.3 GEOGRAPHIC PRESENCE
16.4.4 PRODUCT PORTFOLIO
16.4.5 RECENT DEVELOPMENTS
16.5 IBM CORPORATION
16.5.1 COMPANY SNAPSHOT
16.5.2 REVENUE ANALYSIS
16.5.3 GEOGRAPHIC PRESENCE
16.5.4 PRODUCT PORTFOLIO
16.5.5 RECENT DEVELOPMENTS
16.6 DENODO TECHNOLOGIES
16.6.1 COMPANY SNAPSHOT
16.6.2 REVENUE ANALYSIS
16.6.3 GEOGRAPHIC PRESENCE
16.6.4 PRODUCT PORTFOLIO
16.6.5 RECENT DEVELOPMENTS
16.7 INFORMATICA
16.7.1 COMPANY SNAPSHOT
16.7.2 REVENUE ANALYSIS
16.7.3 GEOGRAPHIC PRESENCE
16.7.4 PRODUCT PORTFOLIO
16.7.5 RECENT DEVELOPMENTS
16.8 GLOBAL IDS
16.8.1 COMPANY SNAPSHOT
16.8.2 REVENUE ANALYSIS
16.8.3 GEOGRAPHIC PRESENCE
16.8.4 PRODUCT PORTFOLIO
16.8.5 RECENT DEVELOPMENTS
16.9 TALEND
16.9.1 COMPANY SNAPSHOT
16.9.2 REVENUE ANALYSIS
16.9.3 GEOGRAPHIC PRESENCE
16.9.4 PRODUCT PORTFOLIO
16.9.5 RECENT DEVELOPMENTS
16.1 TRIFACTA
16.10.1 COMPANY SNAPSHOT
16.10.2 REVENUE ANALYSIS
16.10.3 GEOGRAPHIC PRESENCE
16.10.4 PRODUCT PORTFOLIO
16.10.5 RECENT DEVELOPMENTS
16.11 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP
16.11.1 COMPANY SNAPSHOT
16.11.2 REVENUE ANALYSIS
16.11.3 GEOGRAPHIC PRESENCE
16.11.4 PRODUCT PORTFOLIO
16.11.5 RECENT DEVELOPMENTS
16.12 PANZURA
16.12.1 COMPANY SNAPSHOT
16.12.2 REVENUE ANALYSIS
16.12.3 GEOGRAPHIC PRESENCE
16.12.4 PRODUCT PORTFOLIO
16.12.5 RECENT DEVELOPMENTS
16.13 INFOR
16.13.1 COMPANY SNAPSHOT
16.13.2 REVENUE ANALYSIS
16.13.3 GEOGRAPHIC PRESENCE
16.13.4 PRODUCT PORTFOLIO
16.13.5 RECENT DEVELOPMENTS
16.14 BY ONIS SOLUTIONS
16.14.1 COMPANY SNAPSHOT
16.14.2 REVENUE ANALYSIS
16.14.3 GEOGRAPHIC PRESENCE
16.14.4 PRODUCT PORTFOLIO
16.14.5 RECENT DEVELOPMENTS
16.15 NEXLA
16.15.1 COMPANY SNAPSHOT
16.15.2 REVENUE ANALYSIS
16.15.3 GEOGRAPHIC PRESENCE
16.15.4 PRODUCT PORTFOLIO
16.15.5 RECENT DEVELOPMENTS
16.16 SPLUNK INC.
16.16.1 COMPANY SNAPSHOT
16.16.2 REVENUE ANALYSIS
16.16.3 GEOGRAPHIC PRESENCE
16.16.4 PRODUCT PORTFOLIO
16.16.5 RECENT DEVELOPMENTS
16.17 ATACCAMA
16.17.1 COMPANY SNAPSHOT
16.17.2 REVENUE ANALYSIS
16.17.3 GEOGRAPHIC PRESENCE
16.17.4 PRODUCT PORTFOLIO
16.17.5 RECENT DEVELOPMENTS
16.18 KALOOM INC.
16.18.1 COMPANY SNAPSHOT
16.18.2 REVENUE ANALYSIS
16.18.3 GEOGRAPHIC PRESENCE
16.18.4 PRODUCT PORTFOLIO
16.18.5 RECENT DEVELOPMENTS
16.19 ORION GOVERNANCE
16.19.1 COMPANY SNAPSHOT
16.19.2 REVENUE ANALYSIS
16.19.3 GEOGRAPHIC PRESENCE
16.19.4 PRODUCT PORTFOLIO
16.19.5 RECENT DEVELOPMENTS
16.2 SAS INSTITUTE INC.
16.20.1 COMPANY SNAPSHOT
16.20.2 REVENUE ANALYSIS
16.20.3 GEOGRAPHIC PRESENCE
16.20.4 PRODUCT PORTFOLIO
16.20.5 RECENT DEVELOPMENTS
NOTE: THE COMPANIES PROFILED IS NOT EXHAUSTIVE LIST AND IS AS PER OUR PREVIOUS CLIENT REQUIREMENT. WE PROFILE MORE THAN 100 COMPANIES IN OUR STUDY AND HENCE THE LIST OF COMPANIES CAN BE MODIFIED OR REPLACED ON REQUEST
17 CONCLUSION
18 RELATED REPORTS
19 ABOUT DATA BRIDGE MARKET RESEARCH
Методология исследования
Сбор данных и анализ базового года выполняются с использованием модулей сбора данных с большими размерами выборки. Этап включает получение рыночной информации или связанных данных из различных источников и стратегий. Он включает изучение и планирование всех данных, полученных из прошлого заранее. Он также охватывает изучение несоответствий информации, наблюдаемых в различных источниках информации. Рыночные данные анализируются и оцениваются с использованием статистических и последовательных моделей рынка. Кроме того, анализ доли рынка и анализ ключевых тенденций являются основными факторами успеха в отчете о рынке. Чтобы узнать больше, пожалуйста, запросите звонок аналитика или оставьте свой запрос.
Ключевой методологией исследования, используемой исследовательской группой DBMR, является триангуляция данных, которая включает в себя интеллектуальный анализ данных, анализ влияния переменных данных на рынок и первичную (отраслевую экспертную) проверку. Модели данных включают сетку позиционирования поставщиков, анализ временной линии рынка, обзор рынка и руководство, сетку позиционирования компании, патентный анализ, анализ цен, анализ доли рынка компании, стандарты измерения, глобальный и региональный анализ и анализ доли поставщика. Чтобы узнать больше о методологии исследования, отправьте запрос, чтобы поговорить с нашими отраслевыми экспертами.
Доступна настройка
Data Bridge Market Research является лидером в области передовых формативных исследований. Мы гордимся тем, что предоставляем нашим существующим и новым клиентам данные и анализ, которые соответствуют и подходят их целям. Отчет можно настроить, включив в него анализ ценовых тенденций целевых брендов, понимание рынка для дополнительных стран (запросите список стран), данные о результатах клинических испытаний, обзор литературы, обновленный анализ рынка и продуктовой базы. Анализ рынка целевых конкурентов можно проанализировать от анализа на основе технологий до стратегий портфеля рынка. Мы можем добавить столько конкурентов, о которых вам нужны данные в нужном вам формате и стиле данных. Наша команда аналитиков также может предоставить вам данные в сырых файлах Excel, сводных таблицах (книга фактов) или помочь вам в создании презентаций из наборов данных, доступных в отчете.

